用户名: 密码: 验证码:
粒子光散射的几何光学近似方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的工业过程(如燃烧、流体、化学反应等)、大气测量、环境检测等许多领域要求对微小粒子的形状、浓度、光学特性及尺寸分布进行快速准确的测量。作为粒子光散射研究中的一种近似算法,几何光学近似方法(Geometrical-optics approximation,简称GOA)具有计算速度快,程序结构简单等优点,在计算大尺寸粒子和非均匀粒子的散射强度时尤其明显,因此GOA方法在粒度在线测量中具有独特优势。同时,对于一些结构相对复杂的粒子,在严格的电磁散射理论求解困难时,几何光学近似方法可以相对简单地得到其散射强度分布。本文将在均匀球粒子GOA方法的基础上,系统研究梯度折射率球粒子对平面波和在轴高斯波束散射的GOA方法;利用光线追迹方法研究均匀椭球粒子的几何光学彩虹角;开展了非同轴无限长柱光散射的GOA方法研究。本文主要研究工作和成果如下:
     1.在均匀球粒子散射GOA方法基础上,总结了具有一定普遍性的GOA方法算法实现流程;研究了粒子光散射理论中的散射角间隔选择方法,基于这种方法给出了GOA方法中的最大入射角间隔计算公式,提高了GOA方法的计算效率。
     2.推导了梯度折射率球粒子对平面波散射的GOA方法,选择了合适的数值算法有效地解决了散射角公式和光程公式中的奇异积分问题;针对两种典型的折射率模型,分别研究了前向散射GOA方法的有效范围;比较了Mie理论、Debye级数和GOA方法的计算速度。在此基础上,利用GOA方法计算了梯度折射率球粒子对平面波全角度散射强度分布。
     3.将梯度折射率球粒子对平面波散射的GOA方法扩展到在轴高斯光束入射的情况。对于梯度折射率球粒子,推导出了高斯波束入射情况下的散射角和相位公式,给出了算法流程,得到了各阶散射光线在特定角度的散射振幅函数;最终得到了在轴高斯波束入射梯度折射率球的散射强度分布。
     4.基于光线追迹方法,推导了适用于任意长短轴之比椭球的光线追迹公式,研究了平面波正入射和斜入射到长短轴比较大椭球的条件下一阶几何光学彩虹角随着长短轴比的变化关系。研究结果表明,对于平面波入射到长椭球的情况,当长短轴之比在一定范围内,不存在一阶几何光学彩虹角,并且这个范围随着粒子折射率增大而增大。最后,简单分析了平面波正入射时的椭球粒子的二阶散射光线散射角随着长短轴之比的变化情况。
     5.基于平面波对均匀柱光散射的GOA方法,开展具有非同轴柱特性的熊猫型保偏光纤前向散射强度分布研究,并与实验测量结果进行了比较,分析了误差产生原因。
For many practical applications such as combustion, environmental control, fluid mechanics, and chemical reaction, we need to measure the properties of particles such as size and refractive index-temperature ratio quickly and precisely. As a approximation method of a rigorous light scattering theory, geometrical-optics approximation (GOA) is used widely because of high speed calculation and simple procedure structure. The GOA method is suitable for light scattering by large particles. For particles with complex structure, scattering intensity is calculated by GOA while the rigorous light scattering theories are difficult to calculate. On the basis of GOA method for homogeneous spheres, this thesis is devoted to the systemic research on GOA of plane wave and on-axis gaussian beam scattering by gradient index spherical particles. The geometrical optics rainbow angles are studied on the base of ray tracing and GOA of plane wave scattering by infinite eccentric cylinder is derived. The main works and achievements are summarized as follows:
     1. On the basis of GOA of light scattering by homogeneous spheres, the simple flow chart is given. The scattering angle step is studied to promote the calculation speed of rigorous light scattering theory. Based on the scattering angle step selection formula, the incident angle step of GOA is analyzed. By use of these angle step formulas, the calculation speed is promoted.
     2. GOA of plane wave scattering by gradient-index spherical particles is derived. The integration algorithm is selected to calculate the function which has endpoint singularities. For two typical refractive index models, the valid rangle is studied. Finally, the calculation speeds of GOA, Mie theory and Debye series are compared.
     3. Within the framework of geometrical optics, we present a further extension of the method to the scattering of a gradient-index spherical particle with the symmetric axis Gaussian beam as the incident beam. The phase formulas and scattering angle formula are obtained and the detailed algorithm is given. On the basis of above work, the scattering amplitude of separate order rays is obtained. Finally, the scattering intensity of a gradient-index sphere with the on-axis Gaussian beam as the incident beam is given.
     4. A general ray-tracing method for homogeneous spheroids with arbitrary axial-ratios is presented on the basis of geometrical optics, and is employed to study the variation of primary rainbow angle with the axial-ratio of spheroids with larger axial-ratio at both normal and oblique incidences. For the prolate spheroid normally illuminated by plane waves, when the axial ratio is in certain range, no primary rainbow angle exists. The research shows that the axial ratio range increases with the refractive index of the spheroid. With increase of tilt angle, the symmetry of the two primary rainbow angles changes. Finally, the variation of secondary rainbow angle with axial ratio for the spheroid at normal incidence is generally introduced.
     5. The scattering intensity of PANDA fiber is calculated by geometrical-optics approximation. The result is compared with measurement data and the reason that causes errors is analyzed.
引文
[1]王惠英,“光散射技术及其在药物生物大分子分析中的应用研究”,西南大学博士学位论文,2007.
    [2]李霖峰,张雷,董磊,等,“光后向散射法测烟尘浓度的实验研究”,光子学报2006, Vol.35, pp:915-918.
    [3]吕宇玲,何利民,“多相流计量技术综述”,天然气与石油2004, Vol.22, pp:52-54.
    [4]王乃宁,虞先煌,竺晓程,“烟尘粉尘向大气排放的激光监测技术研究”,中国激光2001, Vol.28, pp:1032-1036.
