用户名: 密码: 验证码:
双聚型CFP保幅处理及并行实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着油气勘探开发的进一步深入,对岩性解释需求迫切。为了能够高效率的为解释工作提供可靠的保幅剖面,开展了双聚型CFP保幅处理及并行实现的研究工作。在研究了传统的基于射线理论的双聚型CFP保幅处理后,提出了基于波动方程波场延拓理论的双聚型CFP保幅处理方法;针对CFP技术计算效率较低的问题,研究并实现了以上方法的并行计算,研发了CFP技术处理系统以方便该地震成像方法的推广应用。
     在基于射线理论的双聚型CFP保幅处理的研究中,第一步聚焦利用有限差分走时计算,等时原理、差异时移分析等方法技术,研究计算聚焦算子、生成CFP道集、确定共聚焦点响应位置和估算正确的聚焦算子。将旅行时和振幅信息结合在一起,使算子的振幅符合了波场传播特征;采用基于稳相原理和菲涅尔带叠加的方法,提高了CFP道集的分辨率和信噪比。在第二步聚焦中,利用褶积和相关原理,生成网格点道集。借助Radon变换,求取反射系数函数,实现了射线理论保幅处理及其AVP分析。
     在基于波动方程波场延拓理论的双聚型CFP保幅处理的研究中,分别在两步聚焦过程中采用波场延拓技术,实现了半波动和全波动的处理流程。通过考虑波前扩散、地质条件的影响,设计了消除采集效应和传播效应的保幅算子。通过改进傅立叶有限差分的延拓算子,补偿了几何扩散损失引起的振幅误差。
     在以上两种处理过程中,通过分析DTS面板,更新算子,逐步更新速度场,解决了初始速度模型不准确的问题,保证了所求取的成像结果的正确性。模型试算和实际数据试处理以及CFP-AVP分析结果都表明了基于射线理论和基于波动方程波场延拓理论的双聚型CFP保幅处理方法的有效性和实用性。
     在CFP保幅处理技术中,计算效率问题是阻碍其推广应用的一大瓶颈,根据并行计算的实现原理,利用消息传递机制,设计实现了数据并行和基于检查点的主从式并行的两种并行算法,并分别将其应用到双聚型CFP保幅处理上,提高了计算效率。
     基于Linux操作系统,结合跨平台的C++图形用户界面库Qt,使用C/C++和Fortran编程语言混合编程、多线程和面向对象等技术,研发了CFP保幅处理系统。该系统的实现也为地震资料处理软件的研发提供了一套解决方案。利用该软件对理论模型数据和实际地震资料进行了试算,获得了比较理想的结果。
With the development of gas and oil exploration and exploitation, lithologic interpretations are in the great need. In order to efficiently provide interpretations more precise amplitude-reserved section, we studied amplitude-preserved processing based on bifocal version of CFP technology and its parallelization. After the study of amplitude-preserved processing based on bifocal version of CFP technology using conventional ray theory, we pointed out amplitude-reserved processing based on bifocal version of CFP technology using wave equation wave field extrapolation theory. Parallelization of those two methods is presented in this paper for promoting the computation efficiency. We also developed a GUI for the wide use of these methods.
     During the study of amplitude-preserved processing based on bifocal version of CFP technology using ray theory, in the first focusing step, by using the method of the finite difference to compute the travaltime, using the principle of equal time and the analysis of differential time shift, we studied the computation of the reversed-time focusing operator, the computation of synthetic CFP gather, the position identification of CFP response and the evaluation of correct focus operator. We combined traveltime and amplitude together to make the amplitude of operator meet the feature of wave field propagation. We used the principle of stationary phase and the stack of Fresnel band to promote the resolution and signal noise ratio of CFP gather. In the second focusing step, using the principle of convolution and correlation, grid point gathers are generated. We got reflection coefficient functions by using the Radon transformation. Ultimately we realized amplitude-preserved migration and the analysis of CFP-AVP based on ray theory.
     During the study of amplitude-preserved processing based on bifocal version of CFP technology using wave equation wave field extrapolation, we realized a half wave equation and full wave equation processing flow. We fully considered the influences of wave front diffusion, geological condition, designed the amplitude-preserved operator which can eliminate the effect of receivers and propagation. We improved FFD extrapolation operator to compensate the amplitude difference generated by geometry diffusion loss.
