用户名: 密码: 验证码:
光纤水听器系统噪声分析及抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤水听器系统逐渐走向大规模阵列应用阶段,其噪声问题作为系统的关键技术问题,成为提升系统性能的瓶颈,本文对光纤水听器系统噪声问题进行了深入的分析研究,解决了一些关键技术问题,将推动光纤水听器技术的进步。
     在大规模水听器系统基本方案的基础上,分析了系统各种噪声的来源,针对光频调制非平衡相干检测PGC解调方案的光纤水听器系统,建立了包含各种因素的相位噪声模型,揭示了各种噪声到系统最终相位信号输出的传递关系,为系统各种噪声分析奠定基础。
     对环形腔激光器的弛豫振荡进行了深入理论研究和试验测试,分析了弛豫振荡噪声对PGC解调的影响,提出了改变驱动功率来改变噪声峰位置,从而降低该噪声对系统噪声影响的方法,并通过改进激光器结构参数和研制具有弛豫振荡抑制功能的高性能驱动控制器,使弛豫振荡峰减小25dB以上,残余振荡小于3dB,大幅度降低了系统噪声。
     建立了非平衡干涉仪相位噪声的测试系统,结合大规模光纤水听器阵列的结构和探测基元的参数特性,探索通过补偿抑制相位噪声的具体措施,提出主动相位扰动自动参数获取的相位噪声抑制方法,有效抑制大相位噪声最高可达20dB以上,解决了大规模光纤水听器阵列相位噪声抑制的一大难题,提高了系统的抗环境干扰能力和探测性能。
     研究了激光器的跳模现象对系统的影响,通过对激光器参数的调整和跳模过程的测试,寻找被动抑制跳模的最佳结构参数,在一定程度上抑制跳模的发生和降低跳模频度,在静态下8小时跳模可降到5次以下。通过对PGC解调信号中跳模过程的分析,探讨了主动抑制跳模的可能控制参量和主动跳模抑制的可能性。
     通过电光偏振调制的研究,探讨光传输偏振噪声问题,提出了在时分复用PGC解调系统中同步调制采样抑制偏振起伏的有效方法。提出了高相干光传输杂散光相干噪声问题,给出了定量分析结果,为大规模光纤水听器系统设计和系统建造中光传输噪声的控制提供了一项依据。
     本论文的研究成果已在实际系统中得到应用。
Fiber optic hydrophone systems are developing into large scale array applications. As the key technical problem of the system, noise problem is becoming a bottle neck to enhance the system performance. In this dissertation, noise problem of the fiber optic hydrophone system has been analyzed and some key technical problem has been solved, which will push forward the advancing of the fiber optic hydrophone technology.
     Based on the basic hydrophone system scheme, variant noise sources have been analyzed. For frequency modulated unbalanced coherent detecting Phase Generated Carrier (PGC) fiber optic hydrophone system, a phase noise model including variant noise factors has been established. The transfer function of different noise sources to the final phase output has been revealed, which makes the basis of the system noise analysis.
     The relaxation oscillation of the fiber ring laser has been studied theoretically and experimentally. The influence of the relaxation oscillation noise to the PGC scheme has been analyzed and a new method of changing pump power to change the noise peak frequency so that lower the noise influence has been proposed. Further more, by improving the laser structure parameter and developing a high performance pump driver which has the ability to suppress relaxation oscillation, the noise peak has been reduced by 25dB, the remaining noise less than 3dB.The system noise has been greatly reduced.
     A phase noise testing system based on unbalanced interferometer has been established. According to the structure of large scale fiber optic hydrophone array system and the sensor parameter character, realistic ways to suppress phase noise by means of compensation has been explored. A method of active disturbing and automate parameter obtaining to reduce the phase noise has been proposed. In the highest case, it can reduce the phase noise higher than 20dB, which greatly improves the performance and anti-disturbance ability of the system.
     The influence of the laser mode-hopping to the system has been studied. By adjusting the parameter of the laser in the test of the mode hopping, we can find the best parameter to reduce mode-hopping. As a result, the mode-hopping can be reduced to less than 5 times in 8 hours. By analyzing the PGC output signal when mode-hopping occurs, ways to actively reducing mode hopping has been studied.
     An effective method based on synchronizing modulation and sampling to reduce Polarization-Induced Fading (PIF) in Time Division Multiplexing (TDM) system By Electro-optic Modulation (EOM) has been studied. The noise caused by high coherent stray light has been discussed and quantitative results have been given, which provides a basis in controlling the light transmission noise in large scale fiber optic hydrophone system.
     All the research productions of this dissertation have been used in real fiber optic hydrophone systems.