    [5] F. Durst, A. Melling and J. H. Whiteiaw, Principle and practice of laser Doppler Anemometry, Academic Press, New York, 1976
    [6] L. P. B. A. R. Jones, Electromagnetic scattering and its application, Elsevier Science Publishers, London and New York, 1981.
    [7] J. P. A. J. Beeck,“Rainbow phenomena, development of a laser-based, non-intrusive technique for measuring droplet size, temperature and velocity”, Technische Universiteit Eindhoven, 1997.
    [8] Bown. M. R., Maclnnes. J. M., Allenr. W. K., et. al.“Three-dimensional, three-component velocity measurements using stereoscopic micro-PIV and PTV”, Meas. Sci. Technol. 2006, Vol.17, pp:2175-2185.
    [9] N. Chigier, Combustion measurement, Hemisphere Publishing Corporation, New York, 1991.
    [10] R. J. Goldstein, Fluid mechnics measurements, Hemisphere Publishing Corporation, Washington, 1983.
    [11] J. A. Stratton, Electromagnetic Theory, Wiley, New York, 1986.
    [12] P. Debye,“Das elektromagnetische feld um einen zylinder un die theorie des regenbogens”, Phys. Z. 1908, Vol.9, pp:775-778.
    [13] H. M. Nussenzveig,“High-frequency scattering by a transparent sphere. I.Direct reflection and transmission”, J. Math. Phys. 1969, Vol.10, pp:82-124.
    [14] H. C. van de Hulst, Light scattering by small particles, Dover, New York, 1981.
    [15]徐峰,“光散射粒度测量中若干问题研究”,上海理工大学硕士学位论文,2004.
    [16]韩香娥,“彩虹测量技术的研究及在液柱不稳定性和温度梯度测量中的应用”,西安电子科技大学博士学位论文,2000.
    [17]储九荣,钟力生,徐传骧,“梯度型聚合物光纤中折射率分布模型的修正”,化学物理学报2005, Vol.18, pp:183-186.
    [18]姜会芬,“非均匀粒子光散射特性及折射率分布测量研究”,西安电子科技大学博士学位论文,2007.
    [19]李仁先,“非均匀粒子电磁散射Debye级数展开及应用”,西安电子科技大学博士学位论文,2008.
    [20] L. V. Lorenz,“Upon the light reflected and refracted by a transparent sphere”, Vidensk. Selsk. Shrifter. 1890, Vol.6, pp:1- 62, In Danish.
    [21] G. Mie,“Beitrage zur optik truber medien speziel kolloidaler metallosungen”, Ann. Phys. 1908, Vol.25, pp:377-445.
    [22] L. Brillouin,“The scattering cross section of spheres for Electromagnetic waves”, J. Appl. Phys, 1949, Vol.20, pp:1110-1125.
    [23] A. L. Aden and M. Kerker,“Scattering of electromagnetic wave from concertric sphere”, J. Appl. Phys. 1951, Vol.22, pp:1242-1246.
    [24] A. Brunsting and P. F. Mullaney,“Light scattering from coated spheres: model for biological cells”, Appl. Opt. 1972, Vol.11, pp:675-680.
    [25] M. Kerker, The Scattering of light and other electromagnetic radiation, Academic, New York, 1969.
    [26] F. A. Albini,“Scattering of a plane wave by an inhomogeneous sphere under the Born Approximation”, J. Appl. Phys. 1962, Vol.33, pp:3032-3036.
    [27] O. B. Toon and T. P. Ackerman,“Algorithms for the calculation of scattering by stratified spheres”, Appl. Opt. 1981, Vol.20, pp:3657-3660.
    [28] Z. S. Wu and Y. P. Wang,“Electromagnetic scattering for multilayered sphere: Recursive algorithms”, Radio Sci. 1991, Vol.26, pp:1393-1401.
    [29]吴振森,王一平,“多层球电磁散射的一种新算法”,电子科学学刊1993, Vol.15, pp:174-180.
    [30] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983.
    [31] J. Sinzig and M. Quinten,“Scattering and absorption by spherical multilayer particles”, Appl. Phys. A. 1994, Vol.58, pp:157-162.
    [32] B. R. Johnson,“Light scattering by a multilayer sphere”, Appl. Opt. 1996, Vol.35, pp:3286-3296.
    [33] R. X. Li, X. E. Han, H. F. Jiang, et al,“Debye series for light scattering by a multilayered sphere”,Appl. Opt. 2006, Vol.45, pp:1260-1270.
    [34] L. Rayleigh,“On the electromagnetic theory of light”, Philos. Mag. 1881, Vol.12, pp:12-81.
    [35] J. R. Wait,“Scattering of a plane wave from a circular dielectric cylinder at oblique incidence”, Can. J. Phys. 1955, Vol.33, pp:189-195.
    [36] M. Kerker, E. Matijevic,“Scattering of electromagnetic waves from concentric infinte cylinders”, J. Opt. Soc. Am. 1961, Vol.51, pp:506-508.
    [37]吴振森,郭立新,崔索民,“垂直入射时无限长多层圆柱的内、外场计算”,电子学报1995, Vol.23, pp:114-116.
    [38] W. A. Farone and C. W. Querfeld,“Electromagnetic scattering from a radially inhomogeneous infinite cylinders at oblique incidence”, J. Opt. Soc. Am. 1966, Vol.56, pp:476-480.
    [39] M. Barabás,“Scattering of a plane wave by a radially stratified tilted cylinder”, J. Opt. Soc. Am. A 1987, Vol.4, pp:2240-2248.
    [40] I. Gurwich, N. Shiloah and M. Kleiman,“The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder”, J. Quant. Spectr. Rad. Trans. 1999, Vol.63, pp:217-229.
    [41]姜会芬,韩香娥,李仁先,“垂直入射时无限长分层柱电磁散射的改进算法及应用”,光学学报2007, Vol.27, pp:265-271.
    [42] S. Asano and G. Yamamoto,“Light scattering by a spheroidal particle”, Appl. Opt. 1975, Vol.14, pp:29-49.
