用户名: 密码: 验证码:
饲粮蛋白质、赖氨酸、蛋氨酸水平对生长期水貂生产性能、消化代谢和肠道形态结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水貂是珍贵的毛皮动物,属于食肉目鼬科鼬属,对饲粮中蛋白质数量和质量要求很高。本论文主要研究了干粉型饲粮蛋白质和赖氨酸、蛋氨酸对生长期水貂生产性能、消化代谢规律及肠道结构的影响。通过饲养试验,消化代谢试验、屠宰试验、组织学试验、分子生物学试验、结合氨基酸色谱分析技术,系统研究生长期(分为育成期和冬毛期)水貂在不同日龄对饲粮蛋白质、氨基酸的消化、吸收和代谢机制。确定水貂蛋白质和氨基酸的营养需要量,为干粉型饲料的应用推广奠定理论基础,为实际养殖生产提供理论指导。本研究包括两个试验部分:
     试验一饲粮蛋白质水平对生长期水貂生产性能,消化代谢和肠道结构的影响
     选择健康50日龄断奶水貂120只,公母各半,随机分成6组,每组10只公貂平均体重为778.23±119.05g,每组10只母貂平均体重为577.46±73.28g,各组间的体重差异不显著(P>0.05),每组设20个重复,每个重复1只,水貂均为单笼饲养。六组水貂分别饲喂饲粮的蛋白质水平为28%(Ⅰ组)、30%(Ⅱ组)、32%(Ⅲ组)、34%(Ⅳ组)、36%(Ⅴ组)、38%(Ⅵ组)的饲粮。结果表明:
     1.水貂在育成期50~65日龄,65~80日龄,80~95日龄,95~110日龄,适宜的蛋白质摄入量分别为30~33g/d,28~35g/d,30~32g/d,29~40g/d。
     2.水貂在冬毛期内,公貂在前期、中期和后期适宜的蛋白质摄入量分别为42~48g/d,36~42g/d,41~47g/d;母貂在前期、中期和后期适宜的蛋白质摄入量分别为28~30g/d,25~27g/d,30~32g/d,水貂可获得适宜的毛皮质量。
     3.水貂在不同时期对试验饲粮的营养物质消化率存在显著性差异(P<0.05);整体上看,育成期和冬毛期水貂分别对34%~36%、32%~34%蛋白质饲粮的蛋白质消化率和氮沉积比较好;饲粮中蛋白质能够提高水貂的脂肪消化率(P<0.05)。
     4.育成期水貂饲粮蛋白质水平为28%时,水貂体增重最小(P<0.05);蛋白质水平为34%时,水貂体增重最大(P<0.05);蛋白质水平为36%时,血清总氨基酸、总蛋白及谷草转氨酶活性高于其他各组(P<0.01)。
     5.饲粮蛋白质水平为34%~36%时,水貂的空肠绒毛、隐窝深度、肠粘膜厚度等指标高于其它试验组(P<0.01),饲粮中的蛋白质水平能够调节水貂的肠道形态结构。
     6.黑素皮质素受体基因(MC1R)转录水平的表达量在各组水貂间差异极显著(P<0.01),32%蛋白质组水貂的表达量最高,38%蛋白质组水貂的表达量最低,说明饲粮蛋白质对水貂的毛皮颜色和成熟时间具有影响。
     试验二赖氨酸、蛋氨酸水平对生长期水貂生产性能,消化代谢和肠道结构的影响
     选择健康的60日龄水貂200只,公母各半,随机分成10组,每组10只公貂平均体重为806.39±107.13g,每组10只母貂平均体重为586.74±90.15g。采用2因素3水平的试验设计,在32%蛋白质水平饲粮基础上分别添加0、0.3%、0.6%的赖氨酸和蛋氨酸,0添加的饲粮组为基础组,34%蛋白质饲粮组作为对照组。结果表明:
     1.育成期水貂饲粮赖氨酸水平为1.64%~1.94%、蛋氨酸水平为0.80%~1.10%时,基础组水貂补充氨基酸后的生长性能优于34%饲粮蛋白质组水貂;冬毛期公貂的饲粮赖氨酸水平为1.39%~1.69%、蛋氨酸水平为1.10%~1.40%时,水貂能够维持较好的生长性能;冬毛期母貂的饲粮赖氨酸水平为1.59%~1.89%、蛋氨酸水平为0.80%~1.10%时,水貂处于较为理想的生长状态。
     2.饲粮中添加赖、蛋氨酸能够对水貂的皮毛质量产生影响。饲粮中蛋氨酸含量达到1.10%,胱氨酸含量为0.35%时,水貂的皮张面积最大。冬毛期水貂饲粮中适宜的蛋氨酸含量为0.85%~1.10%。
     3.生长期公貂的饲粮赖氨基酸水平为1.64%~1.94%、蛋氨酸为1.10%~1.40%;生长期母貂的饲粮赖氨基酸水平为1.59%~1.75%,蛋氨酸为0.8%~1.10%,基础组饲粮添加0.3%~0.6%赖氨酸后,生长期水貂对营养物质的消化率能达到34%饲粮蛋白质组的消化率(P>0.05)。
     4.育成期饲粮添加0.3%Lys、0.6%Met的饲粮氨基酸相对平衡,公貂血清尿素氮极显著低于基础组水貂(P<0.01);冬毛期公貂饲粮添加0.6%Lys、0.3%Met;生长期母貂饲粮添加0.3%Lys、0.3%~0.6%Met水貂的蛋白质和氨基酸代谢旺盛,血清总氨基酸(TAA)维持较高水平。
     5.饲粮中添加0.3%蛋氨酸和0.6%蛋氨酸,能够提高水貂胃蛋白酶活性;饲粮中添加0.3%蛋氨酸或饲粮添加0.3%%~0.6%赖氨酸、0.3%蛋氨酸时,水貂的空肠吸收面积最大;饲粮中添加0.3%赖氨酸和0.3%蛋氨酸,提高水貂十二指肠胰蛋白酶的活性;饲粮中添加0.6%Met或者饲喂高水平的蛋白质饲粮,能够提高水貂空肠和回肠中胰淀粉酶和胰脂肪酶的活性。
     综上所述,处于不同生长时期的水貂对饲粮中蛋白质和氨基酸的需要与代谢规律不同,提供适宜的蛋白质和氨基酸,水貂能获得最佳的生产性能。合理配制饲粮,不但能够减少养殖过程中氮的排放量,而且降低饲养成本,获得最佳的经济效益。
As a kind of precious fur animals, mink (Carnivora mustelidae mustelia) has high daily proteinrequirements. The current study was conducted to investigate the effects of proteins, lysine andmethionine in dry-powder diet on production performance of growing mink. A combined strategycomprising of feeding trials, digestion and metabolism experiments, slaughter experiment, histology,molecular biology and chromatography of amino acid were employed to study the mechanisms ofproteins and amino acids digestion, absorption and metabolism in minks at different day-age. Thenutritional requirements of proteins and amino acids in mink were estimated to provide the data fordry-powder feed application in animal husbandry. This study was divided into two parts.
