用户名: 密码: 验证码:
梨自交不亲和反应中花粉(管)微丝结构变化及其与[Ca~(2+)]_i关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前有关蔷薇科植物梨自交不亲和性机理的研究主要集中在有关雌蕊自交不亲和S基因和其产物以及花粉F-box基因的研究领域,在自交不亲和性基因的克隆、表达特性、产物的分离纯化及功能的研究等方面均取得了重大的进展,但是离完全理解自交不亲和性的机理还有很长的距离。虽然人们认为植物自交不亲和性反应是雌蕊与花粉相互识别、相互作用结果的综合表现,涉及植物的细胞间信号传递等过程,但迄今对梨自交不亲和性反应中雌蕊与花粉识别过程中的信号传导机制的研究目前还仅见于本实验室的相关报道。
     以砂梨品种‘丰水’(S_3S_5)和‘今村秋’(S_1S_6)为试材,在活体和离体条件下,研究了梨雌蕊S基因产物——S-RNase对花粉管超微结构和花粉及花粉管内微丝骨架结构的影响,同时研究了它们对花粉萌发、花粉管生长和花粉管内游离钙离子浓度变化的影响,探讨了花柱S-RNase与微丝骨架在调控花粉管生长中的信号转导机制,主要研究结果如下:
     1.研究了花柱S-RNase对梨花粉萌发、花粉管生长及花粉管超微结构变化的影响,结果表明:1)梨花柱S-RNase能特异性地抑制自花花粉萌发与花粉管的生长,而对异花花粉萌发和花粉管生长几乎没有影响。2)亲和及对照花粉管在生长过程中结构表现正常,花粉管顶端生长区域充满细胞质和细胞器,结构完整,花粉管壁上没有胼胝质层分布;而不亲和花粉管超微结构随着培养时间的延长而出现衰退现象。线粒体由正常结构转变为膨大,嵴减少或消失,到最后整体消失。内质网膨大并包围在液泡和其它细胞器周围,最后消失。花粉管内的细胞质也逐渐减少。这说明在梨自交不亲和性反应过程中,花柱S-RNase能够引起自体花粉管的衰退,从而抑制自体花粉管的生长。
     2.研究了微丝解聚剂细胞松弛素B(CB)和稳定剂鬼笔环肽(phalloidin)对梨离体培养和活体培养的花粉萌发率及花粉管生长的影响。结果表明:1)离体条件下,低浓度(10μg/ml)的phalloidin能促进花粉萌发和花粉管生长,但高浓度时具有抑制效应;微丝抑制剂CB抑制花粉的萌发和花粉管的生长,并且抑制效果随着浓度的增加而加强。2)phalloidin处理柱头后进行自花授粉后,可明显促进自花花粉萌发和花粉管的生长,而CB处理柱头后抑制异花花粉萌发和花粉管生长。结果表明微丝骨架参与了梨花粉萌发和花粉管生长的调控,并可能在梨自交不亲和性反应过程中起作用。
     3.微丝骨架在花粉管生长过程中起着至关重要的作用,因此需要建立合适的标记花粉管内微丝骨架的方法。研究利用化学固定荧光定位方法,结合激光共聚焦扫描显微镜,对梨花粉及花粉管内微丝的分布进行了观察,结果表明:1)用MBS预固定后再用多聚甲醛固定能够较好地保存花粉和花粉管内的微丝结构;2)用二甲基亚砜(DMSO)处理代替常规的固定后才显示的方法,获得了较为清晰的微丝骨架图像;3)选用FITC-ph进行标记能够避免花粉外壁自发荧光带来的干扰。
     4、用光学显微镜、荧光显微镜和激光共聚焦显微镜分别观察了离体条件下梨花柱S-RNase和CB对花粉管生长的影响以及自交不亲和性反应过程中花粉(管)内微丝骨架结构的变化。结果表明:1)自花花柱S-RNase和CB分别处理后50 min和30 min,梨花粉管生长速度开始下降,而对照和异花花柱S-RNase处理对花粉管的生长速度几乎没有影响。2)在基本培养基(对照)和含有异花花柱S-RNase培养基上生长的花粉在萌发之前其微丝骨架呈环状等形式排列,萌发后花粉内微丝成束状或成扇形向花粉萌发孔处延伸,并与花粉管内轴向排列的束状微丝纤维相连接;而自花花柱S-RNase处理的花粉(管)内的微丝骨架结构随培养时间的不同而呈现不同的形态:在处理0min时,萌发的花粉及生长的花粉管中微丝结构与对照花粉(管)内的微丝结构相似;但继续培养20 min后,花粉(管)内微丝骨架从纤维状逐渐转变为网络结构,并从花粉管的胫端移向花粉管的顶端,最终转变为点状结构分布于整个花粉管。虽然花粉内微丝最终也解聚为点状结构,但其变化要比花粉管内微丝结构慢得多。研究结果显示肌动蛋白细胞骨架参与了梨自交不亲和性反应的调控过程。
     5、利用光学显微镜和激光共聚焦显微镜分别观察了胞内钙离子浓度[Ca~(2+)],的变化对梨花粉萌发和花粉管生长、花粉和花粉管内微丝骨架结构与分布的影响。结果表明:1)花粉培养基中高浓度(10~(-1) mol/L)或低浓度的Ca~(2+)(<10~(-4) mol/L)均抑制了梨的花粉萌发和花粉管生长,只有当花粉培养基中的Ca~(2+)浓度达到10~(-3)mol/L时,花粉萌发率和花粉管长度均达到最大;低浓度钙离子载体A23187(2.5μmol/L)能促进花粉萌发和花粉管生长,而高浓度(>5μmol/L)抑制花粉萌发和生长;钙离子螯合剂EGTA和钙离子通道抑制剂verapamil均抑制了梨花粉的萌发和花粉管的生长,并且抑制效果随浓度的增加而增强。2)花粉或花粉管内高浓度和低浓度的钙离子均会引起其内部微丝骨架解聚;而自花花柱S-RNase处理后的花粉及花粉管内,钙离子浓度也呈现上升趋势,并且微丝骨架发生解聚。研究结果表明适量的钙离子浓度是花粉萌发和花粉管生长所必需的,而高钙离子对花粉萌发与花粉管生长具有抑制作用,并且通过调控其内微丝骨架的结构与分布来实现其抑制作用。在梨自交不亲和性反应过程中,自花花柱S-RNase也可能是通过花粉和花粉管内钙离子浓度的升高来降解其内微丝骨架,进而抑制花粉管生长的。
     6、结合激光共聚焦与膜片钳技术,观察了CB和phalloidin对花粉管胞内钙离子浓度及质膜钙通道的影响。结果表明:CB处理促进花粉管内胞质钙离子[Ca~(2+)]_i浓度增加,同时,CB能激活质膜上的钙离子通道;而phalloidin处理对花粉管内[Ca~(2+)]_i浓度及钙离子通道几乎没有影响。这些结果表明微丝骨架的解聚激活了花粉管质膜上的钙离子通道,从而使得胞外钙离子大量流入,使胞内钙离子升高,从而抑制花粉管生长。
Studies on the self-incompatibility (SI) have been mostly focused on the area of pistil S and pollen F-box gene, and their products. Many progresses on clone, expression, separation, purification and function of gene have been achieved. But there is still a long way for us to understand the mechanisms of SI throughout. Although it's believed that the interactivity of pistil and pollen results in the SI reaction, the mechanism of signal transduction during the pistil and pollen recognition is still less reported.