     In those two processing, we used DTS panel analysis to update the operator and the velocity field, which we can get the correct velocity model and garentee the correct imaging result. Tests using model data and field data, and CFP-AVP analysis all proved the validity and practicality of amplitude-preserved processing method based on bifocal version of CFP technology.
     The computational efficiency of amplitude-preserved processing based on bifocal version of CFP technology is a big problem which can prevent the imaging method from widely use to the industry. According to the principle of parallelization, and using MPI scheme, we designed and realized two parallel algorithms. One is data parallel algorithm, the other is master-slave parallel algorithm based on check points. We improved the computational efficiency by applying them to amplitude-reserved processing based on bifocal version of CFP technology.
     A seismic data processing system based on CFP technology has been developed based on Linux operating system, combining a cross-platform C++ graphical user interface library Qt, using mixed programming languages including C/C++ and FORTRAN, the multi-tread technology, OOP (Object-Oriented Programming) thinking, etc. This will also provide a solution for the development of other seismic data processing software. We tested it using model data and field data, and get good results.
引文
[1] Berkhout A. J.. Pushing the limits of seismic imaging. Part I: Prestack migration in terms of double dynamic focusing [J]. Geophysics, 1997, 62: 937-953
    [2] Berkhout A. J.. Pushing the limits of seismic imaging. Part II: Integration of prestack migration, velocity estimation, and AVO analysis [J]. Geophysics, 1997, 62: 954-969
    [3] Berkhout A. J.. Areal shot record technology [C]. Journal Seismic Exploration, 1992, (1): 251-264
    [4] Thorbecke J. W.. Common Focus Point Technology [D]. Delft University of Technology, 1997
    [5] Berkhout A. J. Seismic migration: Imaging of acoustic energy by wavefield extrapolation. third edition: Elsevier Science Publ. Co. Inc., ChapterⅥ, 1985: 185-244
    [6] Houck R. T.. Quantifying the uncertainty in an AVO interpretation [J]. Geophysics, 2002, 67(2): 117-125
    [7] Kabir M. M. N., Verschuur D. J. Velocity analysis of complex surface using common focus point technology[C]. 67th Ann. Internat. Mtg , Soc. Expl. Geophys., Expanded Abstracts, 1997
    [8] Kelamis P. G., et al. CFP-based redatuming: Synthetic and field data examples [J]. Soc. Expl. Geophys., Expended abstracts,2001
    [9] Kelamis P. G.. Data-driven internal multiple attenuation-Applications and issues on land data [C]. 72th Ann. Internat. Mtg , Soc. Expl. Geophys., Expanded Abstracts, 2002
    [10] Verschuur D. J., Winthaegen P. L. A., Berkhout A. J.. Estimation of P-wave and S-wave focusing operators using the CFP technology [C]. EAGE 64th conf., Extended Abstracts, 2002
    [11] Winthaegen P. L. A., Verschuur D. J.. Using the CFP-methodology for PP and PS angle dependent reflectivity analysis [C]. 72th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2002
    [12] Winthaegen P. L. A., et al. CFP-approach to time-lapse angle-dependent reflectivity analysis [C]. 71th Ann. Internat. Mtg , Soc. Expl. Geophys., Expanded Abstracts, 2001