     Part1: Effects of protein levels on production performance, regularation of metabolism andintestinal characteristics in growing minks
     One hundred and twenty healthy weaned50-day minks were randomly assigned into six treatments(the average body weight of each treatment had no significant difference, P>0.05), half male (averagebody weight of0.778±0.119kg) and half female (average body weight of0.577±0.073kg). Everygroup had20replications, with one mink in each replication. Each mink was fed in an individual pen.Minks from six groups were supplemented with28%(group Ⅰ),30%(group Ⅱ),32%(group Ⅲ),34%(group Ⅳ),36%(group Ⅴ) and38%(group Ⅵ) proteins, respectively. The main results were as follow:
     1The optimal protein intakes of minks at50-65day,65-68day,80-95day and95-110day were30-33g/d,28-35g/d,30-32g/d and29-40g/d, respectively.
     2The optimal protein intakes of male minks at early, middle and late winter hair period were42-48g/d,36-42g/d and41-47g/d. However, taking25-27g/d or30-32g/d were beneficial for those femaleminks at middle or late winter hair period to produce high-quality fur.
     3The digestibility of main nutrient had the sigenificantly difference at various physical stage in themink by the experiment of metabolism and digestibility(P<0.05). The mink fed with34%~36%dietary protein levelvs had higher digestibility of protein and nitrogen deposition at the grwoing period.The mink fed with32%~34%dietary protein levelvs had the same regularity at the fur bearingperiod(P<0.05). Dietary protein could enhance the digestibility of crude fat in the growth period(P<0.05).
     4The average body weight gain of growing female minks in group Ⅰ was minimum, whilemaximum in group Ⅳ. The activity of aspartate aminotransferase, total amino acid and total proteinconcentrations in serum of growing female minks in group Ⅴ were higher than those in other groups.
     5The villus height, crypt depth and mucosa thickness of jejunum in group Ⅳ and group Ⅴ werehigher than those of other groups, indicating that protein concentrations could adjust the morphology ofintestinal tract in mink.
     6The expression level of gene MC1R were significantly differently (P<0.01) among groups.Compared with group Ⅰ, MC1R expression level was highest in group Ⅲ and lowest in group Ⅵ, suggesting that protein concentrations contributed to color and maturation of fur.
     Part2: Effects of methionine levels on production performance, regularation of metabolism andintestinal characteristics in growing minks
     Two hundred60-day minks were randomly assigned into ten treatments (the mean body weight ofeach treatment had no significant difference, P>0.05), half male and half female. Every group had20minks, half male and half female. The two factors and three levels experimental design was carried outto add0,0.3%or0.6%lysine/methionine to32%protein group, and the34%protein group was used aspositive control. The main results were as follow:
     1The concentrations of lysine and sulfur amino acid were1.64%-1.94%and0.91%-1.21%in dietof growing mink. Growing performance of minks in treatment group supplemented with amino acid wasbetter than those in34%protein group. The optimum concentrations of lysine and sulfur amino acidwere1.39%-1.69%and1.24%-1.54%for production performance of male minks at winter hair period,while1.59%-1.89%and0.94%-1.24%in female minks.
     2Lysine and methionine had effects on fur quality of minks. The optimum concentrations of lysineand sulfur amino acid were1.29%and0.94%. The fur area was biggest, when concentrations ofmethionine and cystine were1.2%and0.35%. The optimum concentration of sulfur amino acid was1.24%-1.54%and lysine/methionine was1:0.83-1.28.
     3The concentrations of lysine and methionine were1.64%-1.94%and1.39%-1.69%in diet ofgrowing male minks, while those were1.59%-1.75%and1.24%-1.61%in female minks. The digestionefficiency in basal diet supplemented with amino acid was comparative to that of34%protein group.
     4The concentrations of serum urea nitrogen in growing male minks supplemented with0.3%Lysand0.6%Met were significantly lower (P<0.01) than that of basal diet group. The growing femaleminks supplemented with0.3%Lys and0.6%Met showed good protein and amino acid metabolism,and high serum TAA.
     5The pepsin activity was improved by0.3%-0.6%Met.
     The absorption area of jejunum was highest in minks supplemented with0.3%Met or0.3%-0.6%Lys and0.3%Met. Addition of0.3%Lys and0.3%Met could enhance catalytic activity of duodenumtrypsase of minks. Those diets supplemented with0.6%Met or high level proteins could improve theactivities of amylopsin and pancreatic lipase.