     Using Pyrus pyrifolia cultivars, 'Hosui' (S_3S_5) and 'Imamuraaki' (S_1S_6) as meterials, the effects of S-RNase, the product of pistil S gene in Pyrus pyrifolia, and dynamic of actin cytoskeleton on the pollen germination, tube growth, the dynamic of cytosolic free calcium concentration ([Ca2+]i), and stylar S-RNase on the ultrastructure of pollen tubes in vitro were studied. The signal transduction of stylar S-RNase and dynamic of actin cytoskeleton mediating the pollen tube growth were discussed. The main results are listed as follows:
     1. Optical microscopy and transmission electron microscopy were used to in vitro study the effects of the stylar S-RNase of different Pyrus pyrifolia varieties on the germinations, and pollen-tube growths and ultrastructures of autogamous (incompatible) and xenogamous (compatible) pollens. The results showed that the stylar S-RNase inhibited the pollen germination and pollen-tube growth of the incompatible pollens, but hardly exerted any influence on the germination and pollen-tube growth of the compatible pollens. The incompatible and compatible pollens had similar ultrastructures at their growth; after being cultured for 24 hours, the compatible pollen tubes were full of cytoplasm and organelles but the incompatible pollen tubes only contained a small amount of cytoplasm at the front tip, and thickened cell wall between which and cytoplasm there existed a layer of callose and a electronically transparent partition.
     2. The effects of actin cytoskeleton depolymerized reagent cytochalasin B and stabile reagent phalloidin on pollen germination and tube growth have been studied in vivo and in vitro. The results showed: 1) lower concentration of phalloidin could promote pollen germination and tube growth, but high concentration inhibited germination and growth in vitro; CB inhibited pollen germination and tube growth, and the higher was the concentration, the stronger was inhibitory effect. 2) Phalloidin also promoted self-pollen germination and tube growth after self-pollination in vitro; while CB inhibited pollen germination and tube after cross-pollination. Results showed that actin cytoskeleton was involved in Pyrus pyrifolia pollen germination and tube growth, and might play a role in Pyrus pyrifolia self-incompatibility response.
     3. The distribution of actin cytoskeleton in Pyrus pyrifolia pollen and tube was observed by the method of chemical fixation and phalloidin-fluorescence labeling, with either fluorescence or confocal microscopy. The results showed: 1) using MBS treatment before chemical fixation and DMSO instead of regular fixation, the image of actin cytoskeleton could be conserved intactly and distinctly. 2) FITC-ph labeling could avoid disturbance of spontaneous fluoresce of pollen ektexine.
     4. Configurations of actin cytoskeleton in Pyrus pyrifolia pollen and effects of stylar S-RNases and CB on the pollen tubes growth rate and the dynamics of actin cytoskeleton have been investigated with optical microscope, fluorescence microscope and confocal microscope. Results showed that: 1) the growth rates of pollen tubes which treated by self-stylar S-RNase and CB were decreased at 50 min and 30 min, respectively, after treatment; While non-self-stylar S-RNase has no effect on pollen tube growth, just as control. 2) Actin filaments in normal pollen grain exist as fusiform or circular structure. When pollen germinates, actin filaments assemble around one of germination pores, and then actin bundles orient axially throughout the shank of growing tube. There is devoid of actin filaments 5-15μm to the tube tip. While self-stylar S-RNase is added in basal medium, pollen germination and tube growth were inhibited. There were different configurations of actin cytoskeleton followed by the culturing time: within 20 rain, actin configurations in self-pollen and tube were similar as normal; but after 20 min of treatment, actin filaments in the pollen tube translated gradually into network from the shank to the tip; finally, there was punctate actin in the whole tube. Although actin filaments of self-pollen grain also disintegrated into punctate foci, the change was slower than that of tube. Furthermore, the alteration of actin cytoskeleton was prior to the arrest of pollen tube growth. These results suggested that Pyrus pyrifolia stylar S-RNase induced alterations of actin cytoskeleton in self-pollen grains and tubes.
     5. The effects of Ca2+ on Pyrus pyrifolia pollen germination, tube growth and the distribution of actin cytoskeleton in pollen and tube were studied with optical microscopy and confocal microscopy. The results showed that: 1) High concentration (10~(-1) mol/L) and very low concentration (<10~(-4) mol/L) of Ca~(2+) in the medium caused severe inhibition of pollen germination and tube growth, but Ca2+ of 10-3 mol/L was necessary for pollen germination and tube growth. However, Ca~(2+) specific chelating agent EGTA and Ca~(2+) channel blockers verapamil led to the inhibition of pollen germination and tube growth. In addition, high concentration of Ca~(2+) ionophore A23187 (>5μmol/L) impeded pollen germination and tube growth, but lower concentration (2.5μmol/L) promoted pollen germination and tube growth. 2) High or lower Ca~(2+) concentration induced disintegration of actin cytoskeleton in pollen and tube; Ca~(2+) concentration increased and actin cytoskeleton disintegrated after slef-pollination. These results indicated that appropriate Ca~(2+) concentration is necessary for pollen germination and tube growth. High Ca~(2+) concentration inhibited pollen germination and tube growth, and this process carded out though regulation of actin configuration and distribution. Self-stylar S-RNase might induce alterations of actin cytoskeleton by [Ca~(2+)]_i.
     6、The effects of CB and phalloidin on [Ca~(2+)]_i and Ca~(2+) channel has been studied with confocal microscopy and patch clamp. The results showed that CB could promoted [Ca~(2+)]_i to increase and activated Ca~(2+) channel in plasma membrane; while phalloidin had no effect on [Ca~(2+)]_i and activated Ca~(2+) channel. So, disruption of actin cytoskeleton might inhibit pollen germination and tube growth by activing Ca~(2+) channel in plasma membrane and increasing the concentration of [Ca~(2+)]_i.
