用户名: 密码: 验证码:
无缝钢轨温度应力检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高速、重载铁路的发展,无缝线路由于消除了钢轨接缝,极大的改善了轨道结构,减小了振动,而得到广泛应用。但正由于轨缝的消失,钢轨无法在温度改变时自由伸缩,因而在钢轨内部产生很大的温度应力,通常10℃的温度改变会使固定的钢轨产生24.3MPa的应力积累,温度很高时则容易出现胀轨、跑道,温度很低时则容易出现断轨,严重影响行车安全。因此,研究一种快捷、准确的钢轨温度应力检测方法以预防胀轨、断轨的发生,对确保铁路安全运营意义重大。
     本文重点研究了基于超声波的钢轨温度应力检测方法。文中设计了基于声弹性原理,由脉冲发生仪、超声波换能器、超声信号采集传输电路、上位机软件组成的钢轨纵向温度应力检测系统。
     论文研究了超声波在钢轨中的传播特性,讨论了超声波法测量钢轨纵向温度应力的理论基础——声弹性原理,设计了基于FPGA的超声波信号采集传输电路,实现了两路超声信号的采集和基于USB的数据传输,其中通过编写相关VHDL程序实现了数据的接收、缓冲和上传。在上位机软件设计中完成了数据的解包存储、巴特沃斯低通滤波器、基于信号极值和互相关两种延时估计算法,实现了两路信号延时的精确计算。最后建立了基于超声波的温度应力检测系统和钢轨温度应力检测试验平台,完成了系统的标定和检测试验,并对试验结果做了全面分析。
     测量系统实现了基于超声波的钢轨纵向温度应力检测,测量误差在5MPa之内,论文试验结果验证了钢轨所受应力与超声波在其内部传播速度近似线性的对应关系,说明了文中测量方法的正确性,为课题的进一步研究奠定了良好基础。
With the development of high-speed, heavy haul railway, continuous welded rail (CWR), due to eliminate the rail joints, greatly improve the track structure and reduce vibration, is widely used. But because of the disappearance of rail joints, rail cannot expand when temperature changes. So the rail internally generates thermal stress. Usually change of10℃will make a fixed rail24.3MPa accumulation of stress. High temperature may lead to the expansion of rail, track buckling and low temperature may lead to break rail, seriously affecting road safety. Therefore, a fast and accurate rail thermal stress detection method to prevent the expansion rail, break rail and accident occurring, is of great significance to ensure the safety of railway.
     This paper is mainly focused on the rail thermal stress detection method based on ultrasonic. Based on acoustoelasticity, rail longitudinal thermal stress detection system is proposed, which is composed of pulse generator, ultrasonic sensor, ultrasonic signal acquisition and transmission circuit and software.
     The paper introduces the propagation characteristics of ultrasound in the rail, the theoretical basis of the rail thermal stress detection method based on ultrasonic: acoustoelasticity, and designs the FPGA-based ultrasonic signal acquisition and transmission system. The system can receive two-way ultrasonic signal acquisition using USB-based data transmission, including data reception. The system can not only unpack and store data, but also use two delay estimation algorithms:Butterworth low-pass filter and signal extreme and the cross-correlation which can get accurate calculation of the two signals. Finally, the thermal stress detection system based on ultrasonic and rail thermal stress testing platform is proposed. After the calibration and testing test, the results are comprehensive analyzed.
     The measurement system is tested in our laboratory; it can detect the rail longitudinal thermal stress based on ultrasonic with5MPa measurement error. The results show that the approximate linear correspondence between the stress and the propagation velocity of ultrasound in the rail, the correctness of the measurement method, and lays a good foundation for further study of the subject.
引文
[1]卢耀荣.无缝线路研究与应用[M].北京:中国铁道出版社,2004.10
    [2]广钟岩,高慧安.铁路无缝线路(第四版)[M].北京:中国铁道出版社,2005.2
    [3]蒋金洲,卢耀荣.客运专线钢轨断缝允许值研究[J].中国铁道科学,2007,28(6):25-29.
    [4]王炎孝,刘振武.一个貌似简单的世界难题:钢轨纵向应力检测[J].铁道知识,1992(1):42-43.