    [43] S. Asano,“Light scattering properties of spheroidal particles”, Appl. Opt. 1979, Vol.18, pp:712-723.
    [44] F. M. Schulz, K. Stamnes and J. J. Stamnes,“Scattering of electromagnetic waves by spheroidal particles: a novel approach exploiting the T matrix computed in spheroidal coordinates”, Appl. Opt. 1998, Vol.37, pp:7875-7896.
    [45] I. Gurwich, M. Kleiman, N. Shiloah and D. Oaknin,“Scattering by an arbitrary multi-layered spheroid: theory and numerical results”, J. Quant. Spectr. Rad. Trans. 2003, Vol.79-80, pp:649-660.
    [46]何琴淑,周又和,“带电椭球粒子对电磁波的散射”,兰州大学学报(自然科学版) 2004, Vol.40, pp:25-30.
    [47] J. Caldwell,“Computation of eigenvalues of spheroidal harmonics using relaxation”, J. Phys. A: Math. Gen. 1988, Vol.21, pp:3685-3693.
    [48] A. Gil and J. Segura,“A code to evaluate prolate and oblate spheroidal harmonics”, Computer Physics Communications 1998, Vol.108, pp:267-278.
    [49] G. C. Kokkorakis and J. A. Roumeliotis,“Power series expansions forspheroidal wave functions with small arguments”, J Comput. Appl. Math. 2002, Vol.139, pp:95-127.
    [50]韩一平,吴振森,“平面波用椭球波函数的展开”,西安电子科技大学学报1999, Vol.26, pp:227-231.
    [51] Yiping Han, Zhensen Wu,“Absorption and Scattering by an Oblate Particle”, J. Opt. A: Pure Appl. Opt. 2002, Vol.4, pp:74-77.
    [52]韩一平,吴振森,“椭球粒子电磁散射的边界条件的讨论”,物理学报2000, Vol.49, pp:57-60.
    [53]韩一平,吴振森,“一种平面波在椭球坐标系展开的计算方法”,西安电子科技大学学报(自然科学版) 2000, Vol.27, pp:795-797.
    [54] L. W. Li, X. k. Kang and M. S. Leong, Spheroidal wave functions in electromagnetic theory, Wiley, New York, 2002.
    [55] N. Morita, T. Tanaka, T. Yamasaki and Y. Nakanishi,“Scattering of a beam wave by a spherical object”, IEEE Trans. Antennas. Propag. AP 1968, Vol.16, pp:724-727.
    [56] W. G. Tam and R. Corriveau,“Scattering of electromagnetic beams by spherical objects”, J. Opt. Soc. Am. 1978, Vol.68, pp:763-767.
    [57] L. W. Davis,“Theory of electromagnetic beam”, Phys. Rev. A. 1979, Vol.19, pp:1177-1179.
    [58] G. Gouesbet, B. Maher and G. Gréhan,“Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation”, J. Opt. Soc. Am. A 1988, Vol.5, pp:1427-1443.
    [59] J. A. Lock, G. Gouesbet,“Rigorous Justification of the Localized Approximation to the Beam-Shape Coefficients in Generalized Lorenz-Mie Theory.Ⅰ. On-Axis Beams”, J. Opt. Soc. Am. A. 1994, Vol.11, pp:2503-2515.
    [60] J. A. Lock, G. Gouesbet,“Rigorous Justification of the Localized Approximation to the Beam-Shape Coefficients in Generalized Lorenz-Mie Theory.Ⅱ. Off-Axis Beams”, J. Opt. Soc. Am. A. 1994, Vol.11, pp:2516-2525.
    [61] K. F. Ren, G. Gouesbet and G. Gréhan,“Integral localized approximation in generalized Lorenz-Mie theory”, Appl. Opt. 1998, Vol.37, pp:4218-4225.
    [62] E. E. M. Khaled, S. C. Hill and P. W. Barber,“Light scattering by a coated sphere illuminated with a Gaussian beam”, Appl. Opt. 1994, Vol.33, pp:3308-3314.
    [63]吴振森,傅新琦,“多层球对高斯波束的散射”,电子学报1995, Vol.23, pp:32-36.
    [64] R. X. Li, X. E. Han, L. J. Shi, et al.“Debye series for Gaussian beam scattering by a multilayered sphere”, Appl. Opt. 2007, Vol.46, pp:4804-4812.
    [65] J. P. Barton,“Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. I. Internal and near-field effects”, Appl. Opt. 1997, Vol.36, pp:1303-1311.
    [66] J. P. Barton,“Electromagnetic-field calculations for a sphere illuminated by a higher-order Gaussian beam. II. Far-field scattering”, Appl. Opt. 1998, Vol.37, pp:3339-3344.
    [67] J. P. Barton,“Electromagnetic-field calculations for irregularly shaped, layered cylindrical particles with focused illumination”, Appl. Opt. 1997, Vol.36, pp:1312-1319.
    [68] J. P. Barton,“Internal and near-surface electromagnetic fields for a spheroidal particle with arbitrary illumination”, Appl. Opt. 1995, Vol.34, pp:5542-5551.
    [69] T. Kojima and Y. Yanagiuchi,“Scattering of an offset two-dimensional Gaussian beam wave by a cylinder”, J. Appl. Phys. 1979, Vol.50, pp:41-46.
    [70] S. Kozaki,“A new expression for the scattering of a Gaussian beam by a conducting cylinder”, IEEE Trans. Antennas Propagat. 1982, Vol.30, pp:881-887.
    [71]韩一平,“椭球粒子对高斯波束的散射”,西安电子科技大学博士学位论文,2001.
    [72] H. Y. Zhang and Y. P. Han,“Scattering by a confocal multilayered spheroidal particle illuminated by an axial Gaussian beam”, IEEE Trans. Antennas Propagat. 2005, Vol.53, pp:1514-1518.