引文
[1]倪明.光纤水听器关键技术研究[D].中国科学院研究生博士学位论文,中国科学院声学研究所, 2003
    [2]孟洲.基于光频调制PGC解调的光纤水听器阵列技术研究[D].国防科技大学博士学位论文, 2003
    [3]韩泽.干涉型光纤水听器研究[D].国防科技大学硕士论文, 1999年3月
    [4] T. G. Giallorenzi, J. A. Bucaro, and A. Dandridge, et al.. Optical Fiber Sensor Technology[J], Quantum Electronics, 1982, 18(4): 626-633
    [5]张仁和,倪明.光纤水听器原理与应用[J].物理, 2004, 33(7): 503~507
    [6]高学民.光纤水听器及阵列的发展状况[J].光纤与电缆及其应用技术, 1996, 1:48~51
    [7] T. G. Giallorenzi, J. A. Bucaro, A. Dandridge et al.. Optical fiber sensor technology. IEEE Transanction on Microwave Theory and Techniques[J]. 1982, 30(4):472~511
    [8] M. J. F. Digonnet, B. J. Vakoc, C. W. Hodgson et al.. Acoustic Fiber Sensor Arrays[C]. Second European Workshop on Optic Fiber Sensors, SPIE, 2004, vol. 5502: 39~50
    [9]廖延彪,光纤光学[M].北京,清华大学出版社, 2000
    [10] J. A. Bucaro, H. D. Dardy, E. Carome. Fiber-optic Hydrophone[J]. The Journal of the Acoustical Society of America, 1977, 62(5):1302~1304
    [11] Specification for fiber optic hydrophone system,AD-A197662,1988.
    [12] A.Dandridge. Development of fiber optic sensor systems[C]. 1994, 10th Optical Fiber Sensors Conference, 154~161.
    [13] P. J. Nash. Review of interferometric optical fibre hydrophone technology[J]. IEE Proceedings-Rador, Sonar-Navigation, 1996, 143(3):204~209
    [14] K. P. Koo and A. D. Kersey. Bragg Grating-Based Laser Sensors Systems with Interferometric Interrogation and Wavelength Division Multiplexing[J]. Lightwave Technology, 1995, 13(7):1243~1249
    [15] A. D. Kersey, M. A. Davis, H. J. Patrick et al.. Fiber grating sensors[J]. Lightwave Technology, 1997, 15(8):1442~1449
    [16] T. Nobuaki, Y. Kazuto, T. Sumio et al. Development of an Optical Fiber Hydrophone with Fiber Bragg grating [J]. Ultrasonics, 2000, vol 38, 581~585
    [17] D.J. Hill, P.J. Nash, et al.. A fiber laser hydrophone array[J]. Fiber Optic Sensor Technology and Applications, SPIE, vol 3860, 55-66
    [18] B. O. Guan, Y. T. Hwa, S. T. Lau et al. Ultrasonic Hydrophone Based on Distributed Bragg Reflector Fiber Laser. IEEE Photonic Technology Letters[J].2005, 16(1):1579~1581
    [19] C. K. Kirkendall, A. R. Davis, A. Dandridge, and A. D. Kersey. 64-Channel All-Optical Deployable Array [J]. 1997 NRL Review, 63~65
    [20] H. Kamata. Series: Realizing Dreams-Yesterday, Today, Tomorrow-An Acoustics/Environmental Sensing Technology Based on Optical Fiber Sensors[J]. OKI Technical Review 189, April 2002, 43~47
    [21] D. J. Hill, P. J. Nash, S. D. Hawker, and I. Bennion, Progress toward an ultra thin optical hydrophone array, SPIE 3483, 1998, 301-304
    [22] P. J. Nash, G. A. Cranch, et al.. 32 element TDM Optical hydrophone array[J]. European Workshop on Optical Fibre Sensors, Proc. SPIE, 1998, vol 3483, 238~242
    [23] Geoffery A. Cranch, Phlips J.Nash. High Multiplexing Gain Using TDM and WDM In Interferometric Sensor Arrays[J]. SPIE Conference on Fiber Optic Sensor Technology and Applications, 1999, vol 3680, 531~537
    [24] G.B.Havsagard, G.Wang, P.Skagen, et al.. Four Channel Fiber Optic Hydrophone System[J], SPIE ofs2000, 2000, vol 4185, 122~125
    [25]φystein Farsund, Catherine Erbeia, et al.. Design and field test of a 32-element fiber optic hydrophone system[J]. 15th Optical Fiber Sensors Conference Technical Digest(ofs2002), Portland, USA, 2002, 329~332