引文
1.陈颖,赵俊霞,郝丽梅.花粉肌动蛋白研究进展.生物学杂志.2002,19 (3):5-8
    2.陈颖,王刚,赵俊霞.高等植物体内的肌动蛋白.生物学通报.2003,38 (1):13-15
    3.陈晓波,王冬梅,刘娟,王智炘.植物细胞微丝骨架对真菌侵染的反应.河北农业大学学报.2001,24(3):100-104
    4.从斌,许萍,杨茂成,张丕方.小麦根尖细胞分化过程中微丝骨架分布格局.复旦学报(自然科学版).1996,35 (6):661-664
    5.崔素娟,王洪梅,马力耕,等.花柱和花粉胞外钙调素对花粉萌发和花粉管伸长的影响.植物生理学报.1998,24(4):320-326
    6.丁明孝.细胞质基质.生物学通报.1994,29 (8):9-11
    7.龚明,杨中汉,曹宗巽.钙离子对花粉萌发的启动效应和对花粉管生长的调解作用.北京大学学报 (自然科学版).1995,31(2):238-249
    8.关军锋,马智宏,张晓敏,李敏霞,张新忠.Ca~(2+)与苹果花粉萌发和花粉管生长的关系.果树科学.1999,16(3):176-179
    9.黄绍兴,刘俊君,阎隆飞,彭学贤.在丝瓜和黄瓜发育过程中肌动蛋白基因的表达.植物学报.1996,38(2):136-141
    10.李岩,阎隆飞,徐是雄.百合花粉及花粉管内微丝和微管的分布.植物学报.1998,40(10):890-894
    11.刘雄,阎隆飞.花粉肌动蛋白和兔肌肌动蛋白与DNaseⅠ相互作用的比较研究.植物学报.1995,37(3):212-216
    12.刘雄,阎隆飞.月见草花粉萌发后花粉粒和花粉管中的细胞器运动.植物学报.1993,35:859-863
    13.刘国琴,腾晓月,阎隆飞.萌发花粉细胞质纤丝网架与细胞质颗粒运动.植物学报.1990,32:157-190
    14.芦岩,李玉花.芸苔属中自交不亲和性反应的信号转导.植物生理与分子生物学学报.2005,41(4):547-552
    15.彭远英,彭正松,喻可芳.凋亡细胞的超微结构变化.细胞生物学杂志.2003,25(5):280-283
    16.任尔涛,韩生成,阎隆飞.百合花粉萌发过程中的肌动蛋白和肌球蛋白的研究.科学通报(研究简报).1998,43 (5):514-519
    17.任海云,易克喜,荆艳萍.前纤维蛋白影响花粉肌动蛋白体外聚合分析.植物学报.2000,42 (5):476-479
    18.尚忠林,李建华,李冰.钙通道抑制剂对川百合花粉萌发的影响.河北师范大学学报(自然科学版).2004,28(5):510-518
    19.尚忠林,马力耕,王学臣,孙大业.异三聚体G蛋白参与调节花粉细胞内钙离子浓度.自然科学进展.2003,13(7):746-750
    20.尚忠林.细胞外钙调素对花粉细胞内钙离子的影响及其信号传递途径的研究.河北师范大学.博士论文,2001
    21.孙颖,孙大业.花粉萌发和花粉管生长发育的信号转导.植物学报.2001,43(12):1211-1217
    22.陶志华,任海云.凝溶胶蛋白对植物微丝的调节作用及在花粉中的定位.中国科学(C辑).2003,33 (1):1-8
    23.田惠桥,远彤.钙在被子植物受精过程中的作用.植物生理学报.2000,25 (5):369-380
    24.王侯聪,杨善民.蚕豆花粉体外萌发的超微结构观察.厦门大学学报(自然科学版).1997,36 (1):153-157
    25.吴华清,张绍铃,王洪涛,屈海泳,刘招龙.高等植物自花花粉的识别与拒绝.西北植物学报.2005,3:593-606
    26.徐国华,张绍铃,刘友良.雌蕊胞外基质在花粉管生长中的作用.植物学通报.2003a,20(2):218-226
    27.徐国华,张绍铃,张超英,陈迪新.梨自花与异花授粉后花粉胞内游离Ca~(2+)分布的变化.植物生理与分子生物学学报.2003b,29(2):97-103
    28.徐国华,张绍铃,张超英等.梨白花与异花授粉后梨花柱自发荧光变化研究.园艺学报.2003c,30(4):439-442
    29.徐国华.梨自花与异花授粉后花粉胞内钙离子水平及花柱自发荧光变化研究.南京农业大学.博士论文.2003d
    30.徐世雄.花粉与花粉管内的微管和微丝骨架.见:徐世雄,朱瀓主编.植物细胞骨架.北京:科学出版社,1996:40-47
    31.徐是雄.松胞素对百合花粉原生质体肌动蛋白微丝的影响.实验生物学报.1992,25(4):377-389
    32.薛勇彪,崔海洋,赖钊.不亲和性和自交不亲和性及其分子生物学基础.见:胡适宜,杨弘远主编.被子植物受精生物学.北京:科学出版社.2002:128-148
    33.阎隆飞,王秀珍,腾晓月等.花粉管中的肌动蛋白和肌球蛋白及其在花粉管伸长中的作用.科学通报.1985,30:945-948
    34.杨弘远.钙在有花植物受精过程中的作用.植物学报.1999,41(10):1027-1035
    35.易克喜,陶志华,任海云.ATP和钾离子对肌动蛋白与前纤维蛋白结合的影响及其在植物肌动蛋白纯化中的应用.植物学报.2001,43(7):699-703
    36.张绍铃,平塚 伸.梨花柱S糖蛋白对离体花粉萌发及花粉管生长的影响.园艺学报.2000,27 (4):251-256
    37.#12
    38.赵彩平,徐国华,张绍铃,刘珠琴.G蛋白调节剂对梨花粉萌发与花粉胞内Ca~(2+)浓度变化的影响.植物生理与分子生物学学报.2005a,31(2):160-166
    39.赵彩平.梨花柱S-RNase和G蛋白调节剂对花粉萌发、花粉管生长及Ca~(2+)浓度的影响.南京农业大学.博士论文,2005b
    40.朱徵,李春贵,胡适宜.用非固定的荧光探针方法怼察紫尊花粉管肌动蛋白纤丝的形成.植物学报.1991,33:1-6
    41. Allwood EG, Anthony RG, Smertenko AP, Reichelt S, Drφbak BK, Doonan JH, Weeds AG, Hussey PJ. Regulation of the pollen-specific actin-depolymerizing factor LIADF1. Plant Cell. 2002, 14: 2915-2927
    42. Allwood EG, Smertenko AP, Hussey PJ. Phosphorylation of plant actin-depolymerising factor by calmodulin-like domain protein kinase. FEBS Left. 2001, 499: 97-100
    43. Anderson JR, William S, Bedinger P. 2, 6-Dichlorobenzonitrile, a cellulose biosynthesis inhibitor, affects morphology and structural integrity of petunia and lily pollen tubes. J. Plant Physiol. 2002, 159: 61-67
    44. Andre E, Lottspeich F, Schleicber M, Noegel A. Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J. Biol Chem. 1988, 263: 722-727
    45. Azevedo C, Santos-Rosa MJ, Shirasu K. The U-box protein family in plants. Trends Plant Science. 2001, 6: 354-358
    46. Bamburg JR. Proteins of the ADF/cofilin family: Essential regulators of actin dynamics. Annu Rev Cell Dev Biol. 1999, 15: 185-230
    47. Bednarska E. Calcium uptake from the stigma by germinating pollen in Primula officinalis L. and Ruscus aculeatus L. Sex Plant Reprod. 1991, 4: 36-38
    48. Benedikt Kost, Emmanuel Lemichez, Pius Spielhofer, Yan Hong, Kimberly Tolias, Christopher Carpenter, and Nam-Hai Chua. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J. Cell Biol. 1999, 145(2): 317-330
    49. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 1976, 72: 248-254
    50. Brown PH, Ho THD. Barley aleurone layers secrete a nuclease in response to gibberellic acid. Plant Physiol. 1986, 82: 801-806
    51. Bubb MR, Spector I, Beyer BB, Fosen KM. Effects of jasplkinolide on the kinetics of actin polymerization. An explanation for certain in vivo observations. J. Biol Chem. 2000, 275: 5163-5170
    52. Cai G, Casino CD, Cresti M. Cytoskeletal basis of organelle trafficking in the Angiosperm pollen tube. Annals of Botany. 2000, 85: 69-77
    53. Cai G, Moscatelli A, Cresti M. Cytoskeleton organization and pollen tube growth. Trends Plant Sci. 1997,2(3): 86-91
    54. Cardenas L, Lovy-Wheeler A, Wilsen KL, Hepler PK. Actin polymerization promotes the reversal of streaming in the apex of pollen tubes. Cell Motility and the Cytoskeleton. 2005,61:112-127
    55. Carlier MF, Ressad F, Pantaloni D. Control of actin dynamics in cell motility. Role of ADF/cofilin. J. Biol Chem. 1999, 274: 33827-33830
    56. Castillo C, Takasaki T., Saito T., Ishimizu T., Norioka S. and Nakanishi T. Sequence of the S9-RNase cDNA and PCR-RFLP system for discriminating S_1 to S_9-allele in Japanese pear. Euphytica. 2004,135:157-167
    57. Chen C Y-h, Cheung AY, Wu HM. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth. Plant cell. 2003,15(1): 237-249
    58. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H, Cheung AY. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell. 2002, 14(9): 2175-2190