    [73] Y. Han, H. Y. Zhang,and X Sun,“Scattering of Shaped Beam by an Arbitrarily Oriented Spheroid Having Layers with Non-confocal Boundaries”, Appl. Phys. B: Lasers Opt. 2006, Vol.84, pp:485-492.
    [74] Y. P. Han, H. Y. Zhang, G. X.Han,“Expansion of shaped beam with respect to all arbitrarily oriented spheroidal particle”, Opt. Exp. 2007, Vol.15, pp:735-746.
    [75] J C Ravey, P Mazeron,“Light scattering by large spheroids in the Physical Optics Approximation: numerical comparison with other approximate and exact results”, J. Opt. 1983, Vol.14, pp:29-41.
    [76] J. R. Hodkinson, I. Greenleaves,“Computations of Light-Scattering and Extinction by Spheres According to Diffraction and Geometrical Optics, and Some Comparisons with the Mie Theory”, J. Opt. Soc. Am. A 1963, Vol.53, pp:577-588.
    [77] W. J. Glantschnig and S.-H. Chen,“Light scattering from water droplets in the geometrical optics approximation”, Appl. Opt. 1981, Vol.20, pp:2499-2509.
    [78] A. Belafhal, M. Ibnchaikh, and K. Nassim,“Scattering amplitude of absorbing and nonabsorbing spheroidal particles in the WKB approximation”, J. Quant. Spectrosc. Radiat. Transfer 2002, Vol.72, pp:385-402.
    [79] Ye. Grynko and Yu. Shkuratov,“Scattering matrix calculatedin geometric optics approximation for semitransparent particles faceted with various shapes”, J. Quant. Spectrosc. Radiat.Transfer 2003, Vol.78, pp:319-340.
    [80] X. Zhou, S. Li and K. Stamnes,“Geometrical-optics code for computing the optical properties of large dielectric spheres”, Appl. Opt. 2003, Vol.42, pp:4295-4306.
    [81] F. Xu, X. Cai and K. Ren,“Geometrical-optics approximation of forward scattering by coated particles”, Appl. Opt. 2004, Vol.43, pp:1870-1879.
    [82] Alfred R. Steinhardt and Leonid Fukshansky,“Geometrical optics approach to the intensity distribution in finite cylindrical media”, Appl. Opt. 1987, Vol.26, pp:3778-3789.
    [83] J. A. Lock,“Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection”, Appl. Opt. 1996, Vol.35, pp:500-514.
    [84] J. A. Lock,“Ray scattering by an arbitrarily oriented spheroid. II. Transmission and cross-polarization effects”, Appl. Opt. 1996, Vol.35, pp:515-531.
    [85] Zhibo Zhang, Ping Yang, George W. Kattawar, et al.“Geometrical-optics solution to light scattering by droxtal ice crystals”, Appl. Opt. 2004, Vol.43, pp:2490-2499.
    [86] J. A. Lock and E. A. Hovenac,“Internal caustic structure of illuminated liquid droplets”, J. Opt. Soc. Am. A 1991, Vol.8, pp:1541-1552 .
    [87] V. Srivastava and M. A. Jarzembski,“Laser-induced stimulated Raman scattering in the forward direction of a droplet: comparison of Mie theory with geometrical optics”, Opt. Lett. 1991, Vol.16, pp:126-128 .
    [88] M. A. Jarzembski and V. Srivastava,“Electromagnetic field enhancement in small liquid droplets using geometrical optics”, Appl. Opt. 1989, Vol.28, pp:4962-4965 .
    [89] D. Q. Chowdhury, P. W. Barber and S. C. Hill,“Energy density distribution inside large nonabsorbing spheres by using Mie theory and geometrical optics”, Appl. Opt. 1992, Vol.31, pp:3518-3523.
    [90] Nadejda Velesco, Thomas Kaiser, Gustav Schweiger,“Computation of theinternal field of a large spherical particle by use of the geometrical-optics approximation”, Appl. Opt. 1997, Vol.36, pp:8724-8728.
    [91] F. Xu, K. F. Ren, and X. S. Cai,“Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle”, Appl. Opt. 2006, Vol.45, pp:4990-4999.
    [92] F. Xu, K. F. Ren, and X. S. Cai,“Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. II. By a spheroidal particle with end-on incidence”, Appl. Opt. 2006, Vol.45, pp:5000-5009.
    [93] J. A. Adam,“The mathematical physics of rainbows and glories”, Phys. Rep. 2002, Vol.356, pp:229-365.
    [94] H. M. Nussenzveig,“The theory of the rainbow”, Sci. Am. 1977, Vol.236, pp:116-127.
    [95] G. B. Airy.“On the intensity of light in the neighbourhood of a caustic”, Trans. Cambridge Philos. Soc. 1838, Vol.6, pp:397–403; reprinted in Geometrical Aspects of Scattering, P. L. Marston, ed., Vol. MS 89 of the SPIE Milestone Series ~SPIE, Bellingham Wash., 1994 , pp:298–309.
    [96] Rev. D. Hammer,“Airy’s Theory of the Rainbow”, Monthly Weather Review, nov.1904.
    [97] M. R. Vetrano, J. P. A. J. van Beeck, and M. L. Riethmuller,“Generalization of the rainbow Airy theory to nonuniform spheres”, Opt. Lett. 2005, Vol.30, pp:658–660.
    [98] W. M?bius,“Zur Theorie des Regenbogens und ihrer experimentallen Prufung”, Ann. Phys. 1910, Vol.33, pp:1493–1558.
    [99] G. P. K?nnen,“Appearance of supernumeraries of the secondary rainbow in rain showers”, J. Opt. Soc. Am. A, 1987, Vol.4, pp:810–816.
    [100] P. L. Marston,“Cusp diffraction catastrophe from spheroids: generalized rainbows and inverse scattering”, Opt. Lett. 1985, Vol.10, pp:588–590.
    [101] J. A. Lock,“Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. I. Theory”, Appl. Opt. 2000, Vol.39, pp:5040–5051.
    [102] C. L. Adler, David Phipps, K. W. Saunders, et al.“Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. II. Experiment”, Appl. Opt. 2001, Vol.40, pp:2535–2545.