     In summary, the requirements and metabolism of protein and amino acids vary in minks ofdifferent growing periods. Diets supplemented with moderate proteins and amino acids are capable toimprove production performance of minks. It is desirable to use properly formulated rations forreducing the nitrogen emission and cost in mink feeding.
引文
1.常文环.黄霉素对肉仔鸡促生长作用机理的研究[D].中国农业大学硕士学位论文,1996.
    2.陈代文,杨凤,陈可容,等.仔猪补饲不同类型的饲粮蛋白质对仔猪小肠粘膜形态结构的影响[J].动物营养学报,1996,8(2):18-24.
    3.陈文清,许振英.饲粮不同蛋白质、能量水平对大白鼠生长发育及体成分的影响.中国动物营养学报,1992,4(2):50-56.
    4.邓素华,黄路生,高军,等.黑素皮质激素受体1(MC1R)基因与猪毛色[J].遗传,2001,23:89-92.
    5.杜敏清,吴德,方正峰,等.不同饲粮氨基酸水平对泌乳母猪生产性能血液指标及乳汁中氨基酸浓度的影响[J].动物营养学报,2010,22(4):863-869.
    6.段志富,陈代文.饲粮蛋白质水平对6.6~10千克仔猪整体蛋白质周转代谢的影响[J].动物营养学报,2006,18(4):223-227.
    7.高秀华,杨福合.饲料蛋白质水平对育成期雄性水貂的影响[J].科技简讯,1989:53-54.
    8.管武太.理想氨基酸模式提高猪生产性能的机理[D].北京:中国农业大学.1997
    9.郭多,巴彩凤,苏玉虹,等.犬MC1R基因R306ter与毛色性状相关性研究[J].中国实验动物学报,2004,12(2):100-102.
    10.侯水生,黄苇,赵玲,等.日龄蛋白质来源对早期断奶仔猪胃内消化酶活性的影响[J].动物营养学报,2004,16(4):47-50.
    11.靳世厚,于秀芳,王振海,等.玉米秸消化特点的研究[J].饲料研究,1993(10),7-8.
    12.瞿明仁,卢德勋.不同蛋氨酸水平对泰和乌骨鸡血清尿素氮含量的影响研究[J].中国畜牧杂志,2005,41:43-44.
    13.顾华孝,陈恩泽,沈新春,等.水貂配合饲料能量密度指标的研究[J].饲料工业.1991(05),11-15.
    14.李辉,刁其玉,张乃锋,等.同蛋白质来源对早期断奶犊牛消化及血清生化指标的影响(一)[J].动物营养学报,2009,21(1):47-52.
    15.李辉,刁其玉,张乃峰,等.不同蛋白水平对犊牛消化代谢及血清生化指标的影响[J].中国农业科学,2008,41(4):1219-1226.
    16.李秀宝,张恒博,黄郁萱,等.营养水平对保育期美系长白猪血清生化指标的影响[J].畜牧与兽医.2010(07),21-25.
    17.李铁新.育成期水貂干粉料消化特性及合理饲喂方式的研究[硕士学位论文].长春:吉林农业大学,2005.
    18.林映才,蒋宗勇,余德谦,等.10~20kg仔猪粗蛋白质需求参数研究[C].中国畜牧兽医学会养猪学分会第三次会员代表大会学术讨论会2001(03):37-39
    19.刘佰阳,李光玉,张海华.不同水平脂肪对冬毛期蓝狐生产性能及消化代谢的影响.经济动物学报,2008,12(3):131-137
    20.刘超.可利用氨基酸饲料新技术[M].北京:中国农业出版社,2004.
    21.刘凤华.貉生长期低蛋白饲粮及氨基酸需要量研究[D].江苏:江苏科技大学.2010
    22.刘宏伟,王康宁.饲粮碳水化合物/蛋白质水平对240日龄不同品种猪肌内脂肪含量和胃肠道重量、长度及消化酶活性的影响[J].动物营养学报,2009,21(4):447-453.
    23.刘庆仁.水貂饲料添加剂的应用[J].经济动物学报.1989(03),16-20.
    24.刘涛,彭健,周诗其,等.外源性谷氨酰胺和谷氨酸对早期断奶仔猪肠粘膜形态、结构和小肠吸收功能及骨骼肌中DNA、RNA浓度的影响[J].中国兽医学报,2003,23(1):62-65.
    25.刘伟.水貂胰蛋白酶消化模型的建立及外源酶对水貂消化和生产性能的影响[D].北京:中国农业科学院,2006.
    26.吕明斌,孙作为,燕磊,等.肉仔鸡饲粮中蛋氨酸和半胱氨酸与赖氨酸适宜比例的研究[J].动物营养学报,2011,23(12):2109-2117.
    27.罗洪明,陈代文.不同蛋白水平对早期断奶仔猪生产性能、血液生化指标的影响[J].饲料研究,2005,(08):3-8.
    28.年芳,杨子江,郭江鹏,等.采食高营养水平饲粮早期断奶羔羊禁饲状态下消化pH及消化酶活性的研究.甘肃农业大学学报,2007,42(5):28-33.
    29.秦玉昌,张建东,潘宝海,等.饲料级L-赖氨酸硫酸盐在断奶仔猪饲粮中的应用效果研究[J].中国饲料,2004(17):19-20.
    30.苏振渝,林英庭,杜相红,等.不同营养水平颗粒饲料对育成期幼貂生长发育的影响[J].经济动物学报,1989(03):25-29.