    59. Cheung AY, Wu HM. Overexpression of an Arabidopsis foemin stimulates supernumerary actin cable formation from pollen tube cell membrane. Plant Cell. 2004,16(1): 257-269
    60. Clarke AE, Anderson MA, Bacic A, Harris PJ, Mau SL. Molecular basis of cell recognition during fertilization in higher plants. J. Cell Sci. 1985,2: 261-285
    61. Clarke SR, Staiger CJ, Gibbon BC, Franklin-Tong VE. A potential signaling role for profiling in pollen of Papaver rhoeas. Plant Cell. 1998, 10: 967-979
    62. Coluccio LM, Bretscher A. Reassociation of microvillar core proteins: making a microvillar core in vitro. J. Cell Biol. 1989, 108:495-502
    63. Danielan NS, Thomas D. In vitro pollen germination and transient transformation of Zea mays and other plant species. Plant Molecular Biology Report. 2003,21:31-41
    64. De Nettancourt D, Devreux M, Bozzini A, Cresti M, Pacini E, Sarfatti G. Ultrastructural aspects of the self-incompatibility mechanism in lycopersicum peruvianum mill. J. Cell Sci. 1973, 12: 403-419
    65. De Nettancourt D. Incompatibility activity in Arabidopsis. Development. 2001, 122: 1567-1575
    66. De Win AHN, Knuiman B, Pierson ES, Geurts H, Kengen HMP, Derksen J. Development and cellular organization of Pinus sylvestris pollen tubes. Sex Plant Reprod. 1996, 9: 93-101
    67. Dearnaley JDW, Clark KM, Heath IB, Lew RR, Goring DR. Neither compatible nor self-incompatible pollinations of Brassica napus involve reorganization of the papillar cytoskeleton. New Phytologist. 1999, 141(2): 199-207
    68. Debone M, Molloy RM, Dorman DR et al. Synthesis and characterization of halogenated derivatives of the ionophore A23187: Enhanced calcium ion transport specifity by the 4-bromoderivative. Biochemistry. 1981, 20: 6865-6872
    69. Deeks MJ, Hussey PJ, Davies B. Formins: intermediates in signal-transduction cascades that affect cytoskeletal reorganization. Trends in Plant Cell. 2002: 492-498
    70. Derksen J, Rutten TL, Lichtscheidl IL, DEWin AHN, Pierson ES, Rongen GM. Organelle distribution, exocytosis and endocytosis in tobacco pollen tubes. Protoplasma. 1995, 188: 267-276
    71. Doris FP, Steer MW. Effects of fixatives and permeabilisation buffers on pollen tubes: implications for localization of actin microfilaments using phalloidin staining. Protoplasma. 1996, 195: 25-36
    72. Drφbak BK, Franklin-Tong VE and Staiger CJ. The role of the actin cytoskeleton in plant cell signaling. New Phytoiogist. 2004, 163(1): 13-30
    73. Feijo JA, Malho R, Obermeyer G. Ion dynamics and its possible role during in vitro pollen germination and tube growth. Protoplasma. 1995, 187: 155-167
    74. Foote HG, Franklin-Tong VE, Walker EA, Lawrence MJ, Franklin FCH. Cloning and expression of a novel self incompatibility (S-) gene from Papaver rhoeas L. Proc Natl Aead Sci USA. 1994, 91(6): 2265-2269
    75. Franklin-Tong VE, Brφbak BK, Allen AC, Watkins PAC, Trewavas AJ. Growth of pollen tubes of Papaver rhoeas is regulated by a slow-moving calcium wave propagated by inositol 1, 4, 5-triphosphate. Plant Cell. 1996, 8(8): 1305-1321
    76. Franklin-Tong VE, Franklin FCH. Gametophytic self-incompatibility inhibits pollen tube growth using different mechanisms. Trends in Plant Science. 2003, 8(12): 598-605
    77. Franklin-Tong VE, Hacket G, Hepler PK. Ratio-imaging of Ca~(2+) in the self-incompatibility response in pollen tubes of Papaver rhoeas. Plant J. 1997, 12(6): 1375-1386
    78. Franklin-Tong VE, Holdaway-Clarke TL, Straatman KR, Kunkel JG, Hepler PK. Involvement of extracellular calcium influx in the self-incompatibility response of Papaver rhoeas. Plant J. 2002, 29(3): 333-345
    79. Franklin-Tong VE, Lawrence MJ, Franklin FCH. Characterization of a stigmatic component of from Papaver rhoeas L which exhibits the specific activity of a self-incompatibility. New Phytol. 1989, 112(2): 307-315
    80. Franklin-Tong VE, Ride JP, Franklin FCH. Recombinant stigmatic self-incompatibility (S-) protein elicits a Ca~(2+) transient in pollen of Papaver rhoeas. Plant J. 1995, 8(2): 299-307
    81. Franklin-Tong VE, Ride JP, Read ND, Trewavas AJ, Franklin FCH. The self-incompatibility response in Papaver rhoeas is mediated by cytosolic free calcium. Plant J. 1993, 4(1): 163-177
    82. Franklin-Tong VE. Receptor-ligand interaction demonstrated in Brassica self-incompatibility. Trends in Genetics. 2002, 18(3): 113-115
    83. Franklin-Tong VE. Signaling and the modulation of pollen tube growth. Plant cell. 1999a, 11: 727-738
    84. Franklin-Tong VE. Signaling in pollination. Current Opin Plant Biol. 1999b, 2: 490-495
    85. Fu Y, Wu G, Yang Z. Rop GTPase-dependent dynamics of tip-localized F-actin controls tip growth in pollen tubes. Journal of Cell Biology. 2001, 152(5): 1019-1032
    86. Geitmann A, Emons AMC. The cytoskeleton in plant and fungal cell tip growth. J. Microsc. 2000a, 198: 218-245
    87. Geitmann A, Frankin-Tong VE, Emons AC. The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death and Differentiation. 2004a, 11: 812-822
    88. Geitmann A, Franklin-Tong VE, Emons AM. The self-incompatibility response in Papaver rhoeas pollen causes early and striking alterations to organelles. Cell Death Differ. 2004b: 1-11
    89. Geitmann A, Snowman BN, Emons AM, Franklin-Tong VE. Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas. Plant Cell. 2000b, 12(7): 1239-1251
    90. Gibbon BC, Kovar DR, Staiger CJ. Latrunculin B has different effects on pollen germination and tube growth. Plant cell. 1999, 11: 2349-2363