    [26] F. Su. Developing large-scale multiplexed fiber optic arrays for geophysical applications, an interview with Mark Houston(Litton) and Philip Nash(DERA), OE Report, p.5, Sept. 2000
    [27] P. J. Nash, G. A. Cranch and D. J. Hill. Large-scale multiplexed fiber optic arrays for geophysical applications[J]. Industrial sensing systems, SPIE Conference, Boston, 2000, Vol 4202, 55~65
    [28] G. A. Cranch, P. J. Nash. Large-scale multiplexing of interferometric fiber-optic sensors using TDM and DWDM [J]. Journal of Lightwave Technology, 2001, 19(5):687~699
    [29] United States Navy News Release, Release Nr. CA-2001-035, July 03, 2001
    [30] Remote Power All Optical FDS-C System, Commerce Business Daily Issue of July 9, 2001 PSA #2888 Awards, Award No. N00039-01-C-2226, Award date: July 3, 2001
    [31] P. J. Nash, J. Latchem, G. Cranch, et al.. Design, Development and Construction of Fibre-Optic Bottom Mounted Array. 15th Optical Fiber Sensors Conference Technical Digest(OFS), Portland, USA, 2002, 333~336
    [32] G. Cranch, C.K. Kirkendall, et al.. Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array[J]. IEEE Photonics Technology Letters, 2003, 15(11):1579~1581
    [33] G. A. Cranch, P. J. Nash, et al.. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1):19~30
    [34] R. I. Crickmore, G. A. Cranch, et al.. Remotely pumped and interrogated 96 channel fibre-optic hydrophone array[C]. Proceedings of the 16th Optical Fiber Conference, 2003, 760~763
    [35] Roger I.Crickmore, Philip J. Nash and John P.F. Wooler. Fibre Optic Security Systems for Land and Sea Based Applications[J]. Unmanned/Unattended Sensors and Sensor Networks, Proceedings of SPIE, 2004, Vol. 5611, 79~86
    [36] David Hill, Philip J. Nash, Fiber-optic hydrophone array for acoustic surveillance in the littoral[J]. Photonics for Port and Harbor Security, Proceedings of SPIE, 2005, Vol. 5780, 1~10
    [37] Jason D. Holmes, Edmund J. Sullivan, William M. Carey. Passive synthetic aperture processing with an autonomous underwater vehicle towed hydrophone array[J], Proceedings of Oceans, 2006, 1~5
    [38] Robert Jordan, Robert Ober, and Alex Tselnik, A Fiber Optic Hydrophone (Final report), University of Washington , Electrical Engineering, March 12, 1996
    [39] Thomas J.Hofler, Steven L.Garrett,Flexural disk fiber optic hydrophone, United States Patent, Patent number:4959539, 1990
    [40] Hofler, T. Brown, D.A., and Garrett, S.L.,Fiber optic accelerometer with centrally supported flexural disk, United States Patent, Patent number: 5369485, 1994
    [41] Nicholas Lagakos, Joseph A.Bucaro,Mandrel based embedded planar fiber-optic interferometeric acoustic sensor, United States Patent, Patent number: 5825489, 1998
    [42] Lun K. Cheng and Dick de Bruijn, A high sensitivity flatted mandrel hydrophone, SPIE Vol. 2070 Fiber Optic and Laser Sensors XI (1993), pp. 24-29
    [43] Gerald L. Assard, Waterford, Conn., Complementary interferometric hydrophone, United States Patent, Patent number: 4799202, 1989
    [44] Michael R. Layton, A. Douglas Meyer, Bruce A.Danver, High performance fiber optic hydrophone, United States Patent, Patent number: 5363342, 1994