    31.苏振渝,林英庭,张廷荣,等.植物蛋白代替部分鱼粉对水貂生长发育的影响[J].莱阳农学院学报;1994,11(2):136-139
    32.汪尧春,王庆民,宁中华.矮小型褐壳蛋鸡蛋白质和含硫氨基酸需要量的研究,Ⅱ代谢试验和血浆游离氨基酸的测定[J]中国畜牧杂志,1997,33(1):10-12.
    33.王继凤.丁酸钠对断奶仔猪肠黏膜结构及黏膜免疫相关[D].中国农业大学硕士论文:2005.
    34.王冉,周岩民.动物蛋氨酸营养研究进展[J].粮食与饲料工业.1999,(4):27-30.
    35.徐雪松,吴金节,李健,等.半胱胺对仔猪生长性能及小肠内容物消化酶活性的影响[J].中国兽医学报,2008,28(9):8801-8804.
    36.徐永平,王林会,沙磊等.水貂对蛋白质及氨基酸需求量的研究进展[J].饲料博览,2007,(11):13-15.
    37.杨春花,邹兴淮,张贵权.精料的蛋白质水平及能量浓度对成体大熊猫饲粮消化率的影响[J].林业科学,2005,41(6):119-125
    38.杨前勇,叶俊华,任军,等.黑素皮质激素受体1(MC1R)基因系统发育树与犬的毛色[J].遗传,2006,28(3):357-361.
    39.余红心,贾俊静,李琦华,等.不同蛋白质水平饲粮对云南武定鸡生长性能及血液生化指标的影响[J].中国饲料,2009,5:24-26.
    40.岳双明,周安国,王之盛,等.饲粮锌与蛋白质互作对断奶仔猪生产性能以及部分血液生化指标的影响[J].动物营养学报,2009,21(3):279-287.
    41.张海华.饲粮蛋白质和蛋氨酸水平对水貂生产性能及毛皮发育的影响[D].北京:中国农业科学院.2011
    42.张维.早期断奶仔猪蛋白质需要量的研究[D].西安:西北农林科技大学.2007.
    43.张立彬,呙于明.液体蛋氨酸羟基类似物对肉仔鸡生产性能的影响[J].畜牧兽医学报,2008,39(9):1204-1211.
    44.张敏,邹晓庭,孙雅丽.外源性谷氨酰胺对艾维茵肉仔鸡生长性能和小肠发育的影响[J].中国畜牧杂志,2009,45(9):32-37
    45.张永翠.蛋氨酸对肉兔生长发育、免疫性能、血液生化指标及IGF-1mRNA表达量的影响[D].山东:山东农业大学,2008a
    46.赵峰,严安生,张桂蓉,等.不同蛋白含量饲料对南方鲇胃蛋白酶和淀粉酶活性的影响[J].水生生物学报,2003,27(5):451-456.
    47.赵国先,朱慧中,张正珊,等.低蛋白饲粮添加氨基酸对生长肉兔生产性能的影响[J].河北农业大学学报,1997(02):64-67
    48.周桂莲,林映才,蒋守群,等.饲粮代谢能水平对22~24日龄黄羽肉鸡生长性能、胴体品质以及部分血液生化指标影响的研究[J].饲料工业,2004,25(3):35-38.
    49. Adamson I, Fisher H. Amino acid requirement of the growing rabbit: An estimate of quantitativeneeds [J]. J.Nutr,1973,103:1306-1310.
    50. Adkins, B., Bu, Y., Guevara, P. The generation of memory in neonates versus adults:Prolongedprimary th2effector function and impaired development of th1memory effctor function inmurine neonates. J Immunol.2001,166(2):918-925.
    51. Ahlstrom Mh. Fat as an energy source in fur animal diets. Effects of dietary fat:carbohydrateratio and fat source on physiological parameters and production performance[D]. Ph.D. Thesis.Department ofAnimal Science, Agricultural University of Norway, A°s, Norway,21pp,1994.
    52. Ahmed BM, Abou-Ashour AM. Protein quality and amino acid requirement of Baladi rabbits [J].World Review ofAnimal Production,1984,55:58-60.
    53. Allison J B1Biological evaluation of proteins[J].Adv Prot Chem,1949,5:1941
    54. Allison J.B. BiologiealevaluationofProteins[J]. Adv Prot Chem,1949,5:19
    55. an mTOR-dependent process. American Journal ofPhysiolog y2Endocrinolog y and Metabol ism,2000,279(5): E1080-E10871
    56. AOAC,1991. Official Methods ofAnalysis. Association of OfficialAnalysis Chemists, DC,U.S.A..
    57. AOAC,1995. Official method of analysis, Animal Feeds,16th ed. Associationof OfficialAnalytical Chemists, Virginia, U.S.A..
    58. Baker DH. Advances in protein–amino acid nutrition of poultry[J]. AminoAcids,2009,37:29–41
    59. Berg H. The knowledge of fur animal feeding for fur breeders. Association,1986,99pp.(InFinnish: Rehutietoutta turkisel inkasvattajille. Suomen Tuikisel inten Kasvattajain Liitto ry.99s.).
    60. Block, R. J., D.Bolling. Nutritional op-portunities with amino acids. J. Am. Diet. Assn.1944.20:69.
    61. Blome, R. M., Drackley, J. K., McKeith, F. K., Hutjens, M. F., McCoy, G. C. Growth, nutrientutilization, and body composition of dairy calves fed milk replacer containing different amountsof protein. J. Anim. Sci,2003,81:1641-1655.
    62. B rsting C F, T N Clausen. Requirements of essential amino acids for mink in the growing-furring period[A].In:Birthe M Damgarrd∥Proceedings of the VI International ScientificCongress in Fur Animal Production [C]1Warsaw, Poland: International Fur Animal Science,Nutrition, Pathology and Disease,1996:15-24.