    [13] Reshef M., Kosloff D.. Migration of common shot gathers [J]. Geophysics, 1986, 51:324-331
    [14] Van de Rijzen M.J., Verschuur D.J., Gisolf A.. 3D focusing operator estimation using sparse data[C]. 74th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts,2004
    [15] Ferguson R. J., Sen M.. Joint inversion of P- and SV-wave traveltime error to estimate anisotropy: a CFP approach [C]. 74th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 2004
    [16] Al-Ali M., Blacquiere G..Velocity-independent determination of 3D focusing operators using cross-spreads [C]. 75th Ann. Internat. Mtg., Soc. Expl. Geophys. Expanded Abstracts, 2005
    [17] Verschuur D. J., Berkhout A. J.. Removal of internal multiples with the common focus point (CFP) approach: Part 1—Explanation of the theory [J]. Geophysics, 2005, 70(3): 45-60
    [18] Verschuur D. J., Berkhout A. J.. Removal of internal multiples with the common focus point (CFP) approach: Part 2—Application strategies and data examples [J]. Geophysics, 2005, 70(3): 61-72
    [19] Berkhout, A. J., Rietveld, W. E. A. Determination of macromodels for prestack migration, Part I: Estimation of macro velocities[C]. 64th Ann. Internat. Mtg., Soc. Expl. Geophys, Expanted Abstracts, 1994:1330-1333
    [20] Berkhout A. J., Verschuur D.J.. CFP-approach to multicomponent imaging [C]. 70th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2000:774-777
    [21] Kabir, M. M. N., and Verschuur, D. J. A constrained parametric inversion for velocity analysis based on CFP technology [J]. Geophysics, 2000, 65(4): 1210-1222
    [22] Ostrander W. J.. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence [J], Geophysics, 1984, 49: 1637-1648
    [23] Van Wijngaarden, A. J.. Imaging and characterization of angle-dependent seismic reflection data [D]. Delft University of Technology, Delft: 1998
    [24] Berkhout A. J. and Verschuur D. J. Seismic imaging beyond depth migration [J]. Geophysics, 2001, 66(6):1895-1912
    [25]俞国柱,姚姚,周玉冰,等.共聚焦点(CFP)成像技术述评[J].石油地球物理勘探, 2002, 37(4):412-421
    [26]王锡文,张果,杨春梅.共聚焦点成像技术[J].西南石油学院学报, 2004, 26(5):10-14
    [27]娄晓东,曹谊,赵青.地震处理新方法——共聚焦点技术[J].勘探地球物理进展, 2002, 25(5):7-17
    [28]李振春,张建磊,王延光,等.基于共聚焦点道集的叠前深度偏移及其应用[J].石油大学学报(自然科学版), 2003, 27(4): 27-31
    [29]李振春,艾秀娟.利用CFP技术解决复杂近地表问题综述[J].地球物理学进展, 2008,23(2):464-469
    [30]李振春,张凯,张建磊,等.共聚焦点偏移成像方法研究[J].石油物探, 2003, 42(1): 16-21
    [31]李振春等.基于共聚焦点道集的偏移速度建模及其应用. CPS/SEG国际地球物理学术会议论文集, 2004
    [32]刘玉莲,李振春,张建磊.基于有限差分走时计算的Kirchhoff叠前深度偏移. CPS/SEG北京国际地球物理学术会议论文集, 2004
    [33]李振春.多道集偏移速度建模方法研究[D],同济大学,上海:2002
    [34]李振春,姚云霞等.Migration velocity modeling based on common reflection surface gather[J].地震学报,2003,16(4):430-440
    [35]马在田.地震成像技术[M].石油工业出版社,北京:石油工业出版社,1989:35-84
    [36]马在田等著.计算地球物理学概论[M].同济大学出版社,上海:同济大学出版社,1997:50-67
    [37]殷八斤. AVO技术的理论与实践[M].石油工业出版社,北京:石油工业出版社, 1995: 1-19, 46-67, 191-217
    [38]辛可锋.共聚焦点成像速度建模方法的应用研究[D].同济大学,上海: 2003
    [39]刘江平,姚姚.初始模型对CFP成像技术的影响研究[J].石油地球物理勘探, 2005,40(2):143-148,157
    [40]李振春,姚云霞,马在田,等.波动方程法共成像点道集偏移速度建模[J].地球物理学报, 2003, 46(1):86-93
    [41]李振春,姚云霞,马在田,等.共反射面道集偏移速度建模[J].地震学报, 2003, 25(4):406-414
    [42]李振春,穆志平,张建磊,等.共聚焦点道集偏移速度建模[J].物探与化探, 2003, 27(5):403-406
    [43]王红落,陈中州,常旭.波动方程基准面延拓研究进展[J].地球物理学进展, 2004, 19(2):230-234