    [45] Ole Henrik Waagaard, Geir Bjarte Havsgard, and Gunnar Wang, An investgation of the pressure-to-acceleration responsivity ratio of fiber-optic mandrel hydrophones, IEEE, Journal of LightWave Technology, Vol.19, No.7, 2001, pp.994-1003
    [46] Karlheine vonBieren,Ploarization insensitive hydrophone, United States Patent, Patent number: 5394377, 1995
    [47] Donald A.Frederick, John F.Cappi,Fiber optic hydrophone having rigid mandrel, United States Patent, Patent number: 5625724, 1997
    [48]王学仁,光纤传感器[M],武汉,华中理工大学出版社, 1989
    [49]倪明,张仁和等,干涉型光纤水听器闭环工作点控制的实现与信号的获取[J],应用声学,2001, 20(6):13~18
    [50] Bush, Ira J. ,“Phase-lock fiber optic interferometer”, United States Patent, Patent number: 4486657, 1984
    [51] S.K.Sheem,“Optical fiber interferometers with 3×3 directional couplers: analysis”, J. Appl. Phys., 1981, Vol.52(6): 3865~3872
    [52] K.P.Koo, A.B.Tveten, and A.Dandridge,“Passive stabilization scheme for fiber interferometer using 3×3 fiber directional couplers”, Appl. Phys. Lett., 1982, Vol.41(7): 616~618
    [53] Keolian, Robert M., Garrett,Steven L., Cameron, Charles B.,“Demodulators for optical fiber interferometers with [3×3] outputs”, United States Patent, Patent number: 5313266, 1994
    [54] Lim, T.K.; Lin, Y.; Yip, Y.M.; Lam, Y.L.; Zhou, Y.,“Fiber optic acoustic hydrophone with double Mach-Zehnder interferometers for optical path length compensation”, Optics Communications, 1999, Vol.159(4-6): 301-308
    [55]熊水东.光纤矢量水听器研究[D].国防科技大学博士学位论文,国防科技大学研究生院, 2003
    [56]李舰艇.光纤水听器多路复用技术及其串扰与噪声分析[D].国防科技大学博士学位论文,国防科技大学研究生院, 2005
    [57]罗洪.拖曳线列阵用光纤水听器研究[D].国防科技大学博士学位论文, 2007
    [58]王泽锋.水声低通滤波光纤水听器的理论和实验研究[D].国防科技大学博士学位论文, 2008
    [59]胡永明,孟洲,熊水东等.干涉型全保偏光纤水听器阵列研制[J].声学学报, 2003, 28(2):155~158
    [60]孟洲,胡永明,熊水东等.全保偏光纤水听器阵列[J].中国激光, 2002, 29(5):415~417
    [61] P. Giles, D. Uttam, and B. Culshaw, coherent optical fiber sensors with modulated laser sources[J], Electron. Lett., 1983, 19(1): 14~15
    [62] Dandridge, A. B. Tveten, multiplexing of interferometric sensors using phase carrier technique[J], J. Lightwave Technology, 1987, LT-5(7): 947~952
    [63]王振宝,多路光纤相干检测信号的波分复用技术研究,国防科技大学硕士论文,2004年11月
    [64]廖毅.大规模光纤水听器光放大技术研究[D].国防科技大学硕士学位论文,国防科技大学研究生院, 2006
    [65]刘川,刘阳,孙利群.多模光纤用于激光线宽零拍测量法的原理和实验研究[J].光学技术, 2006, 32(3):346~348
    [66]夏江珍,瞿荣辉.光纤激光器弛豫振荡特性研究[J].中国激光, 2004, 31(7):807~810
    [67]陈默,魏晓羽等.泵浦带有弛豫振荡的固体激光器的弛豫振荡特性理论研究[J].量子电子学报, 2004, 21(3):311~316
    [68]李烨,李文博等.基于光电反馈的固体Nd:YAG激光器强度噪声压缩[J].北京交通大学学报, 2005, 29(3):9~12
    [69]马红亮,张靖等.利用振幅调制器进行光电负反馈抑制激光强度噪声[J]. 2002, 22(10):1202~1205
    [70] A. D. McCoy, L.B.Fu, M. Ibsen, et al.. Intensity noise suppression in fibre DFB laser using gain saturated SOA[J]. Electronics Letters, 2004, 40(2):107~109
    [71] Anoma D. McCoy, L. B. Fu, Morten Ibsen, et al.. Relaxation oscillation noise suppression in fibre DFB lasers using a semiconductor optical amplifier[C]. Lasers and Electro-Optics, CLEO, 2004, vol 5,16~21
    [72] Mark csornyei, Tibor Berceli, Tamas Banky, et al.. A new approach for RIN peak and phase noise suppression in microchip lasers[C]. Microwave Symposium Digest, 2002 IEEE MTT-S International, vol 2, 1377~1380
    [73] Mark csornyei, Tibor Berceli, Tamas Marozsak. All-optical intensity noise suppression of solid-state lasers for optical generation of microwaves[C]. Microwaves, Radar and Wireless Communications, 2004, vol 3, 781~784