    63. B rsting C F. Influence of nutrition on fur quality[J]. Scientifur,1999,23(2):106.
    64. Bunchasak C., Satoso U., Tanaka K., Ohtani S., Cristino M. The effects of supplementingmethionine plus cystine to a low-protein diet on the growth performance and fat accumulation ofgrowing broiler chicks [J]. Asian-Aust.J.Anim Sci,1997,2:185.
    65. Carsten Hejlesen, Tove N Clausen1Phase feeding of mink kits in the growth period[M].Technical Year Report,1998:732-811
    66. Chikhou F H,Moloney A P, Allen P, et al. Long-term effects of cimaterol in friesian steers: I.Growth, feed efficiency, and selected traits[J]. J Anim Sci,1993,71:906-913.
    67. Coma J, Carion D, Zimmerman D R.. Use of plasma urea nitrogen as a rapid response critcrion todetermine the lysine requirements of pigs[J]. Journal ofAnimal Science,1996,73:472-481
    68. Corring T., Chayvialle J.A., Gueugneau A.M. Diet composition and the plasma levels of somepeptides regulating pancreatic secretion in the pigs[J]. Reprod Nutrition Development,1987,27:967-977.
    69. Corring T., Saucier R. Pancreatic secretion by fistulated swine, adaptation to protein content ofthe diet[J]. Annual BiologyAnimal Biochemimeca et Biopysica,1972,12(2):233-241.
    70. Cumming J H, MAECHTARLNAE G T. Role of intestinal bacteria in nutrient metanolism [J].Nutrition,1997,16(1):3
    71. Curthoys N P, Watford M. Regulation of glutaminase activity and glutamine metabolism.AnnuRev Nutr,1995,15:133–159.
    72. Dahlman, T., Valaja, J., Niemel, P. and Jalava, T. Influence of protein level and supplementaryL-methionine and lysine on growth performance and fur quality of blue fox (Alopex lagopus)[J].Acta Agric. Scand,2002,52:174-182.
    73. Damgaard B. Dietary protein supply to mink (Mustela vison)-Effects on physiological parameters,growth performance and health.[D].[Copenhagen]: The Royal Veterinary and AgriculturalUniversity,1997.
    74. Damgaard B. Effect of dietary protein levels on growth performance, mortality rate and clinicalblood parameters in mink (Mustela vison)[J]. Acta Agric. Scand., Sect. A., Animal Sci,1998,48:38-48.
    75. Damgaard, B. M., Clausen, T. N. and B rsting, C. F. Effects of dietary supplement of essentialamino acids on mortality rate, liver traits and blood parameters in mink (Mustela vison) fedlowprotein diets [J]. Acta Agric. Scand,1998,48:175-183.
    76. Dahlman, T., Valaja, J., Jalava, T. and Skrede, A. Growth and fur characteristics of blue foxes(Alopex lagopus) fed diets with different protein levels and with or without DL-methioninesupplementation in the growing-furring period[J]. Can. J.Anim. Sci,2003,83:239-245.
    77. David M,ViviI H N, Allan S.Balancing of Protein and Lipid Intake by AmammalianCarnivore.Animal Behaviour,2009,77:349-355.
    78. Elnif J, N E Hansen, KMortensen, et al. Production of digestive enzymes in mink kits[A].In:Birthe M Darngaard∥Proceedings of the IV International Congress in Fur AnimalProduction, Biology, Pathology and Genetics of Fur Bearing Animals [C]. Denmauk: InternatinalFur Animal ScientificAssociation,1988:320-326.
    79. Elnif J., Sangild P. T. The role of glucocorticoids in the growth of the digestive tract in mink(Mustela vison), Comparative Biochemistry and Physiology Part A: Physiology,1996,115,37-42.
    80. European Commission. The Welfare ofAnimals Kept for Fur Production. Report of the ScientificCommittee onAnimal Health and Animal Welfare. European Commission, Health&consumerprotection directorate-general. Directorate C-Scientific opinions. C2-Management of scientificco-operation and networks. Adopted on2001December12–13.
    81. Fancher, B. I. and L. S. Jensen. Influence on performance of three to six-week-old broilers ofvarying dietary protein contents with supplementation of essential amino acid requirements [J].Foult. Sci,1989a,68:113-123.
    82. Flores C.A., Brannon P.M., Bustamante S.A. Effect of diet on intestinal and pancreatic enzymeactivities in the pig[J]. Pediatric Gastroenterology Nutrition,1988,7:914.
    83. Glem-Hansen N. The protein requirement of mink during the growth period. I Effect of proteinintake on nitrogen balance [Z]. Acta Agric Scand,1980a,30:33623441
    84. Glem-Hansen N. The requirement for sulphur containing amino acids of mink during the growthperiod [J].Acta Agric Scand,1980b,30:34923561
    85. Glem-Hansen, N., Christensen, K.D., J rgensen, G.,1977. Content of different carbohydratefraction related to the digestibility of carbohydrates in diets for mink. Scientifur, l(4):28-33.
    86. Graham, H., Hesselman, K., Jonsson, E., Aman, P.,1986. Influence ofβ-glucanasesupplementation on digestion of a barley-based diet in the pig gastrointestinal tract. Nutr. Rep.Int.,34(6):1089.
    87. Hampson D J, KIDDER D E.Influence of creep fleeding and weaning on brush border enzumeactivities in the piglet small intestine[J]. Research in veterinary science,1986,40:24-31
    88. Hansen B K.The lactating mink (Mustela6ison). Genetic and metabolic aspects[D]. Ph.D. Thesis.Copenhagen. Department of Animal Science and Animal Health, The Royal Veterinary andAgricultural University,1997.