    [44]方伍宝,孙建国.复杂条件下的深度成像技术[J].石油与天热气地质, 2005,26(6):816-822
    [45]李振春.地震成像理论与方法[M].东营:石油大学研究生院, 2004:90-190
    [46]刘超颖,王成祥,赵波,等. CFP层速度扫描建模方法[J].石油物探, 2003, 42(3):294-297
    [47]辛可锋,王华忠,马在田,等. CFP道集交互速度分析[J].石油地球物理勘探, 2005, 40(4):386-390
    [48]李振春,张军华.地震数据处理方法[M].东营:石油大学出版社, 2004:146-180
    [49] Langan R. T.. Tracing of rays through heterogeneous media : An accurate and efficient procedure[J]. Geophysics , 1985,50(4):1456-1465
    [50] Schneider W. A., Phillip L. D., Paal E. F.. Wave equation velocity replacement of the low-velocity layer for overthrust belt data. Geophysics, 1995, 60(2), 573-580
    [51] Hubral P., Schleicher J.. A unified approach to 3-Dseismic reflection imaging.Part I: Basic Concepts [J]. Geophysics, 1996, 61(3):742-758
    [52] Vidale J.. Finite-difference calculation of travel times [J]. Bulletin of the Seismiclogical Society of America, 1988, 78(6):2062-2076
    [53] Van Trier J., Symes W.W. Upwind finite-difference calculation of seismic travel times [J]. Geophysics, 1991, 58:1157-1166
    [54] Podvin P., Lecomte I.Finite difference computation of travel times in very contrasted velocity models: A massively parallel approach and its associated tools [J]. Geophysical Journal International, 1991,105:271-284
    [55] Al-Yahya K.M. Velocity analysis by iterative profile migration. Geophysics,1989,54:718-729
    [56]辛可锋,王华忠,马在田,等.共聚焦点层析速度建模方法[J].石油物探, 2005, 44(4):329-333
    [57] Wong C. K.. Amplitude operator estimation with CFP technology [D], Delft University of Technology, Delft: 2000
    [58] Cox B. E.. Tomographic inversion of focusing operators[D], Delft University of Technology, Delft: 2004
    [59] Verhaeghe J. G.. S.. Parameterized focusing operator updating[D], Delft University of Technology, Delft: 2005
    [60] Van Veldhuizen E.J.. Operator amplitude determination for CFP redatuming through acomplex near surface[D], Delft University of Technology, Delft: 2002
    [61] Bolte F.B.. Estimation of focusing operators using the Common Focal Point method[D], Delft University of Technology, Delft: 2003
    [62]辛可锋,王华忠,马在田.基于共聚焦点技术的成像速度建模方法研究[J].石油地球物理勘探, 2004, 39(5):519-525
    [63]董春晖.共聚焦点叠前深度偏移速度估计方法研究[J].地球物理学进展. 2008, 23(6):1866-1871
    [64]李振春,安琪,马光凯,等.基于共聚焦点技术的起伏地表基准面重建[J].勘探地球物理进展, 2007, 30(5):373-376
    [65]徐秀刚,李振春,吕彬.基于波动方程的共聚焦点成像技术[J].石油物探, 2007, 46(4):329-334
    [66] Ye Y. M., Li Z. C., Han W. G., at el. Beamlets prestack depth migration and illumination: a test based on Marmousi model[J], Applied Geophysics, 2006, 3(4):203-209
    [67]叶月明,李振春,仝兆岐,等.起伏地表条件下的合成平面波偏移及其并行实现[J].石油地球物理勘探, 2007, 42(6):622-628
    [68] Bolte J. F. B., Verschuur D. J.. Velocity independent CFP redatuming. strategy for subsalt imaging[C]. 71th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 2001
    [69] Hubral P et al. A united approach to 3-D seismic reflection imaging. PartⅠ: Basic Concepts: Geophysics, 1996, 61, 742-758
    [70] Kelamis P. G.. The CFP-approach to complex near surface problems. Saudi Aramco and Delft University of Technology, January 20, 2000
    [71] Kelamis P. G.. Velocity-independent datuming of seismic data[C]. 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1999