    [74] Mark Csornyei, Tamas Banky, Tibor Berceli. RIN peak suppression for solid state lasers[C]. Microwaves, Radar and Wireless Communications, 2002, vol 1, 183~186
    [75] Mark Csornyei, Tibor Berceli, Peter R. Herczfeld. Noise analysis and suppression for Nd:YVO4 solid-state lasers[C], International Topical Meeting on Microwave Photonics, 10-12 september, 2003, 231~234
    [76] Thomas J. Kane. Intensity noise in diode-pumped single-frequency Nd YAG lasers and its control by electronic feedback[J]. IEEE Photonics Technology Letters, 1990, 2(4):244~245
    [77] G.De Geronimo, S.Taccheo and P.Laporta. Optoelectronic feedback control for intensity noise suppression in a codoped erbium-ytterbium glass laser[J]. Electronics Letters, 1997, 33(15):1336~1337
    [78] M. Marano, S. Longhi and P. Laporta. Optoelectronic feedback loop for intensity noise suppression in a high bit rate FM-operated Er-Yb laser[J]. Electronics Letters, 1999, 35(21):1877~1878
    [79] C. Svelto, S. taccheo, M.Marano,et al.. Optoelectronic feedback loop for relaxation oscillation intensity noise suppression in Tm-Ho YAG laser[J]. Electronics Letters, 2000, 36(19):1623~1624
    [80] Geoffary A. Cranch. Frequency noise reduction in erbium doped fibre Bragg grating lasers using active electronic feedback[C]. 15th Optical Fiber Sensors Conference Technical Digest(OFS), 2002, vol 1, 293~296
    [81] D.M. Dagenais, K. P. Koo, and A. Dandridge. Demonstration of low-frequency intensity noise reduction for fiber sensors powered by diode-pumped Nd-YAG lasers[J]. Photonics Technology Letters, IEEE, 1992, 4(5):518~520
    [82] G. E. Giudice, S. C. Guy, S. G. Crigler, et al.. Effect of pump laser noise on an erbium-doped fiber-amplified signal[J]. Photonics Technology Letters, IEEE 2002, 14(10):1403~1405
    [83] Anthony Dandridge, Alan B. Tveten and Thomas G. Giall Orenzi. Homodyne Demodulation Scheme for Fiber Optic Sensors Using Phase Generated Carrier[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10):1635~1641
    [84] Zhou Xing-Sha, Ye Pei-da. Intensity noise of semiconductor laser in presence of arbitrary optical feedback[J]. Electronics Letters, 1989, 25(7):446~447
    [85] Tsang-Der Ni, Xiangdong Zhang, and Afshin S. Daryoush. Intensity Noise Reduction Of Semiconductor Lasers Using External Optical Feedback[C]. Optical Microwave Interactions/ Visible Semiconductor Lasers/ Impact of Fiber Nonlinearities on Lightwave Systems/Hybrid Optoelectronic Integration and Packaging/Gigabit Networks, 1993, vol 7, 73~74
    [86] S. Taccheo, G. Sorbello, P. Laporta. et al.. Intensity-noise suppression in a diode-pumped Tm,HoYAG laser[C]. Conference on Lasers and Electro-Optics (CLEO), 2000, 408~409
    [87] K. J. Williams, A.Dandridge, A. D. KerSey, et al.. Interferometric measurement of low- frequency phase noise characteristics of diode laser-pumped Nd YAG ring laser [J]. Electronics Letters, 1989, 25(12):774~776
    [88] Mingshan Zhao, Geert Morthier, Roel Baets, et al.. Investigation of the intensity noise reduction using a saturated semiconductor optical amplifier in spectrum sliced WDM systems[C]. Conference on Lasers and Electro-Optics(CLEO), 2001, 383~384.