    [5]刘兴汉.介绍用“标定轨长”理论测定锁定轨温的方法[J].铁道工程学报,2005,(6):14-26.
    [6]刘兴汉.钢轨温度和温度应力[J].西铁科技,2002(3):30-32,52.
    [7]张铭,蒋金洲.无缝线路钢轨纵向力及锁定轨温检测系统(NTS)的试用[J].铁道建筑,2010(8):110-114.
    [8]王骁,刘辉,祁欣,董炳义,邸锦玉.巴克豪森噪讯无缝线路应力检测仪的研制及应用[J].北京化工大学学报:自然科学版,2010,37(3):123-126.
    [9]田浩,于石生,赵小莹.利用巴克豪森效应测定钢轨纵向应力[J].材料科学与工艺,2004,12(2):196-198.
    [10]舒雄.极限折射纵波检测无缝钢轨温度应力的理论研究及应用[D].电子科技大学硕士学位论文,2006.
    [11]D.S.Hughes and J.L.Kelly. Second-order elastic deformation of solids [J]. Physical Review.1953, Vol.92.5.
    [12]贺玲凤,刘军编.21世纪固体力学丛书——声弹性技术[M].北京:科学出版社,2002.
    [13]M. Sgalla, D. Vangi. A Device for Measuring the Velocity of Ultrasonic Waves: An Application to Stress Analysis [J]. Experimental Mechanics,2004,44(1):85-90.
    [14]J. Szelazek. Monitoring of thermal stresses in continuously welded rails with ultrasonic technique [J]. NDTnet,1998,3(6).
    [15]R. S. Dwyer-Joyce, C. Yao, J. Zhang, R. Lewis, B. W. Drinkwater. Feasibility Study for Real Time Measurement of Wheel-Rail Contact Using an Ultrasonic Array [J]. Journal of Tribology, 2009,131:1-9.
    [16]Nondestructive Measurement System for Welding Residual Stress by Ultrasonic Method. ICROS-SICE International Joint Conference 2009,2009.
    [17]A. Samokrutov, V. Shevaldykin, V. Bobrov, V. Kozlov. Development of acoustic methods and production of modern digital devices and technologies for ultrasonic non-destructive testing [J]. Ultragarsas,2006,4(61):12-21.
    [18]J L Rose, M J Avioli, W-J Song. Application and potential of guided wave railinspection [J]. Defect Detection In Rail,2002,44(6):353-358.
    [19]孟立凡,王恩怀,齐红丽.超声波检测无缝钢轨热应力研究[J].华北工学院学报,2005,26(1):50-52.
    [20]刘蕊,王寅观,陈振宇,李勇攀.利用临界折射纵波检测钢轨应力[J].声学技术,2004,23(4):246-249.
    [21]Zhangwei Ling, Hongliang Zhou, Hongjian Zhang. Nondestructive Pressure Measurement in Vessels Using Rayleigh Waves and LCR Waves [C]. IEEE Transactions on Instrumentation and Measurement. 2009,58(5):1578-1584.
    [22]王雪梅.无损检测技术及其在轨道交通中的应用[M].北京:西南交通大学出版社,2010.4
    [23]徐颖梅.超声横波声各向异性在材料应力测试中的应用研究[D].江苏科技大学硕士学位论文,2007.
    [24]Tao Li, Yanhong Chen, Jan Ma. Development of a miniaturized piezoelectric ultrasonic transducer [J]. Ultrasonics,2009,56(3).
    [25]Fujun Wang, Xingyu Zhao, Dawei Zhang. Model-based Dynamic Characteristics Investigation of Ultrasonic Transducers for MEMS Packaging [J]. International Ultrasonics Symposium Proceedings,2008.
    [26]LIU Zenghua, ZHAO Jichen, WU Bin, HE Cunfu. Temperature Dependence of Ultrasonic Longitudinal Guided Wave Propagation in Long Range Steel Strands [J]. Chinese journal of mechanical engineering,2011,24:1-8.