    [72] Schneider W. A. Integral formulation for migration in two and three dimensions [J]. Geophysics, 1978, 43:49-76
    [73] Verschuur D. J., Neumann E. I. Integration of OBS data and surface data for OBS multiple removal [C]. 69th Ann. Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1999
    [74] Bleistein N., Cohen J.K., Hagin F.G.. Two and one-half dimensional Born inversion with an arbitrary reference [J]. Geophysics, 1987, 52(1): 26-36
    [75] Clayton R.W., and Stolt R.H.. A Born-WKBJ inversion method for acoustic reflection data[J]. Geophysics, 1981, 46, 1559-1567
    [76] Kabir M. M. N.. Velocity estimation of the complex subsurface using the common focus point technology [D]. Delft University of Technology, Delft: 1997
    [77] Bortfeld R.. Geometrical ray theory: Rays and traveltimes in seismic systems (second-order approximations of the traveltimes) [J]. Geophysics, 1989, 54(3): 342-349
    [78]杨辉,高亮,刘洪,等.微机群并行实现Marmousi模型叠前深度偏移[J].地球物理学进展, 2001, 16(3):68-75
    [79]赵改善,包红林.集群计算技术及其在石油工业中的应用[J].石油物探,2001, 40(3):118-126
    [80]庞世民.高性能计算技术及其在油气勘探中的应用[J].勘探地球物理进展, 2002, 25(1):35-40
    [81]张军华,仝兆岐,何潮观,等. HPF高性能语言在地震资料并行处理中的应用[J].计算机工程与应用, 2002, 38(14):38-39
    [82]张军华,雷凌,仝兆岐. PC-Cluster技术的国内外现状与发展趋势[J].石油物探, 2003, 42(4): 557-561
    [83]王真理,杨长春,张洪宙,等.二维叠前深度偏移的并行算法[J].石油地球物理勘探, 1997; 32(6):784-788, 817
    [84]李克臣,黄刘生,杨辉.微机Cluster并行化实现叠前深度偏移方法[J].计算机工程与应用. 2001, 24:156-158
    [85]孟祥宾,杨淑卿,徐兆涛,等.波动方程叠前深度偏移并行计算及其应用效果[J].勘探地球物理进展,2004; 27(3):213-217,231
    [86]王进.基于微机群的三维叠前深度偏移并行算法[J].勘探地球物理进展, 2004, 27(5):379-382
    [87]李玉岗,石锦彩,张法,等.波动方程叠前深度偏移算法的并行化研究与实现[C].第七届全国并行计算学术交流会第七届全国并行计算学术交流会, 2002
    [88] Bunks, C.. Optimisation of paraxial wave-equation operator coefficients [C], Expanded abstract, SEG‘92 (62nd Annual International Meeting), 1992, 897-899
    [89] Phadke, S. and Bhardwaj, D.. PVM Implementation of higher order finite difference seismic modelling algorithms in a distributed computing environment [C]. Expandedabstract, SEG’97 (67th Annual International Meeting), Dallas Texas, USA. 1997
    [90] Phadke, S., Bhardwaj, D. and Yerneni, S.. Wave equation based migration and modelling algorithms on parallel computers[C]. Proceedings of SPG’98 , 1998, 55-59
    [91] Phadke, S., Bhardwaj D.. Parallel Implementation of Seismic Modelling Algorithms on PARAM OpenFrame. To be appear in Neural, Parallel and Scientific Computations, 1998
    [92] Blanc J. Y.. How CGG took to cluster technology for seismic processing [J]. First break, 2001, 19(11):634-635
    [93]文小兵,张道平.信息系统图形界面开发方法研究[J].计算机工程与应用, 2005, 25: 95-98
    [94]刘成柱,万建成.基于界面模板的界面表示模型[J].计算机应用, 2003, 23(12): 42-45
    [95]李国正,杨杰,周越.科学计算软件快速开发技术的研究[J].计算机工程, 2002, 28(12): 253-254
    [96]张云鹏.基于认知心理学知识的人机界面设计[J].计算机工程与应用, 2005, 41(30): 105-107, 139
    [97]吴志勤,王赟,李育芳等. Linux下基于OpenGL的地震数据三维可视化实现[J].煤炭工程, 2004, 3:68-71
    [98]王秀闽,刘洪,刘永江,等.地震数据处理系统中交互作业编辑与运行[J].地球物理学进展, 2007, 22(3):860-864
    [99]陈茂山,王云高.油气勘探软件用户界面设计方法探索与实践[J].勘探地球物理进展. 2004, 27(2):132-138
    [100]赵连功,刘洪.地震勘探数据资料处理软件集成化研究现状和发展趋势[J].地球物理学进展, 2003, 18(4):598-601
    [101]王宏琳,赵振文,林庆忠.油气勘探一体化软件系统结构[J].勘探地球物理进展. 2003, 26(3):161-166
    [102]杨红霞,赵改善. 21世纪的地震数据处理系统[J].石油物探, 2001, 40:125-140
    [103]石蜀松,李录明,罗省贤,等.交互式多波层位标定方法及可视化软件实现[J].成都理工大学学报(自然科学版),2006,33(2):181-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700