    [89] L. S. Watkins, C. Ghosh, R. Gandham, et al.. Low Noise High Power Ultra-Stable SS Laser for 1550nm Wavelength Band[C]. Avionics Fiber-Optics and Photonics, IEEE Conferernce, 2006, 56~57
    [90] Christine Spiegelberg, Jihong Geng, Yongdan Hu. Low-noise narrow-linewidth fiber laser at 1550 nm[J]. Journal of Lightwave Technology, 2004, 22(1):57~62
    [91] S. Predhan, G.E. Town, D.Wilson. Noise Reduction in a Multiwavelength Fiber Laser [C]. Laser and Electro-Optics Society, The 18th annual meeting of IEEE, 2005, 680~681
    [92] L. Ehlkes, T. Letz, F. Lange and A. Kettel. Pure electronic intensity noisesuppression of a multimode intracavity-doubled solid state laser[C]. Conference on Lasers and Electro-Optics(CLEO)/Europe, 2003, 53
    [93] Lap-Shun Fock, Anthony Kwan, and Rodney S.Tucker. Reduction of semiconductor laser intensity noise by feedforward compensation experiment and theory[J]. Journal of Lightwave Technology, 1992, 10(12):1919~1925
    [94] Roger Helkey. Relative-intensity-noise cancellation in bandpass external-modulation links[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(12):2083~2091
    [95] M. Mermelstein, K. Brar, C. Headley. RIN transfer suppression technique for 2nd order Raman pumping schemes[C]. Optical Fiber Communications Conference(OFC), 2003, vol 2, 432~433
    [96] Zhou Meng, George Stewart, and Gillian Whitenett. Stable Single-Mode Operation of a Narrow-Linewidth, Linearly Polarized, Erbium-Fiber Ring Laser Using a Saturable Absorber[J]. Journal of Lightwave Technology, 2006, 24(5): 2179~2183
    [97] Chikako Ishibashi, Mark Notcutt, Jun Ye, and John L. Hall. Suppression of intensity noise in a diode-pumped Yb:YAG laser[C]. Conference on Lasers and Electro-Optics(CLEO), 2004, vol 5,16~21
    [98] C. C. Harb, M. B. Gary, H.–A. Bachor, et al.. Suppression of the intensity noise in a diode-pumped neodymium YAG nonplanar ring laser[J]. IEEE Journal of Quantum Electronics, 1994, 30(12):2907~2913
    [99] Erwin H. W. Chan and Robert A. Minasian. Suppression of Phase-Induced Intensity Noise in Optical Delay-Line Signal Processors Using a Differential-Detection Technique[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(2):873~879
    [100] F. Leplingard, C. Martinelli, S. Borne, et al.. Up to 22 dB reduction of the relative intensity noise of a Raman fiber[C]. 31st European Conference on Optical Communication(ECOC), 2005, vol 6, 47~48
    [101]杨青,俞本立等.光纤激光器的发展现状[J].光电子技术与信息, 2002, 15(5):13~18
    [102]俞本立,钱景仁等.线宽小于0.5kHz稳态的单频光纤环形腔激光器[J].量子电子学报, 2001, 18(4):345~348
    [103]俞本立,钱景仁等.窄线宽激光的零拍测量法[J].中国激光, 2001, 28(4):351~354
    [104]俞本立,甄胜来.低噪声光纤激光器的实验研究[J].光学学报, 2006, 26(2):217~220
    [105]毛红敏,甄胜来等.一种低噪声窄线宽光纤激光器[J].安徽大学学报, 2005, 29(5):33~35
    [106]俞本立,孙志培,吴海滨.窄线宽单频线偏振掺铒光纤环形腔激光器[J].安徽大学学报(自然科学版), 2002, 26(1):42~45
    [107]倪明,胡永明,孟洲等.数字化PGC解调光纤水听器的动态范围[J].激光与光电子学进展, 2005, 42(2):33~37
    [108]周炳琨等.激光原理[M].北京:国防工业出版社, 1980.
    [109] Gerd Keiser.光纤通信[M].北京:电子工业出版社, , 2002.
    [110] Donald A. Neamen.电子电路分析与设计[M].北京:电子工业出版社, 2006.
    [111] Charles K. Alexander, Matthew N. O. Sadiku.电路基础[M].北京:电子工业出版社, 2003.
    [112]周瑜.半导体激光器的高精度温控仪[J].量子电子学报, 2003, 20(4):431~434
    [113] Don Alfano. System-on-chip technology adds options for laser driver control [J]. WDM solutions, 2001, vol 11, 43~48
    [114]方俊斌,刘伟平.基于SoC的高稳定度激光光源驱动器[J],光通信研究,2004, vol 2, 64~66
    [115]邹文栋,高益庆.单片机控制的半导体激光驱动电源[J],激光杂志, 2002, 23(4):70~71
    [116]江孝国,祁双喜.高精度半导体激光器自稳控制温控系统[J],电子技术, 2002, vol 5, 56~59
    [117]梁迅,姚琼.高稳定高集成度半导体激光光源驱动器[J].半导体光电, 2007,28(3):427~429