    91. Gibbon BC, Staiger CJ. Profilin. In actin: A dynamic framework for multiple plant cell functions. Dordrecht, the Netherlands: Kluwer Academic Publishers. 2000: 45-65
    92. Gibbon BC, Zonia LE, Kovar DR, Hussey PJ, Staiger CJ. Pollen profiling function depends on interaction with praline-rich motifs. Plant Cell. 1998, 10(6): 981-993
    93. Goring DR. The search for components of the self-incompatibility signaling pathway(s) in Brassica napus. Annals of Botany. 2000, 85: 171-179
    94. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. The Journal of Cell Biology. 2001, 169(1): 127-138
    95. Gu Y, Fu Y, Dowd P, Li S, Vernoud V, Gilroy S, Yang Z. A Rho family GTPase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. The Journal of Cell Biology. 2005, 169(1): 127-138
    96. Gu Y, Vernoud V, Fu Y, Yang Z. ROP GTPase regulation of pollen tube through the dynamics of tip-localized F-actin. Journal of Experimentall Botany. 2003, 54(380): 93-101
    97. Hating V. Self-incompatibility as a model of cell-cell recognition in plant. Science. 1994, 250: 937-941
    98. Hatakeyamal K, Takasaki T, Suzuli G, Nishi T, Watanabe M, Isogai A, Hinata K. The S receptor kinase gene determines dominance relationships in stigma expression of self-incompatibility in Brassica. The Plant Journal. 2001, 26(1): 69-76
    99. Heam MJ, Franklin FCH, Ride JP. Identification of a membrane glycoprotein in pollen of Papaver rhoeas which binds stigmatic self-incompatibility (S-) proteins. Plant J. 1996, 9(4): 467-475
    100. Hepler PK, Vidali L, Cheung AY. Polarized cell growth in higher plants. Annu Rev Cell Dev Biol. 2001, 17: 159-187
    101. Heslop-Harrison J, Heslop-Harrison Y, Cresti M, Tiezzi A, Ciampolini F. Actin during pollen germination. J. Cell Sci. 1986, 86: 1-8
    102. Heslop-Harrison J, Heslop-Harrison Y. Aetomyosin and movement in the angiosperm pollen tube: An interpretation of some recent results. Sex Plant Reprod. 1989a, 2: 199-207
    103. Heslop-Harrison J, Heslop-Harrison Y. Confurmation and movement of the vegetative nucleus of the angiosperm pollen tube: Association with the actin cytoskeleton. J. Cell Sci. 1989b, 93: 299-308
    104. Heslop-Harrison J, Heslop-Harrison Y. Organelle movement and fibrillar elements of the cytoskeleton in the angiosperm pollen tube. Sex Plant Reprod. 1988, 1: 16-24
    105. Heslop-harrison J. Incompatibility and the pollen-stigma interation. Cell. 1975, 80: 213-223
    106. Hiratsuka S, Shao-Ling Zhang. Self-incompatibility in Japanese pears: peculiar inhibitory action of S-RNase on self pollen-tube growth in vitro. Acta Hort. 2004, 589
    107. Hiratsuka S, Zhang SL, Nakagawa E, Kawai Y. Selective inhibition of the growth of incompatible pollen tubes by S-protein in the Japanese pear. Sex Plant Reprod. 2001, 13(4): 209-215
    108. Holdway-Clarke TL, Feijo JA, Hackett GR et al. Pollen tube growth and the intracellular cytosolic calcium gradient oscillate in phase while extracellular calcium is delayed. Plant Cell. 1997, 9: 1999-2010
    109. Huang SJ, Blanchoin L, Chaudhry F, Franklin-Tong VE, Staiger CJ. A gelsolin-like protein from Papaver rhoeas pollen (PrABP80) stimulates calcium-regulated severing and depolymerization of actin filaments. Journal of Biological Chemistey. 2004, 279(22): 23364-23375
    110. Hwang JU, Suh S, Yi HJ, Kim J, Lee Y. Actin filaments modulate both stomatal opening and inward K1-channel activities in guard cells of Vicia faba L. Plant Physiol. 1997, 115:335-342
    111. Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, Takayama S. Actin dynamieas in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiol. 2007, DOI: 10.1104/pp. 106.095273
    112. Iwano M, Shiba H, Miwa T, Che FS, Takayama S, Nagai T, Miyawaki A, Isogai A. Ca~(2+) dynamics in a pollen grain and papilla cell during pollination of Arabidopsis. Plant physiol. 2004, 136: 3562-3571
    113. Jackson, Heath. Ca~(2+) ions in hyphal tip growth. Microbiol Rev. 1993, 57: 356
    114. Jordan ND, Franklin FCH, Franklin-Tong VE. Evidence for DNA fragmentation triggered in the self-incompatibility response of Papaver rhoeas. Plant J. 2000a, 23(4): 471-479
    115. Jordan ND, Ride JP, Rudd JJ, Davies EM, Franklin-Tong VE, Franklin FCH. Inhibition of self-incompatible pollen in Papaver rhoeas involves a complex series of cellular events. Ann Bot. 2000b, 85(Suppl A): 197-202
    116. Jose A Feijo, Silvia S Costa, Ana Margarida Prado, Jorg D Becker, Ana Catarina Certal. Signalling by tips. Current Opinion in Plant Biology. 2004, 7: 589-598
    117. Kakeda K, Jordan ND, Conner A, Ride JP, Franklin-Tong VE, Franklin FCH. Identification of residues in a hydrophilic loop of the Papaver rhoeas S protein that play a crucial role in the recognition of incompatible pollen. Plant Cell. 1998, 10(10): 1723-1731
    118. Kao T-h, McCubbin AG. How flowering plants discriminate between self and non-self pollen to prevent inbreeding. Proc Natl Acad Sci USA. 1996, 93(22): 12059-12065
    119. Kerr J, Wyllie A, Cuyrde A. Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br J. Camer. 1972, 26: 239-257
    120. Klahre U, Friederich E, Kost B, Louvard D, Chua NH. Villin-like actin-binding proteins are expressed ubiquitously in Arabidopsis. Plant Physiol. 2000, 122: 35-48
    121. Kohno T, Shimmen T. Ca~(2+)-indueed F-actin fragmentation in pollen tubes. Protoplasma. 1987, 141: 177-179