    89. Hibbard B., Peters J. P., Shen R.Y., Chester S.T. Effect of recombinant porcine somatotropin anddietary protein on pancreatic digestive enzymes in the pig[J]. Journal of Animal Science,1992,70:2188-2194
    90. Jahoor.F and S.BhatitPorlu et al. Chronic Protein deficieney differentially, affects the kinetics ofPlasma proteins in young pigs[J].J.Nutr,1996,126:1489-1495.
    91. James B. Allison, Biological Evaluation of Proteins.1949(5):155–200.
    92. Juokslathi T, Lindberg P,Tyopponen O. Organ distribution of some clinically important enzymesin mink[J].Acta Vet. Scand,1980,21:347-353.
    93. Jrgensen G.B., Eggum O. Mink skindets opbygning[J]. Dansk Pelsdyravl,1971,34:261-267.
    94. Kari Ljokjel, Anders Strede1Effect of Feed Extrusion Temperatures on Digestibility of Protein,Amino Acids and Starch in Mink[A]. Proceedings of the VIIth International Scientific Congressin Fur Animal Production[C]. Scientifur,2000,24(4):3261
    95. Kerminen-Hakkio M, Dahlman T, Niemela P. Effect of dietary protein level and quality ongrowth rate and fur parameters in mink[J].Scientifur,2000,24(4):7-12.
    96. Kerminen-Hakkio M,Dahlman T,Niemel!P,et al.Effect of dietary protein level and quality ongrowth rate and fur parameters in mink[J].Scientifur,2000,24(4):7-12.
    97. Kerr B J, Mckeith F K, Easter R A. Effect on performance and carcass characteristics of nurseryto finisher pigs fed reduced crude protein amino acid-supplemented diet[J]. Journal of AnimalScience,1995,73:433-440.
    98. Kimball S R, J efferson L S, Nguyen H V, Suryawan A, Bush J A, Davis T A. Feedingstimulates protein synthesis in muscle and liver of neonatal pigs through
    99. Kimball S R, Jefferson L S, Nguyen H V, SuryawanA, Bush J A, Davis T A. Feeding stimulatesprotein synthesis in muscle and liver of neonatal pigs through an mTOR-dependentprocess.American Journal of Physiology-Endocrinology and Metabolism,2000,279(5):E1080-E1087.
    100. Kobayashi H, Borsheim E, Anthony T G, Traber D L, Badalamenti J, Kimball S R, J effersonLS, Wolfe R R. Reduced amino acid availability inhibits muscle
    101. Kobayashi H, Borsheim E, Anthony T G, Traber D L, Badalamenti J, Kimball S R, Jefferson L S,Wolfe R R. Reduced amino acid availability inhibits muscle protein synthesis and decreasesactivity of initiation factor eIF2B.American Journal of Physiology-En-docrinology andMetabolis,2003,284(3): E488-E498.
    102. Komuves J P. Lenten cell untrastructure, absorptive properties and enzyme expression of a noveltype of cell in the newborn and suckling pig intestinal epithelium[J].Anatomical Reocrd,1996,244(l):95~104
    103. Kucera, E.,1983. Mink and otter as indicators of mercury in Manitoba waters. Can J Zool61,2250-2256.
    104. Layton H. Development of digestive capabilities and improvement of diet utilization by minkpre-and post-weaning with emphasis on gastric lipase [M]. Halifax, Nova Scotia: Nova ScotiaAgricultural College, Dalhousie University,1998:148
    105. Malmlof K.Amino acid in farm animal nutrition metabolism,partition and consequence ofimbalance[J]Swidish Journal ofAgriculture Research,1988,18(4):191-193.
    106. Mata G. et al. Responses in wool growth, liveweight, glutathione and amino acids, in Merinowethers fed increasing amounts of methioine protected from degradation in rumen [J]. AustralianJ.Agri. Res.,1995,46:6,1189-1204.
    107. Mayntz, D., Nielsen, V.H., Sorensen, A., et al.,2009. Balancing of protein and lipid intake by amammalian carnivore, the mink, Mustela vision. Animal Behaviour,77:349-355.
    108. McGregor B.W. Effect of different nutritional regimes on the productivity of Australian cashmeregoats and partitioning of nutrients between cashmere and hair growth [J]. Australian Journal ofExperimental Agriculture,1988,29:179-181.
    109. Michael M, Ollmann M, Lynn L., et al. Interaction of Agouti protein with the melanocortin1receptor in vitro and in vivo[J].Gene and development.1998,12:316-330.
    110. Muhlia-Alamazan A.F., Garcia-Carreno J.A.Effects of dietary protein on the activity and mRNAlevel of trpsin in the midgut gland of the white shrimp Penaeus vannamei. Comp. Biochem.Physiol.2003,128B:565-577
    111. Mustonen A M, Mattip P, Teija P N, et al. Adaptations to fasting in the American mink(Mustelavison): nitrogen metabolism. J Comp Physiol B,2000,175:357–363.
    112. Mustonen A M, Puukka M, Saarela S,et al. Adaptations to fasting in a terrestrial mustelid, thesable (Martes zibellina)[J]. Comparative Biochemistry and Physiology, Part A,2006,144:444–450.
    113. Mustonen A M, Pyykonen T, Paakkonen T, et al. Adaptations to fasting in the American mink(Mustela vison):carbohydrate and lipid metabolism[J]. Comparative Biochemistry andPhysiology, Part A140(2005)195–202.
    114. Mustonen A M, Pyykonen T, Paakonen T, et al. Adaptations to fasting in the American mink(Mustela vison): carbohydrate and lipid metabolism[J]. Comparative Biochemistry andPhysiology: Part A,2005,140:195-202.