    [103] J. F. Nye,“Rainbows from Ellipsoidal Water Drops”, Proc. R. Soc. Lond. A 1992, Vol.438, pp:397-417.
    [104] D. Marcuse,“Light scattering from elliptical fibers”, Appl. Opt. 1974, Vol.13, 1903-1905.
    [105]甄宗民,杨远洪,“保偏光纤在线定轴技术研究”,光子学报2004, Vol.33, pp:1060-1063.
    [106]王金娥,林哲辉,吴宇列,等,“基于五点特征值的匹配型保偏光纤定轴新方法”,光通信技术2005, Vol.1, pp:20-22.
    [107]林哲辉,王金娥,吴宇列,等,“保偏光纤自动化定轴方法研究”,光通信技术2005, Vol.2, pp:52-55.
    [108]陈少英,狄红卫,陈哲,等,“基于五指型光强分布的保偏光纤定轴方法”,应用激光2006, Vol.26, pp:35-38.
    [109]陈少英,“基于侧视成像的保偏光纤定轴方法的理论与实验研究”,暨南大学硕士学位论文,2006.
    [110]吴宇列,郑煜,王金娥,“熊猫型保偏光纤定轴仿真研究”,光子学报2007, Vol.36,1224-1229.
    [1] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983.
    [2]李仁先,“非均匀粒子电磁散射Debye技术展开及应用”,,西安电子科技大学博士学位论文, 2007.
    [3]姜会芬,“非均匀粒子光散射特性及折射率分布测量研究”,西安电子科技大学博士学位论文, 2007.
    [4] H. C. van de Hulst, Light scattering by small particles, Dover, New York, 1981.
    [5] J. A. Adam,“The mathematical physics of rainbows and glories”, Phys. Rep. 2002, Vol.356, pp:229-365.
    [6] V. Khare, H. M. Nussenzveig,“Theory of the rainbow”, Phys. Rev. Lett. 1974, Vol.33, pp:976-980.
    [7] G. B. Airy,“On the intensity of light in the neighbourhood of a caustic”, Trans. Cambridge Philos. Soc. 1838, Vol.6, pp:397–403; reprinted in Geometrical Aspects of Scattering, P. L. Marston, ed., Vol. MS 89 of the SPIE Milestone Series ~SPIE, Bellingham Wash, (1994), pp:298-309.
    [8] G. Gouesbet, B. Maher and G. Gréhan,“Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation”, J. Opt. Soc. Am. A 1988, Vol.5, pp:1427-1443.
    [9] P. Debye,“Das elektromagnetische feld um einen zylinder un die theorie desregenbogens”, Phys. Z. 1908, Vol.9, pp:775-778.
    [10]何国瑜,卢才成,洪家才,等,电磁散射的计算和测量,北京航空航天大学出版社,2006.
    [11] X. Han. PhD Dissertation,“Study of refractometry of rainbow and applications to the measurement of instability and temperature gradient of a liquid jet”, Ph. D. Rouen University, 2000.
    [12] J. D. Jackson,“From alexander of aphrodisias to Young and Airy”, Phys. Rep. 1999, Vol.320, pp:27-36.
    [13] L. Lorenz,“Lysbev?gelsen iog uden for en af plane Lysb?lger belyst Kugle”, Videnskabernes Selskabs Skrifter 1890, Vol.6, pp:2-62.
    [14] G. Mie,“Beitrage zur optik truber medien speziel kolloidaler metallosungen”, Ann. Phys. 1908, Vol.25, pp:377-445.
    [15]马科斯·玻恩,埃米尔·沃耳夫著,杨葭荪译,光学原理(第七版),电子工业出版社, 2005.
    [16] L. W. Li, Y. Dan and M. S. Leong,“Electromagnetic scattering by an inhomogeneous chiral sphere of varying permittivity: a discrete analysis using multilayered model”, 1999, PIER 23, pp:239-263.
    [17] I. Gurvich, N. Shiloah and M. Kleiman,“Calculations of the Mie scattering coefficients for multilayered particles with large size parameters”, J. Quant. Spectr. Rad. Trans. 2001, Vol.70, pp:433-440.
    [18] Z. S. Wu and Y. P. Wang,“Electromagnetic scattering for multilayered sphere: Recursive algorithms”, Radio Science 1991, Vol.26, pp:1393-1401.
    [19] J. R. Wait,“Scattering of a plane wave from a circular dielectric cylinder at oblique incidence”, Can. J. Phys. 1955, Vol.33, pp:189-195.
    [20] M. Barabás,“Scattering of a plane wave by a radially stratified tilted cylinder”, J. Opt. Soc. Am. A 1987, Vol.4, pp:2240-2248.
    [21] I. Gurwich, N. Shiloah and M. Kleiman,“The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder”, J. Quant. Spectr. Rad. Trans. 1999, Vol.63, pp:217-229.
    [22] W. A. Farone and C. W. Querfeld,“Electromagnetic scattering from a radially inhomogeneous infinite cylinders at oblique incidence”, J. Opt. Soc. Am. 1966, Vol.56, pp:476-480.
    [23] H. A. Yousif and S. K?hler,“Scattering by two penetrable cylinders at oblique incidence, I. The analytical solution”, J. Opt. Soc. Am. A 1988, Vol.5, pp:1085-1096.
    [24] H. A. Yousif and S. K?hler,“Scattering by two penetrable cylinders at oblique incidence, II. Numerical examples”, J. Opt. Soc. Am. A 1988, Vol.5, pp:1097-1104.
    [25] M. Kerker, D.Cooke, W. A. Farone and R. A. Jacobsen,“Electromagnetic scattering from an infinite circular cylinder at oblique incidence. I. radiance functions for m=1.46”, J. Opt. Soc. Am. 1982, Vol.72, pp:531-534.
    [26] S. P. Hau-Riege,“Extending the size-parameter range for plane-wave light scattering from infinite homogeneous circular cylinders”, Appl. Opt. 2006, Vol.45, pp:1219-1224.