    122. Kohno T, Shimmen T. Mechanism of Ca~(2+) inhibition of cytoplasmic streaming in lily pollen tubes. J.Cell Sci. 1988,91:501-509
    123. Kost B, Lemichez E, Spielhofer P, Hong Y, Tolias K, Carpenter C, Chua NH. Rac Homologues and Compartmentalized Phosphatidylinositol 4, 5-Bisphosphate Act in a Common Pathway to Regulate Polar Pollen Tube Growth. J. Cell Biol. 1999,145(2): 317-330
    124. Kost B, Spielhofer P, Chua NH. A GFP-mouse talin fusion protein labels plant actin filaments in vivo and visualizes the actin cytoskeleton in growing pollen tubes. Plant J. 1998,16: 393-401
    125. Kovar DR, Drobak BK, Staiger CJ. Maize profiling isoforms are functionally distinct. Plant Cell. 2000,12: 583-598
    126. Krichevsky A, Kozlovsky SV, Tian GW, Chen MH, Zaltsman A, Citovsky V. How pollen tubes grow. Dev Biol. 2007,303(2): 405-420
    127. Kuboyama T, Takeda G Genomic factors responsible for abnormal morphology of pollen tubes in the interspecific cross Nicotiana tabacum XN. rustica. Sex Plant Reprod. 2000,12: 333-337.
    128. Kurup S, Ride JP, Jordan ND, Fletcher G, Franklin-Tong VE, Franklin FCH. Identification and cloning of related self-incompatibility S genes in Papaver rhoeas and Papaver nudicaule. Sex Plant Reprod. 1998,11(4): 192-198
    129. Kwong J, Choi HL, Huang Y, Chan FL. Ultrastructural and biochemical observations on the early changes in apoptotic epithelial cells of the rat prostate induced by castration. Cell Tissue Res. 1999, 298:123-136
    130. Lancelle SA, Hepler PK. Ultrastructure of freeze- substituted pollen tubes of Lilium longiflorum. Protoplasma. 1992,167:215-230
    131. Larson DA. Fine structure changes in the cytoplasm of germinating pollen. Amer J. Bot. 1965, 52: 139
    132. Li H, Bacic A, Read SM. Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata. Planta. 1999,208: 528-538
    133. Li Y, Zee SY, Liu YM, Huang BQ, Yen LF. Circular F-actin bundles and a G-actin gradient in pollen and pollen tubes of Lilium davidii. Planta. 2001, 213(5): 722-730
    134. Lin YaKang, Wang YaLai, Zhu JianKang, Yang ZhenBiao. Localization of a Rho GTPase implies a role in tip growth and movement of the generative cell in pollen tubes. Plant Cell. 1996, 8(2): 293-303
    135. Liu K, Luan S. Voltage-dependent K~+ channel as targets of osmosensing in guard cells. Plant Cell. 1998, 10: 1957-1970
    136. Liu Xiong, Yan Long-fei. Organelle movement in the germinated pollen grains and pollen tubes of Oenothera odorata. Acta BotSin. 1993,35: 859-863
    137. Luna EJ, Hitt AL. Cytoskeleton-plasma membrane interactions. Science. 1992, 258: 955-964
    138. Lwin B. Genes VI [M]. Oxford: Oxford University Press Inc. 1997: 1053
    139. Malho Q, Liu D, Monteiro D, Rato C, Camacho L, Dinis A. Signalling pathways in pollen germination and tube growth. Protoplasma. 2006, 228(1-3): 21-30
    140. Malho R, Trewavas AJ. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell. 1996, 8: 1935-1949
    141. Malho R. Expanding tip growth theory. Trends Plant Sci. 1998, 3: 40-42
    142. Marylin Vantard, Laurent Blanchoin. Actin polymerization processes in plant cells. Current Opinion in Plant Bioligy. 2002, 5: 502-506
    143. Mathur J. Local interactions shape plant cells. Current Opinion in Cell Biology. 2006, 18: 40-46
    144. McClure BA, Franklin-Tong VE. Gametophyfic self-incompatibility: understanding the cellular mechanisms involved in "self" pollen tube inhibition. Planta. 2006, 224: 233-245
    145. McKenna ST, Vidali L, Hepler PK. Profilin inhibits pollen tube growth through actin-binding, but not poly-L-proline-binding. Planta. 2004, 218 (6): 906-915
    146. Messerli M, Robinson KR. Tip localized Ca~(2+) pulses are coincident with peak pulsatile growth rates in pollen tube of Lilium lonigflorum. J. Cell Science. 1997, 110: 1269-1278
    147. Messerli MA, Creton R, Jaffe LF, Robinson KR. Periodic increases in elongation rate precedes increases in cytosolic Ca(2+) during pollen tube growth. Dev Biol. 2000, 222: 84-98
    148. Miller DD, Lancelle SA, Hepler PK. Actin microfilaments do not form a dense meshwork in Lilium longiflorum pollen tube tips. Protoplasma. 1996, 195: 123-132
    149. Moutinho A, Trewavas AJ, Malho R. Relocation of a Ca~(2+)-dependent protein kinase activity during pollen tube reorientation. The Plant Cell. 1998, 10: 1499-1510
    150. Nasrallah JB, Kao TH, Goldberg ML, Nasrallah ME. A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea. Nature. 1985, 318: 263-267
    151. Nasrallah ME. Genotype, protein, phenotype relationships in self-incompatibility of Brassica. Genet. Res. 1972, 20: 151-160
    152. Negulyaev YA, Khaitlina SY, Hinssen H, Shumilina EV, Vedernikova EA Sodium channel activity in leukemia cells is directly controlled by actin polymerization. J. Biol Chem. 2000, 275: 40933-40937
    153. Norioka N, Norioka S, Ohnishi Y, Ishimizu T, Oneyama C, Nakanishi T, Sakiyama F. Molecular cloning and nucleotide sequences of cDNAs encoding S-allele specific stylar RNases in a self-incompatible cultivar and its self-compatible mutant of Japanese pear, Pyrus pyrif olia Nakai. J. Biochem (Tokyo). 1996, 120 (2): 335-345
    154. Obermeyer G, Weisenseel MH. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J. Cell Biol. 1991,56: 319-327
    155. Paavilainen VO, Bertling E, Falck S, Lappalainen P. Regulation of cytoskeletal dynamics by actin-monomer-binding proteins. TRENDS in Cell Biology. 2004,14(7): 386-394