    115. Newell C W. Nutrient Floe and Manure Management in the Mink Industry[D]. Ph.D.Thesis,Halifax, N S: Scotia Agricultural College, Truro and Dalhousie University,1999.
    116. NRC,1982. Nutrient Requirements of Mink and Foxes. National Academy Press, Washington,USA.
    117.0stergard K, Mejbom H. Effects of heat treatment on the mink digestibility of starch from wheatand barley[M]. Short Commun,1989, No.734, National Institute ofAnimal Science, Denmark,4PP.
    118. Ohta Y., Ishibashi T.Dietary levels and ratio of methionine and cystine for maximum performanceof broilers[J]. Japanese Poultry Science,1994,31:369-380.
    119. Overland M,Romarheim O H,Hovin M.Apparent total tract digestibility of unprocessed andextruded diets containing basic and autolyzed bacterial protein meal grown on natrual gas inmink and rainbow trout[J].Animal Feed Science and Technology,2006,129:237-251.
    120. Pannemans D L, Halliday D, Westerterp K R, Kester A D. Effect of variable protein intake onPannemans D L, Halliday D, Westerterp K R, Kester A D. Effect of variable protein intake onwhole-body protein turnover in young men and women.American Journal of Clinical Nutrition,Pfeiffer A, Henkel H, Verstegen M A. The influence of protein intake on water balance, flow rateand apparent digestibility of nutrition at the distal ileum in growing pigs[J]. Livestock ProductScience,1995,44:179-187.
    121. Pannemans D L, Halliday D. Protein synthesis and decreases activity of initiation factor eIF2B.American Journal of Physiology-En-docrinology and Metabol ism,2003,284(3): E488-E4981
    122. Raclot T.Selective Mobilization of Fatty Acids from Adipose Tissue Triacylglycerols.Prog LipidRes,2003,42:257-288.
    123. Rasmussen P V, B rsting C F. Effects of variation in dietary protein levels on hair growth andpelt quality in mink (Mustela vison)[J].Can J AnimSci,2000,80:633-642.
    124. Rasmussen PV,Brting C F.Effects of variation in dietary protein levels on hair growth and peltquality in mink (Mustela vison)[J].Can J Anim Sci,2000,80:633-642.
    125. Rasmussen PV,Brting C F.Effects of variation in dietary protein levels on hair growth and peltquality in mink (Mustela vison)[J].Can J Anim Sci,2000,80:633-642.
    126. Reed P.J., Burrin D.G., Stoll B, et al. Enteral glutamine is the preferential precursor for mucosalglutathione synthesis in the piglet[J].AmJ Physiol,1997,273:E408-E415.
    127. Sanger, R., SELWYN, J. G." A Probable Deletion in a Human Rh Chromosome," Nature, Lond.,
    1950.166-520.
    128. Sangild P T, J Elnif. Intestinal hydrolytic activity in young mink(Mustela vison) develops slowlypostnatally and exhibits late sensitivity to glucocorticoids[J]. J Nutr,1996,126:2061-2068.
    129. Sari, H., Jaakko, M., Sanna, H.,et al.,2008. Effects of family housing on some behavioural andphysiological parameters of juvenile farmed mink (Mustela vison). AppliedAnimal BehaviourScience109:384–395.
    130. Sari, H., Jaakko, M., Sanna, H.,et al.,2008. Effects of family housing on some behavioural andphysiological parameters of juvenile farmed mink (Mustela vison). AppliedAnimal BehaviourScience109:384–395
    131. Shiriley A.V.,Carpenter K. J. Mechanisms of heat damage in proteins. The digestibility ofindividual amino acids in heated and propionylated proteins[J].Br J Nutr,1975,34(2):339-49.
    132. Sidransky, H., Verney, E., Sarma, D.S. Effect of tryptophan on hepatic polyribosomaldisaggregation due to ethionine. Proc Soc Exp Biol Med.1972,140(2):633-637.
    133. Skrede A. Utilization of fish and animal byproducts in mink nutrition. I. Effect of source andlevel of protein on nitrogen balance, postweaning growth and characteristics of winter furquality[J]. Acta Agric Scand,1978,28:105-129.
    134. Song K, Shan A S, Li J P. Effect of different combinations of enzyme preparation supplementedto wheat based diets on growth and serum biochemical values of broiler chichens[J].ACTAZoonutrimenta,2004,4:25-29
    135. S ren, W., Anne-Helene, T.,1998. Daily milk intake and body water turnover in sucklingmink(Mustela vison) kits. Comparative Biochemistry and Physiology Part A119:931–939.
    136. S ren, W., Anne-Helene, T.,1998. Daily milk intake and body water turnover in sucklingmink(Mustela vison) kits. Comparative Biochemistry and Physiology Part A119:931–939
    137. Sorensen P G, Petersen I M, Sand O. Activities of carbohydrate and amino acid metabolizingenzymes from liver of mink(Mustela vison) and preliminary observations on steady state kineticsof the enzymes. Comp Biochem Physiol,1995,112B:59–64.
    138. Souba W.W., Klimberg V.S.,Plumley D.A.The role of glutamine in mainting a healthy gut andsupporting the metabolic response to injury and infection[J].J Sury Res,1990,48:383-392.
    139. Stevens, R.T., Ashwood, T.L., Sleeman J.M.,1997.Mercury in hair of muskrats (Ondatrazibethicus) and Mink(Mustela vison) from the U.S. department of energy oak ridgereservation.Bull.Environ.Contam.Toxicol58,720-725.