    [27] S. Asano and G. Yamamoto,“Light scattering by a spheroidal particle”, Appl. Opt. 1975, Vol.14, pp:29-49.
    [28] S. Asano,“Light scattering properties of spheroidal particles”, Appl. Opt. 1979, Vol.18, pp:712-723.
    [29] V. G. Farafonov, N. V. Voshchinnikov and V. V. Somsikov,“Light scattering by a core-mantle spheroidal particle”, Appl. Opt. 1996, Vol.35, pp:5412-5426.
    [30] I. Gruwich, M. Kleiman, N. Shiloah and A. Cohen,“Scattering of electromagnetic radiation by multilayered spheroidal particles: recursive procedure”, Appl. Opt. 2000, Vol.39, pp:470-477.
    [31] J. A. Lock and G. Gouesbet,“Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams”, J. Opt. Soc. Am. A 1994, Vol.11, pp:2503-2515.
    [32] G. Gouesbet and J. A. Lock,“Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams”, J. Opt. Soc. Am. A 1994, Vol.11, pp:2516-2525.
    [33] G. Gouesbet, G. Gréhan and B. Maheu,“Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory”, J. Opt. Soc. Am. A 1990, Vol.7, pp:998-1007.
    [34] G. Gouesbet,“Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres”, J. Opt. Soc. Am. A 1999, Vol.16, pp:1641-1650.
    [35] J. A. Lock and C. L. Adler,“Debye series analysis of the first-order rainbow produced in scattering of a diagonally incident plane wave by a circular cylinder”, J. Opt. Soc. Am. A. 1997, Vol.14, pp:1316-1328.
    [1] G. Mie,“Beitrage zur optik truber medien speziel kolloidaler metallosungen”, Ann. Phys. 1908, Vol.25, pp:377-445.
    [2] F. Xu, X. S. Cai, and K. F. Ren,“Geometrical-Optics Approximation of Forward Scattering by Coated Particles”, Appl. Opt. 2004, Vol.43, 1870-1879.
    [3] P. Debye,“Das elektromagnetische feld um einen zylinder un die theorie des regenbogens”, Phys. Z. 1908, Vol.9, pp:775-778.
    [4] J. J. Stamnes and H. A. Eide,“Exact and approximate solutions for focusing of two-dimensional waves. II. Numerical comparisons among exact, Debye, and Kirchhoff theories”, J. Opt. Soc. Am. A 1998, Vol.15, pp:1292-1307.
    [5] S. Derible,“Debye-series analysis of the transmission coefficients of a water-saturated porous plate obeying Biot’s theory”, J. Acoust Soc. Am. 2005, Vol.118, pp:3430-3435.
    [6] W. Fulks,“Debye’s series in the transitional region”, Math. Zeitschr. 1965, Vol.88, pp:368-374.
    [7] P. Laven,“Simulation of rainbows, coronas and glories using Mie theory and the Debye series”, J. Quant. Spectr. Rad. Trans. 2004, Vol.89, pp:257-269.
    [8] P. Laven,“The optics of a water drop--Mie scattering and the Debye series”, http://www.philiplaven.com/index1.html.
    [9] C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
    [10] Xu Renliang, Particle Size Distribution Analysis Using Light Scattering, inLiquid and Surface-borne Particle Measurement Handbook, J.Z. Knapp, T.A.Barber and A. Lieberman,eds. Marcel Dekker, New York, 1996.
    [11] W. J. Glantschnig, S. H. Chen,“Light scattering from water droplets in the geometrical optics approximation”, Appl. Opt. 1981, Vol.20, pp:2499-2509.
    [12] A. Belafhal, M. Ibnchaikh, and K. Nassim,“Scattering amplitude of absorbing and nonabsorbing spheroidal particles in the WKB approximation”, J. Quant. Spectrosc. Radiat. Transfer. 2002, Vol.72, pp:385-402.
    [13] M. Min, J. W. Hovenier, and A. de Koter,“Scattering and absorption cross sections for randomly oriented spheroids of arbitrary size”, J. Quant. Spectrosc. Radiat. Transfer. 2003, Vol.79-80, pp:939-951.
    [14] L. I. Schiff,“Approximation method for short wavelength or high-energy scattering”, Phys. Rev. 1956, Vol.104, pp:1481-1485.
    [15] H. C. van de Hulst, Light scattering by small particles, Dover, New York, 1981.
    [16]徐峰,“光散射粒度测量中若干问题研究”,上海理工大学硕士学位论文,2004.
    [17]姜会芬,韩香娥,李仁先,“垂直入射时无限长分层柱电磁散射的改进算法及应用”,光学学报, 2007, Vol.27, pp:265-271
    [18] J. P. A. J. van Beeck and M. L. Riethumller,“Nonintrusive measurements of temperature and size of single falling raindrops”, Appl.Opt. 1995, Vol.34, pp:1633-1639.
    [19] X. Han. PhD Dissertation,“Study of refractometry of rainbow and applications to the measurement of instability and temperature gradient of a liquid jet”, Ph. D. Rouen University, 2000.
    [1] C. Gomez-Reino, M. V. Perez, C. Bao, Gradient-Index Optics Fundamentals and Applications, Springer, New York, 2002.
    [2] M. Kerker, The Scattering of light and other electromagnetic radiation, Academic, New York, 1969.
    [3] J. A. Lock,“Cooperative effects among partial waves in Mie scattering”, J. Opt. Soc. Am. A 1988, Vol.5, pp:2032-2044.
    [4] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
    [5] Xu Renliang, Particle Size Distribution Analysis Using Light Scattering, inLiquid and Surface-borne Particle Measurement Handbook, J.Z. Knapp, T.A.Barber and A. Lieberman,eds. Marcel Dekker, New York, 1996, pp:745-777.
    [6] H. C. Hulst, Light scattering by small particles, Dover, New York, 1981.