    156. Palanivelu R, Preuss D. Pollen tube targeting and axon guidance: parallels in tip growth mechanisms. Trends in Cell Biology. 2000,10:517-524
    157. Pantaloni, D. and Carlier, MF. How profilin promotes actin filament assembly in the presence of thymosin b4. Cell. 1993,75:1007-1014
    158. Parthasarathy, Perdue TD, Witztum A, Atvernaz J. Actin network as a normal component of the cytoskeleton in many vascular plant cells. Amer J. Bot. 1985, 72: 1318-1323
    159. Perdue TD, Parthasarathy MV. In situ localization of F-actin in pollen tubes. Eur J. Cell Biol. 1985, 39:13-20
    160. Picton JM, Steer MW. A model for the mechanism of tip extension in pollen tubes. J. Theor Biol. 1982.98:15-20
    161. Picton JM, Steer MW. Evidence for the role of Ca~(2+) ions in tip extension in pollen tubes. Protoplasma. 1983,115:11-17
    162. Picton JM, Steer MW. The effects of ruthenium red, lanthanum, fluorescein isothiocyanate and trifluoperazine on vesicle transport, vesicle fusion and tip extension in pollen tubes. Planta. 1985, 163: 20-26
    163. Pierson ES, Cresti M. Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol. 1992,140: 73-125
    164. Pierson ES, Cresti M. Cytoskeleton and cytoplasmic organization of pollen and pollen tubes. Int Rev Cytol. 1992, 140: 73-125; Taylor LP, Hepler PK. Pollen germination and tube growth. Annu Rev Plant Mol Biol. 1997,48: 461-491
    165. Pierson ES, Derksen J, Traas JA. Organization of microfilaments and microtuhules in pollen tubes grown in vitro or in vivo of various angiosperms. Eur J. Cell Biol. 1986,41:14-18
    166. Pierson ES, Miller DD, Callaham DA, Shipley AM, Rivers BA, Cresti M, Hepler PK. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: effect of BAPTAtype buffers and hypertonic media. Plant Cell. 1994, 6: 1815-1828
    167. Pierson ES. Rhodamine-phalloidin staining of F-actin in pollen after dimethylsulpboxide permeabilization. Sex Plant Reprod. 1988a, 1: 53-87
    168. Pierson ES. Rhodamine-phalloidin staining of F-actin in pollen after dimethylsulphoxide permeabilization. Sex Plant Reprod. 1988b, 1: 83-87
    169. Qiao H, Wang H, Zhan L, Zhou J, Huang J, Zhang Y, Xue Y. The F-box protein AhSLF-S2 physically interacts with S-RNases that may be inhibited by the ubiquitin/26S proteasome pathway of protein degradation during compatible pollination in Antirrhinum. Plant Cell. 2004, 16: 582-595
    170. Qu Hai-yong, Shang Zhong-Lin, Zhang Shao-Ling, Wu Ju-You. Identification of hyperpolarization-activated calcium channels in apical pollen tubes of Pyrus pyrifolia. New Phytologist. 2007, 174(3): 524-536
    171. Rathore KS, Cork RJ, Robinson KR. A cytoplasmic gradient of Ca~(2+) is correlated with the growth of lily pollen tubes. Dev Biol. 1991, 148: 612-619
    172. Raudaskoski M, Astrom H, Laitianen E. Pollen tube cytoskeleton: structure and function. Plant growth regulation. 2001, 20(2): 113-130
    173. Reiss HD, Herth W. Broad-range effects of ionphore X-537A on pollen tubes of L ilium longif lorum. Planta. 1980, 147: 295-301
    174. Reiss HD, Herth W. Visualization of the Ca~(2+)-gradient in growing pollen tubes of Lilium longiforum with chlorotetracycline fluorescence. Protoplasma. 1978, 97: 373-377
    175. Reynaud K, Nogueira D, Cortvrindt R, Kurzawa R, Smitz J. Confocal microscopy: principles and applications to the field of reproductive biology. Folia Histochem Cytobiol. 2001, 39(2): 75-85
    176. Rudd JJ, Franklin FCH, Lord JM, Franklin-Tong VE. Ca~(2+)-independent phosphorylation of a 68 kDa protein is stimulated by the self-incompatibility response. Plant J. 1997, 12(3): 507-514
    177. Rudd JJ, Franklin FCH, Lord JM, Franklin-Tong VE. Increases phosphorylation of a 26 kDa protein is induced by the self-incompatibility response. Plant Cell. 1996, 8(4): 713-724
    178. Rudd JJ, Franklin-Tong VE. Signals and targets of the self-incompatibility response in pollen of Papaver rhoeas. J. Exp Bot. 2003a, 54: 141-148
    179. Rudd JJ, Osman K, Franklin FCH, Franklin-Tong VE. Activation of aputative MAP kinase in pollen is stimulated by the self-incompatibility (SI) response. FEBS Lett. 2003b, 547(1-3): 223-227
    180. Sanders D, Brownlee C, Harper JF. Communicating with calcium. Plant Cell. 1999, 11: 691-706
    181. Sassa H, Hirano H, Ikehashi H. Identification and characterization of stylar glycoproteins associated with self-incompatibility genes of Japanese pear, Pyrus serotina Rehd. Molecular & General Genetics. 1993, 241: 17-25
    182. Selga T, Selga M, Pavila V. Death of mitochondric during programmed cell death of leaf mesophyli cells. Cell Biology International. 2005, 29: 1050-1056
    183. Sijacic P, Wang X, Skirpan AL, Wang Y, Dowd PE, McCubbin AG, Huang S, Kao T. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature. 2004, 429: 302-305
    184. Silva NF, Goring DR. Mechanisms of self-incompatibility in flowering plants. Cell Mol. Life Sci. 2001,58:1988-2007
    185. Smertenko AP, Allwood EG, Khan S, Jiang CJ, Maciver SK, Weeds AG, Hussev PJ. Interaction of pollen-specific actin-depolymerizing factor with actin. Plant J. 2001,25(2): 203-212
    186. Snowman BN, Kovar DR, Shevchenko G, Franklin-Tong VE, Staiger CJ. Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell. 2002, 14(10): 2613-2626
    187. Staiger CJ, Franklin-Tong VE. The actin cytoskeleton is a target of the self-incompatibility response in Papaver rhoeas. Journal of Experimental Botany. 2003, 54(380): 103-113