    [27]卢超,黎连修,涂占宽,邹定强.钢轨中超声次表面纵波传播特性的边界元分析及实验[J].铁道学报,2008,30(4):65-70.
    [28]Barta, A,阎锋.超声波应力检测在铁路工业中的应用[J].国外铁道车辆,1999,36(6):31-36.
    [29]彭小丹.利用超声波检测无缝钢轨温度应力方案研究[D].电子科技大学硕十学位论文,2005.
    [30]Jaidilson Jo da Silva, Miguel Goncalves Wanzeller, Paulo de Almeida Farias, Jose Sergio da Rocha Neto. Development of Circuits for Excitation and Reception in Ultrasonic Transducers for Generation of Guided Waves in Hollow Cylinders for Fouling Detection [C]. IEEE transactions on instrumentation and measurement. 2008,57(6):1149-1153.
    [31]ANALOG DEVICES Inc. AD9433 device handbook [Z]. ANALOG DEVICES Inc, Rev. A, 2009.
    [32]吴继华,王诚编Altera FPGA/CPLD设计(基础篇)[M].北京:人民邮电出版社,2005.7
    [33]赵艳华,曹丙霞,张睿.基于Quartus II的FPGA/CPLD设计与应用[M].北京:电子工业出版社,2009.9
    [34]ALTERA. Cyclone device handbook [Z]. ALTERA, Volume 1,2005.
    [35]Kenneth E. Browne, Chi-Chi Chen, John L. Volakis. A Novel Radiator for a 2.4 GHz Wireless Unit to Monitor Rail Stress and Strain [C]. IEEE Transactions on Antennas and Propagation. 2008,56(3):887-892.
    [36]CYPRESS. EZ-USB FX2 Technical reference manual [Z]. CYPRESS, Version 2.1,2001.
    [37]吴振宇,常玉宝,冯林.基于FPGA和USB2.0的高速数据采集系统[J].仪器仪表学报,2006,27(6):125-126.
    [38]林培杰.基于FPGA和USB的数据传输与处理系统[D].福州大学硕士学位论文,2006.
    [39]褚振勇,齐亮,田红心,高楷娟FPGA设计及应用(第二版)[M].西安:西安电子科技大学出版社,2006.12
    [40]杨晓慧,杨旭FPGA系统设计与实例[M].北京:人民邮电出版社,2010.1
    [41]王小波,李艾华,崔宏亮,黄华.基于FPGA的便携式超声波流量计设计[J].仪器仪表学报,2009,30(6):541-544.
    [42]潘松,黄继业.EDA技术与VHDL[M].第3版.北京:清华大学出版社,2009.9
    [43]龙娟,杨银堂,乐立鹏,马城城FIFO存储电路的设计与实现[J].微电子学与计算机,2006, 23(12):115-117.
    [44]宋燕星,袁峰,丁振良.应用同步FIFO的高速图像采集系统[J].仪器仪表学报,2006(z2):1360-1361.
    [45]胡广书.数字信号处理—理论、算法与实现[M].第2版.北京:清华大学出版社,2003.8
    [46]张小飞,王茁,周有鹏.超声检测中的噪声处理[J].无损检测,2002,24(5).
    [47]祁欣.无缝线路钢轨纵向应力在线检测研究[J].机械工程学报,1998,(2).
    [48]李丹丹,干珊珊.基于互相关理论的音频信号延时估计新方法[J].中国传媒大学学报自然科学版,2008,16(3):78-80.
    [49]吴晓庆,李艾华,李芳.基于互相关理论的时差法超声波流量检测系统[J].上海计量测试,2006,33(2):22-24.
    [50]王新沛,李远洋,刘常春,杨静,李斌.基于互相关时间延迟估计的心音源定位方法[J].计算机工程,2010,36(20):7-9.
    [51]张岩,康熊.光纤光栅传感器在铁路领域的研究与应用[J].铁道机车车辆,2008,28(4):4549,78.
    [52]胡金萍.超声波钢轨探伤仪的研制与开发[D].中北大学硕士学位论文,2007.
    [53]陈振宇.钢轨应力超声波检测的前期研究[D].同济大学声学研究所硕士学位论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700