    [118]姚琼,刘阳.光纤陀螺光源数字温度控制技术[J].激光杂志, 2004, 25(2):17~18
    [119]梁迅,熊水东,胡永明等.激光器强度噪声对光纤水听器PGC解调影响分析[J].中国激光, 2008, 35(5):716~721
    [120]梁迅,马丽娜,胡永明等.连续抽运情况下光纤激光器弛豫振荡特性研究[J].半导体光电,已录用,将于2008年12月发表
    [121]梁迅,姚琼,胡永明,熊水东,饶伟.基于非平衡光纤干涉仪的窄线宽激光光源跳模实时测试方法[J].光学学报,已录用,将于2009年2月发表
    [122]梁迅,熊水东. DM642嵌入式网络接口开发设计[J].计算机工程, 2007, 30(6):277~279
    [123]梁迅,熊水东,姚琼.基于TMS320C6000 DSP的FIFO——网络数据传输[J].电子器件, 2008, 31(3):1057~1060
    [124]梁迅.光纤水听器数据的网络传输及集群处理[D],国防科技大学硕士学位论文, 2004
    [125]王泽锋,胡永明,孟洲等.干涉型光纤水听器相位载波调制-解调中信号混叠产生的机理及解决方案[J].光学学报, 2008, 28(1):92~98
    [126] Mohammad Reza Salehi,Béatrice Cabon, Theoretical and Experimental Analysis of Influence of Phase-to-Intensity Noise Conversion in Interferometric Systems[J], Journal of Lightwave Technology, 2004, 22(6):1510~1518
    [127] X. Yu, The analysis of noise power spectrum induced by the semiconductor laser phase noise in fiber-optic interferometer considering optical fiber dispersion[J], J. Mod. Opt.,1998, 45(3):505–514
    [128] K. Kikuchi, Effect of 1/f -type FM noise on semiconductor laserlinewidth residual in high-power limit[J], IEEE J. Quantum Electron. 1989, 25:684~688
    [129]刘汉臣,王庆飞等,光谱仪联合使用提高谱线的测量宽度[J],光学学报, 2008, 28(4):710~714
    [130] Takuya Tanaka, Yoshinori Hibino, Toshikazu Hashimoto, et al.. Hybrid-Integrated External-Cavity Laser Without Temperature-Dependent Mode Hopping[J], Journal of Lightwave Technology, 2002, 20(9):1730~1738
    [131] Alberto Ferrari, Giorgio Ghislotti, Subkilohertz Fluctuations and Mode Hopping in High-Power Grating-Stabilized 980-nm Pumps[J], JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20(3):515~518
    [132] M. OHTSU, K.-Y. LIOU, et al.. A simple interferometric method for monitoring mode hopping in tunable external-cavity semiconductor lasers[J], Journal of Light wave Technology, 1989, 7(1):68~76
    [133] Zhou Meng, Yongming Hu, Shuidong Xiong, et al.. Phase noise characteristics of a diode-pumped Nd:YAG laser in an unbalanced fiber-optic interferometer[J]. Applied Optics, 2005, 44(17):3425~3428
    [134] Y.S.BOGER, M.TUR. Polarization-Induced visibility limits in interferometric fiber-optic sensor arrays[J]. Electronics Letters, 1991, 27(8):622~623
    [135] Frigo N.J, Dandridge A, Tveten A.B. Technique for elimination of polarization fading in fiber interferometer[J]. Electronics Letters, 1984, 20(4):319~320.
    [136]罗记成.光纤水听器动态范围及消偏振衰落技术的研究[D].哈尔滨工程大学硕士论文, 2000
    [137]周效东,周文.干涉型光纤传感器及阵列的分集检测消偏振衰落技术的研究[J].光学学报, 1998, 18(6):773~778
    [138]沈梁,干涉型光纤水听器阵列消偏振衰落技术的研究[D].浙江大学博士论文, 2000
    [139] N. J. Frigo, A. Dandridge, A. B. Tveten. Technique for elimination of polarization fading in fibre interferometers[J]. Electronics Letters, 1984, 20(8):319~320
    [140]周效东,汤伟中.干涉型光纤传感器的分集检测消偏振衰落技术的研究与改进[J].光通信技术, 1996, 20(1):70~74
    [141] A. D. Keysey, M. J. Marrone, A. Dandridge et al.. Optimization and stabilization of visibility in interferometric fiber-optic sensors using input-polarization control[J]. Journal of Lightwave Technology, 1988, 6(10):1599~1609
    [142] A. D. Keysey, A. Dandridge and A. B. Tveten. Dependence of visibility on input polarization in interferometric fiber-optic sensors[J]. Optics Letters, 1988, 13(4):288~290
    [143] A. D. Keysey, M. J. Marrone, A. Dandridge. Observation of input-polarization-induced phase noise in interferometric fiber-optic sensors[J]. Optics Letters, 1988, 13(10):847~849
    [144]周效东.干涉型光纤传感器输入偏振态反馈控制的理论分析[J].光学学报,1997, 17(6):794~798