    188. Staiger CJ, Gibbon BC, Kovar DR, Zonia LE. Profilin and actin-depolymerizing factor: modulators of actin organization in plants. Trends in plant science. 1997,2(7): 275-281
    189. Staiger CJ. Signal to the actin cytoskeleton in plants. Annu Rev Plant Physiol Plant Mol Biol. 2000, 51:257-288
    190. Steer MW, Steer JM. Pollen tube tip growth. New Phytol. 1989, 111: 323-358
    191. Sutter JU, Homann U, Thiel G. Ca~(2+)-stimulated exocytosis in maize coleoptile cells. Plant Cell. 2000,8:1127-1136
    192. Takayama S, Isogai A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 2005, 56: 467-489
    193. Takayama S, Isogal A. Molecular mechanism of self-recognition in Brassica self-incompatibility. J. Exp Bot. 2003, 54: 149-156
    194. Tang X? Lancelle, Hepler PK. Fluorescence microscopic localization of actin in pollen tubes comparison of actin antibody and phalloidin staining. Cell Mot Cytoskel. 1989, 12: 216-224
    195. Taylor LP, Hepler GF. Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol. 1997,48:461-191
    196. Tewinkel M, Kruse S, Quader H, Volkmann D, Sievers A. Visualization of actin filament pattern in plant cells without pre-fixation: A comparison of differently modified phallotoxins. Protoplasma. 1989,149: 178-182
    197. Thomas SG, Franklin-Tong VE. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature. 2004,429(6989): 305-309
    198. Thomas SG, Huang S, Li S, Staiger CJ, Franklin-Tong VE. Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. The Journal of Cell Biology. 2006, 174(2): 221-229
    199. Tiezzi A. The pollen tube cytoskeleton. Electron Microsc Rev. 1991, 4: 205-219
    200. Tiwari SC, Polito VS. An analysis of the role of actin during pollen activation leading to germination in pear (Pyrus communis L.): treatment with cytochalasin D. Sex Plant Reprod. 1990, 3: 121-129
    201. Tiwari SC, Polito VS. Organization oftbe cytoskeleton in pollen tubes of Pyrus communis: A study employing conventional and freeze-substitution electron microscopy, immunofluorescence and rhodamine-phalloidin. Protoplasma. 1988, 147: 100-112
    202. Uwate WJ, Lin J. Cytological zonation of Prunus avium L. pollen tube in vivo. J Ultrastruct Res. 1980, 71: 173-184
    203. Vidali L, Hepler PK. Actin and pollen tube growth. Protoplasma. 2001a, 215 (1-4): 64-76
    204. Vidali L, Hepler PK. Actin in pollen and pollen tubes. In CJ Staiger, F Baluska, D Volkmann, PW Barlow, eds, Actin: A Dynamic Framework for Multiple Plant Cell Functions. Kluwer Academic Publishers, Dordrccht, The Netherlands. 2000: 323-345
    205. Vidali L, Holdaway Clarke TL, Hepler PK. The Calcium/cytoskeleton connection in pollen tube growth. Cell Biology of Plant. 2001b: 27-35
    206. Vidali L, McKeuna ST, Hepler PK. Actin polymerization is essential for pollen tube growth. Mol Biol Cell. 2001c, 12 (8): 2534-2545
    207. Vidali L, Yokata E, Cbeung AY, Shimmen T, Hepler PK. The 135 kDa actin-binding protein from Lilium longiflorm pollen is the plant homologus of vilin. Protoplasma. 1999, 209: 283-291
    208. Walker EA, Ride JP, Kurup S, Franklin-Tong VE, Lawrence M J, Franklin FCH. Molecular analysis of two functionally identical $3 homologues of the self-incompatibility gene of Papaver rhoeas from two different populations. Plant Mol Biol. 1996, 30(5): 983-994
    209. WangYong-Fei, Fan Liu-Min, Zhang Wen-Zbeng, Zhang Wei, Wu Wei-Hua. Ca~(2+)-permeable channels in the plasma membrane of Arabidopsis pollen are regulated by actin microfilaments. Plant Physiology. 2004, 136: 3892-3904
    210. Wasteneys GO, Galway ME. Remodeling the cytoskeleton for growth and form: an overview with some new views. Annu Rev Plant Bil. 2003, 54: 691-722
    211. Wheeler MJ, Franklin-Tong VE, Franklin FCH. The molecular and genetic basis of pollen-pistil interactions. New Phytol. 2001, 151: 565-584
    212. Wu G, Gu Y, Li S, Yang Z. A genome-wide analysis of Arabidopsis Rop-interaetive CRIB motif-containing proteins that act as Rop GTPase targets. Plant Cell. 2001, 13: 2841-2856
    213. Yokata E, Shimmen T. Characterization of native actin-binding proteins from pollen. Liuwer Academic Publishers, Dordtreht, The Netherlands. 2000a: 103-118
    214. Yokota E, Muto S, Shimmen T. Calcium-calmodulin suppresses the filamentous actin-binding activity of a 135-kilodalton actin-bundling protein isolated from lily pollen tubes. Plant Physiology. 2000b, 123(2): 645-655
    215. Yokota E, Shimmen T. The 135 kDa actin-binding protein from lily pollen tubes arranges F-actin into bundles with uniform polarity. Planta. 1999, 209:264-266
    216. Yonezawa N, Nishida E, Sakai H. pH control of actin polymerization by cofilin. J. Biol Chem. 1985, 27:14410-14412
    217. Zhang SL, Hiratsuka S. Variations in S-protein levels in styles of Japanese pears and the expression of self-incompatibility. J. Jpn Soc Hort Sci. 1999,68 (5): 911-918
    218. Zhang SL, Hiratsuka S. Varietal differences in S protein concentration and pollen tube growth in developing style of Japanese pears. Hort Science. 2000, 35 (5): 917-920
    219. Zhang SL, Huang SX, Kitashiba H, Nishio T. Identification of S-haplotype-specific F-box gene in Japanese plum (Prunus salicina Lindl.). Sex Plant Reprod. 2007, 20:1-8
    220. Zheng ZhiLiang, Yang ZhenBiao. The Rop GTPase switch turns on polar growth in pollen. Trends in Plant Science. 2000, 5(7): 298-303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700