    [7] W. J. Glantschnig and S.-H. Chen,“Light scattering from water droplets in the geometrical optics approximation”, Appl.Opt. 1980, Vol.20, pp:2499-2509.
    [8] A. Belafhal, M. Ibnchaikh, and K. Nassim,“Scattering amplitude of absorbing and nonabsorbing spheroidal particles in the WKB approximation”, J. Quant. Spectrosc. Radiat. Transfer. 2002, Vol.72, pp:385-402.
    [9] M. Min, J. W. Hovenier, and A. de Koter,“Scattering and absorption cross sections for randomly oriented spheroids of arbitrary size”, J. Quant. Spectrosc. Radiat. Transfer. 2003, Vol.79-80, pp:939-951.
    [10] L. I. Schiff,“Approximation method for short wavelength or high-energy scattering”, Phys. Rev. 1956, Vol.104, pp:1481-1485.
    [11] Feng Xu, Xiaoshu Cai, Kuanfang Ren,“Geometrical-optics approximation offorward scattering by coated particles”, Appl. Opt. 2004, Vol.43, pp:1870–1879.
    [12] Xiangzhen Li, X. E. Han, R. X. Li, et al.,“Geometrical-optics approximation of forward scattering by Gradient-index spheres”, Appl.Opt. 2007, Vol.46, pp:5241-5247.
    [13] M. R. Vetrano, J. P. A. J. van Beeck, and M. L. Riethmuller,“Generalization of the rainbow Airy theory to nonuniform spheres”, Opt. Lett. 2005, Vol.30, pp:658-660.
    [14]高应俊,“球对称折射率分布及其光程”,光子学报1989, Vol.4, pp:335-343.
    [15]姜会芬,“非均匀粒子光散射特性及折射率分布测量研究”,西安电子科技大学博士学位论文, 2007.
    [1] Gérard Gouesbet, Bruno Maheu, and Gérard Gréhan,“Light scattering from a sphere arbitrarily located in a Gaussian beam, using a Bromwich formulation”, J. Opt. Soc. Am. A, 1988, Vol.5, pp:1427-1443.
    [2] Gérard Gouesbet,“Generalized Lorenz-Mie theory and applications”, Part. Part. Syst. Charact, 1994, Vol.11, pp:22-34.
    [3] Zhensen Wu, Lixin Guo,“Kuanfang Ren et al., Improved algorithm for electromagnetic scattering of plane waves and shaped beams by multilayered spheres”, Appl. Opt. 1997, Vol.36, pp:5188-5198.
    [4]吴振森,郭立新,吴成明.“离轴多层球对高斯波束的光散射”.光学学报, 1998, Vol.18, pp:682-687.
    [5]姜会芬,韩香娥,李仁先.“垂直入射时无限长分层柱电磁散射的改进算法及应用”,光学学报, 2007, Vol.27, pp:265-271.
    [6]唐红,孙晓刚,原桂彬.“反常衍射近似在测量圆柱形粒子粒径分布中的应用”,中国激光, 2007, Vol.34, pp:411-416.
    [7] Jean-Philippe Chevaillier, Jean Fabre, and Patrice Hamelin,“Forward scattered light intensities by a sphere located anywhere in a Gaussian beam”, Appl. Opt, 1986, Vol.25, pp:1222-1225.
    [8] Jean-Philippe Chevaillier, Jean Fabre, Gérard Gréhan, et al.,“Comparison of diffraction theory and generalized Lorenz-Mie theory for a sphere located on axis of a laser beam”, Appl. Opt. 1990, Vol.29, pp:1293-1298.
    [9] Feng Xu, Xiaoshu Cai, Kuanfang Ren, et al.,“Application of the geometrical optics approximation in particle size analysis by the Forward Scattering method”,PARTEC 2004, Academic, Nuremberg, Germany,2004, Vol.3, pp:16-18.
    [10] Feng Xu, Kuanfang Ren, and Xiaoshu Cai,“Extension of geometrical-optics approximation to on-axis Gaussian beam scattering I. By a spherical particle”, Appl. Opt. 2006, Vol.45, pp:4990-4999.
    [11] Xiangzhen Li, Xiang’e Han, Renxian Li, et al.,“Geometrical-optics approximation of forward scattering by Gradient-index spheres”, Appl.Opt. 2007, Vol.46, pp:5241-5247.
    [12] Anthony E.Siegman, Lasers, Oxford University, Oxford, 1986.
    [13] H. C. van de Hulst, Light Scattering by Small Particles, Dover Publication, Inc, New York, 1957.
    [14] Maria Rosaria Vetrano, Jeronimus Petrus Antonius Johannes van Beeck, and Michel Léon Riethmuller,“Generalization of the rainbow Airy theory to nonuniform spheres”, Opt. Lett. 2005, Vol.30, pp:658-660.
    [15] Edward A. Hovenac and James A. Lock,“Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series”, J. Opt. Soc. Am. A. 1992, Vol.9, pp:781-795.
    [16] Gérard Gouesbet and James A. Lock,“Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams”, J. Opt. Soc. Am. A. 1994, Vol.11, pp:2516-2525.
    [17] Gérard Gouesbet, Gérard Gréhan and Bruno Maheu,“Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory”, J. Opt. Soc. Am. A. 1990, Vol.7, pp:998-1007.
    [18] Gérard Gouesbet,“Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres”, J. Opt. Soc. Am. A. 1999, Vol.16, pp:1641-1650.
    [1] J. A. Adam,“The mathematical physics of rainbows and glories”, Phys. Rep. 2002, Vol.356, pp:229-365.
    [2] H. M. Nussenzveig,“The theory of the rainbow”, Sci. Am. 1977, Vol.236, pp:116–127.
    [3] G. B. Airy,“On the intensity of light in the neighbourhood of a caustic”, Trans. Cambridge Philos. Soc. 1838, Vol.6, pp:397-403; reprinted in GeometricalAspects of Scattering, P. L. Marston, ed., Vol. MS 89 of the SPIE Milestone Series ~SPIE, Bellingham Wash., 1994 , pp:298-309.