    [145] Moshe Tur, Yuval S. Boger and H. J. Shaw. Polarization-Induced Fading in Fiber-Optic Sensor Arrays[J]. Journal of Lightwave Technology, 1995, 13(7): 1269~1276
    [146] Y. S. Boger, M. Tur. Polarisation-induced visibility limits in interferometric fibre-optic sensor arrays[J]. Electronics Letters, 1991, 27(8):622~623
    [147] A. D. Keysey, M. J. Marrone, A. Dandridge. Experimental Investigation of Polarization-Indced Fading in Interferometric Fibre Sensor Arrays[J]. Electronics Letters, 1991, 27(7):562~563
    [148] A. D. Kersey, M. J. Marrone. Input-polarisation scanning technique for overcoming polarisation-induced signal fading in interferometric fibre sensors[J], Electronics Letters, 1988, 24(15):931~933
    [149]周效东,汤伟中.偏振态调制的偏振无关干涉型光纤传感器[J].光学学报,1996,16(2):236~239
    [150]周效东,杜春仁,汤伟中.偏振态调制的消偏振衰落干涉型光纤传感器[J].中国激光, 1996, 23(6):500~504
    [151]李志能,沈梁,周效东.偏振态调制干涉型光纤传感器[J].浙江大学学报(工学版), 2002, 36(1):56~59
    [152]吴琪,孟洲.干涉型光纤传感阵列的电光调制消偏振衰落技术[C]. 2006年国防光学及光电子学术研讨会论文集-《光学技术》增刊, 2006, 32(5):29~31
    [153]吴琪.光纤水听器时分复用系统中的消偏振衰落技术研究[D].国防科技大学硕士学位论文, 2006, 12
    [154] A. D. Kersey, M. J. Marrone, M. A. Davis. Polaisation-insensitive fibre optic Michelson interferometer[J]. Electronics Letters, 1991, 27(6): 518~520
    [155] Shinji Yamashita, and Kazuo Hotate. polarization-Independent Depolarizers for Highly Coherent Light Using Faraday Rotator Mirrors[J]. Journal of LightwaveTechnology, 1997, 15(5):900~905
    [156] Francs T. S. Yu, Shizhuo Yin. Fiber Optic Sensors, New York: Marcel Dekker, Inc. 2002, 438~440
    [157] J. T. Ahn and B. Y. Kim. Polarization switching approach to the suppression of polarization induced signal fading in fiber-optic sensor array[J]. Proc. 10th International Optical Fiber Sensor Conference(OFS), Glasgow, Scotland, 1994, p.502
    [158] J. T. Ahn and B. Y. Kim. Fiber-optic sensor array without polarization-induced signal fading[J]. Optics Letters, 1995, 20(4):416~418
    [159] Zhou Meng, Yongming Hu, et al.. Development of a 32-element fibre optic hydrophone system[J]. Fiber Optic sensor Technology and applicationsIII, Proceedings of SPIE, 2004, vol 5589, 114~119
    [160] Wuu-Wen Lin, Shih-Chu Huang. System Design and Optimization of Optically Amplified WDM–TDM Hybrid Polarization-Insensitive Fiber-OpticMichelson Interferometric Sensor[J]. Journal of Lightwave Technology, 2000, 18(3):348~359
    [161]葛强,徐长春等.干涉型光纤传感器中的双重降噪方法[J].中国激光, 2008, 35(5):726~728
    [162]俞本立,穆姝慧等.一种新型光纤干涉仪的相位噪声及灵敏度分析[J].安徽大学学报(自然科学版), 2006, 31(1):53~57
    [163] Mohammad Reza Salehi, Béatrice Cabon. Theoretical and Experimental Analysis of Influence of Phase-to-Intensity Noise Conversion in Interferometric Systems[J]. Journal of Lightwave Technology, 2004, 22(6):1510~1518
    [164] Hyo Sang Kim, Ronald P. H. Haaksman. Noise Properties and Phase Resolution of Interferometer Systems Interrogated by Narrowband Fiber ASE Sources[J]. Journal of Lightwave Technology, 1999, 17(11):2327~2335
    [165] Stéphane Blin, Michael Bishop, et al.. Pickup Suppression in Sagnac-Based Fiber-Optic Acoustic Sensor Array[J]. Journal of Lightwave Technology, 2006, 24(7):2889~2897
    [166] Stéphane Blin, Michael Bishop, et al.. Pickup Suppression in Sagnac-Based Fiber-Optic Acoustic Sensor Array[J]. Fiber Optic Sensor Technology and Applications IV, Proceedings of SPIE, 2005, vol 6004, 1~11
    [167] A. D. Kersey, T. A. Berkoff. Novel Passive Phase Noise Cancelling Technique for interferometric fibre optic sensors[J]. Electrnics Letters, 1990, 26(10):640~641
    [168]宋微微.降低干涉型光纤传感器本底噪声方案的研究[J].哈尔滨工程大学硕士学位论文, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700