    140. Stryer L. Biochemistry [M]. Fourth edition. Stanford University.1997.
    141. Stubbe, M.,1993. Mustela vison Schreber,1777-Mink, Amerikanischer Nerz.In: Niethammer, J.,Krapp, F.(Eds.), Handbuch der Sa:ugetiere Europas,Band5: Raubsa:uger-Carnivora (Fissipedia),Teil II: Mustelidae2,Viverridae, Herpestidae, Felidae. AULA-Verlag,Wiesbaden, pp.654–698.
    142. Stubbe, M.,1993. Mustela vison Schreber,1777-Mink, Amerikanischer Nerz.In: Niethammer, J.,Krapp, F.(Eds.), Handbuch der Sa:ugetiere Europas,Band5: Raubsa:uger-Carnivora (Fissipedia),Teil II: Mustelidae2,Viverridae, Herpestidae, Felidae. AULA-Verlag,Wiesbaden, pp.654–698.
    143. Sun Y B, Zhao GY.The relationship between the volatile fatty acids supply and the nitrogenretention in growing sheep nourished by total intragastric infusions[J]. Small Ruminant Res,2009,81(1):8-12.
    144. Szymeczko R, Skrede A. Protein digestion in fistulated polar foxes. Original report[J].Scientifur,1991,15(3),227–232.
    145. Takahashi, Y., Miura, T., Takahashi, K.Vitamin A is involved in maintenance of epithelial cell onthe bronchioles and cells in the alveoli of rats. J Nutr.1993,123(4):634-641.
    146. Tauson, A-H.,1988.Varied energy concentration in mink diets. II.Effects on kit growthperformance, female weight changes and water turnover in the lactation period. Acta Agric Scand,38:231–42.
    147. Tauson, A-H.,1994. Postnatal development in mink kits. Acta Agric Scand SectAAnim Sci44:177–84.
    148. Thalmann Goetsch A, Engelmann K, Bednarz J. Comparative study on the effects of differentgrowth factors on migration of bovine corneal endothelial cells during wound healing [J]. ActaOphthalmal Scand,1997,75:490-495.
    149. The Effect of Feeding Excess Glycine, L-Arginine, and DL-Methionine to Rats on a Casein Diet.[J]. EXCESS DIETARY METHIONINE AND GLYCINE. Jay S. Roth and James B. Allison.1949(2)327-330.
    150. Tsiagbe, V.K., Cook, M.E., Harper, A.E., Sunde, M.L. Enhanced immune responses in broilerchicks fed methionine-supplemented diet. Poult Sci.1987,66(7):1147-1154.
    151. Tsutsumi O, Kurachi H, Oka T. A physiological role of epidermal growth factor in malereproductive function [J]. Science,1986,233(4767) L:975-977.
    152. Tuitoek K, Young L G, Delange C F M, et al. The effect of reducing excess dietary amino acidson growing-finishing pig performance: An evaluation of the ideal protein concept [J]. Journal ofAnimal Science,1997,75:1575-1583.
    153. Ty pp nen, J., Berg, H. and Valtonen, M. Effects of dietary supplement of methionine and lysineon parameters and fur quality in blue fox during low-protein feeding [J]. Agric. Sci. Finl,1987,59:355-360.
    154. Varel V H, ROBINSON I M, POND W G. Effect of dietary copper sulfatd, aureosp25, orClinoptilolite on ureolytic bacteria found in the Pig large intestine[J]. Applied and EnvironmentMicrobiology,1987,53:2009一2012.
    155. Varnish S A, KJ Carpenter1Mechanisms of heat damage in proteins as sources of lysine,methionine and tryptophan[J]. Br J Nutr,1975(34):3251
    156. Wamberg S, Clausen T N, Olesen C R, et al. Nursing sickness in lactating mink (Mustela6ison)II. Pathophysiology and changes in body fluid composition[J]. Can J Vet Res1992,56:95–101.
    157. Wang X, Qiao S Y, Liu M. Effects of graded levels of true ileal digestible threonine onperformance, serum parameters and immune function of10to25kg pigs[J]. Animal FeedScience and Technology,2006,129:264-278.
    158. Wang X, Qiao S Y, Liu M. Effects of graded levels of true ileal digestible threonine onperformance,serum parameters and immune function of10-25kg pigs[J].Animal feed science andtechnology,2006,129:264-278.
    159. WATSON J. D., CRICK F. H. C.A.Structure for Deoxyribose Nucleic Acid[J]. Nature.1953(171):737.
    160. Whitman, J.S.,1981. Ecology of the mink (Mustela vison) in west-central Idaho.MS Thesis.University of Idaho, Moscow, Idaho.
    161. Whole-body protein turnover in young men and women. A merican J ournal of Clinical Nutrition,1995,61(1):69–741
    162. Wilmut I,Schnieke AE,McWhir J, Kind AJ, Campbell KH.. Viable offspring derived from fetaland adult mammalian cells. Nature,1997(385):810-813.
    163. Wu G., Meier S.A., Knabe D.A.Dietary glutamine supplementation prevents jejunal atrophy inweaned pig[J]. J Nutr,1996,126:2578-2584
    164. Zhang T.T., Zhang Z.Q, Gao X.H. Effect of dietary protein levels on digestibility of nutrients andgrowth rate in young female mink(Mustela vison)[J]. Journal ofAnimal Physiology and AnimalNutrition.DOI:10.1111/j.1439-0396.2011.01267.x(online)
    165. Zharova G K, Naumova E I. Structural and functional adaptations of the sable digestive tract toplant food[J]. Doklady Biological Sciences,382,2002:31–33.
    166. Zinunerman R A., Scott H M.Interaetion of plasma amino acid level and weight gain in thechicks as influenced by suboptimal dietary concentration of single amino acid.Journal ofNutrition[J].1965,87:13-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700