    [4] W. M?bius,“Zur Theorie des Regenbogens und ihrer experimentallen Prufung”, Ann. Phys. 1910, Vol.33, pp:1493-1558.
    [5] G. P. K?nnen,“Appearance of supernumeraries of the secondary rainbow in rain showers”, J. Opt. Soc. Am. A, 1987, Vol.4, pp:810-816.
    [6] P. L. Marston,“Cusp diffraction catastrophe from spheroids: generalized rainbows and inverse scattering”, Opt. Lett. 1985, Vol.10, pp:588-590.
    [7] C. L. Adler, J. A. Lock, J. K. Nash, et al,“Experimental observation of rainbow scattering by a coated cylinder: twin primary rainbows and thin-film interference”, Appl. Opt. 2001, Vol.40, pp:1548-1558.
    [8] J. F. Nye,“Rainbows from Ellipsoidal Water Drops”, Proceedings: Mathematical and Physical Sciences, 1992, Vol.438, pp:397-417.
    [9] J. A. Lock,“Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. I. Theory”, Appl. Opt. 2000, Vol.39, pp:5040-5051.
    [10] C. L. Adler, David Phipps, K. W. Saunders, et al,“Supernumerary spacing of rainbows produced by an elliptical-cross-section cylinder. II. Experiment”, Appl. Opt. 2001, Vol.40, pp:2535-2545.
    [11] Yiping Han, Zhensen Wu,“Scattering of a spheroidal particle illuminated by a Gaussian beam”,. Appl. Opt. 2001, Vol.40, pp:2501-2509.
    [12] D. Marcuse,“Light scattering from elliptical fibers”, Appl. Opt. 1974, Vol.13, pp:1903-1905.
    [13] F. Xu, K. F. Ren, and X. Cai, et al.“Extension of geometrical-optics approximation to on-axis Gaussian beam scattering. I. By a spherical particle”, Appl. Opt. 2006, Vol.45, pp:5000-5009.
    [1] L. Rayleigh,“On the electromagnetic theory of light”, Philos. Mag. 1881, Vol.12, pp:12-81.
    [2] J. R. Wait,“Scattering of a plane wave from a circular dielectric cylinder at oblique incidence”, Can. J. Phys. 1955, Vol.33, pp:189-195.
    [3] M. Kerker, E. Matijevic,“Scattering of electromagnetic waves from concentric infinte cylinders”, J. Opt. Soc. Am. 1961, Vol.51, pp:506-508.
    [4]吴振森,郭立新,崔索民,“垂直入射时无限长多层圆柱的内、外场计算”,电子学报1995, Vol.23, pp:114-116.
    [5]姜会芬,韩香娥,李仁先,“垂直入射时无限长分层柱电磁散射的改进算法及应用”,光学学报2007, Vol.27, pp:265-271.
    [6] W. A. Farone and C. W. Querfeld,“Electromagnetic scattering from a radially inhomogeneous infinite cylinders at oblique incidence”, J. Opt. Soc. Am. 1966, Vol.56, pp:476-480.
    [7] M. Barabás,“Scattering of a plane wave by a radially stratified tilted cylinder”, J. Opt. Soc. Am. A 1987, Vol.4, pp:2240-2248.
    [8] I. Gurwich, N. Shiloah and M. Kleiman,“The recursive algorithm for electromagnetic scattering by tilted infinite circular multilayered cylinder”, J. Quant. Spectr. Rad. Trans. 1999, Vol.63, pp:217-229.
    [9] W. Y. Yin, H. L. Zhao, and W. Wan,“Parametric study on the scattering characteristics of two impedance cylinders eccentrically coated with Faraday chiral materials”, Journal of Electromagnetic Waves and Applications, 1996, Vol.10, pp:1467-1484.
    [10] J. A. Roumeliotis and S. P. Savaidis,“Scattering by an infinite circular dielectric cylinder coating eccentrically an elliptic metalic one”, IEEE Trans. Antennas Propag., 1996, Vol.44, pp:757-763.
    [11] S. P. Savaidis and J. A. Roumeliotis,“Scattering by an infinite elliptic dielectric cylinder coating eccentrically a circular metalic or dielectric cylinder”, IEEE Transactions on Microwave Theory and Techniques, 1997, Vol.45, pp:1792-1799.
    [12] H. A. Yousif, A. Z. Elsherbeni,“Oblique incidence scattering from two eccentric cylinders”, Journal of Electromagnetic Waves and Applications, 1997, Vol.11, pp:1273-1288.
    [13] H. A. Yousif, A. Z. Elsherbeni,“Electromagnetic scattering from an eccentric multilayered cylinder at oblique incidence”, Journal of Electromagnetic Waves and Applications, 1999, Vol.13, pp:325-336.
    [14] D. Marcuse,“Light scattering from unclad fibers: ray theory”, Appl. Opt. 1975, Vol.14, pp:1528-1532.
    [15] J. Holoubek,“Light scattering from unclad fibers: approximate ray theory ofbackscattered light”, Appl. Opt. 1976, Vol.15, pp:2571-2575.
    [16] Yoshihide Takano and Masayuki Tanaka,“Phase matrix and cross sections for single scattering by circular cylinders: a comparison of ray optics and wave theory”, Appl. Opt. 1980, Vol.19, pp:2781-2793.
    [17] B. Q. Chen and Jakob J. Stamnes,“Scattering by simple and nonsimple shapes by the combined method of ray tracing and diffraction: application to circular cylinders”, Appl. Opt. 1998, Vol.37, pp:1999-2010.
    [18] Glauber T. Silva, Mohammad Zeraati, and Mostafa Fatemi,“Calculation of radiation force on cylinders based on diffraction and ray approximation”, 2001, IEEE Ultrasonics Symposium, pp:1237-1240.
    [19] H. C. van de Hulst, Light scattering by small particles, Dover, New York, 1981.
    [20] C. F. Bohren and D. R. Huffman, Absorption and scattering of light by small particles, Wiley, New York, 1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700