用户名: 密码: 验证码:
麦冬OjERF基因的克隆与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麦冬(ophiopogpn japonicus)是我国重要的百合科多年生常绿草本植物,其植株类似草、开花,喜好温暖和湿润气候。在中国分布广泛,经常被用作可观赏的园林植物。它具有抗旱、耐盐、耐荫、抗寒、绿期长等优良特性。同时它具有很好的药用价值,长期作为滋阴类中药广泛应用于临床中。因此利用现代分子生物学技术,挖掘其优质基因并进行功能鉴定,对品种改良将有重要的意义。另一方面AP2/ERF类转录因子已经在许多物种中被克隆,它们在信号的传递、下游应答基因的表达调控和细胞发育过程中发挥重要的作用。它们可以与GCC-box、DRE/CRT等顺式作用元件结合,参与生物和非生物胁迫响应。通过转基因的方法单独导入AP2/ERF类转录因子的研究,已经成为物种改良的研究热点。
     由于全球水资源紧缺和土壤盐渍化严重,干旱和盐胁迫已经成为限制植株生长和农作物产量的主要限制因素。植株的耐盐和抗旱性涉及到多个复杂代谢途径,研究人员对耐盐、抗旱基因工程的研究还处在初级阶段,其分子作用机制也尚不清楚。因此,克隆与抗旱、耐盐相关的转录因子基因,揭示其参与的信号转导途径网络,并通过转基因技术研究该基因在逆境胁迫中发挥的功能,为植物抗逆新品种的选育提供理论依据。
     本研究以麦冬为实验材料,从中克隆了ERF类转录因子OjERF基因,并对其生物学特性进行分析,通过转化烟草,对其在植株抗旱和耐盐性方面的影响以及调控机理进行了深入的研究,具体的研究结果如下:
     1.采用RT-PCR方法从麦冬中分离了ERF类转录因子OjERF基因,该基因开放阅读框长1047bp,编码348个氨基酸。氨基酸序列分析显示:它含有一个AP2/ERF典型结构域,推测它具有核定位信号和转录激活区,N-端保守的氨基酸MCGGAII元件,将它归属于ERF类转录因子第四类,是百合科转录因子的新基因。
     2. RT-PCR分析结果表明OjERF基因在根茎叶中都表达,不具有组织特异表达性,表达水平为叶>茎>根。OjERF基因在麦冬中的表达受到干旱、高盐、低温、ABA和ET不同程度的诱导,变化规律各不相同,说明麦冬OjERF基因可能在逆境胁迫中有一定的作用,同时也可能通过ABA信号转导途径参与逆境胁迫响应。
     3.通过PEG介导法将构建好的PEZR(K)-LC-OjERF质粒转化已经制备好的水稻原生质体,亚细胞定位结果显示:OjERF蛋白定位于细胞核中。
     4. OjERF基因与GAL4DB融合后转化酵母细胞,研究表明:OjERF基因具有转录激活功能,可以激活报告基因表达。
     5.将OjERF基因全长cDNA序列,克隆至原核表达载体pEASY-E1Expression,构建了重组质粒pEASY-E1-OjERF,经过诱导,表达产物SDA-PAGE电泳检测表明,目的蛋白在大肠杆菌中成功表达。
     6.构建植物表达载体PBI121-OjERF,通过农杆菌侵染叶盘法转化烟草植株,并对TO代植株进行分子鉴定。对转基因烟草进行了耐盐和抗旱性分析,结果显示,在高盐胁迫下,转基因烟草的叶绿素含量是野生型对照的3倍;经过20d的干旱处理,转基因烟草和对照相比,降低了电解质渗透率和丙二醛含量的积累,提高了脯氨酸含量的积累和SOD、CAT酶活性,说明转基因烟草具有更强的抗旱和耐盐能力。另外,在正常生长条件下,转基因烟草NtERD10B、NtERD10C、NtERF5、NtSOD和NtCAT15种抗逆相关基因的表达水平要明显高于非转基因对照,由此推测,麦冬OjER1基因超表达后能够高效激活下游抗逆相关基因的表达。
     7.实时荧光定量PCR结果显示:转基因烟草ABA合成相关基因NtSDR的表达量会高于非转基因对照。通过ELASA法测定体内ABA含量同样表明,转基因烟草体内有较高的ABA含量,这可能说明OjERF基因可以与多种顺式作用元件结合,通过激活下游抗逆相关基因和ABA合成基因的表达,使体内ABA含量积累,最终通过ABA依赖的信号转导途径提高植株对干早和高盐胁迫的抵抗力。上述结果表明,过量表达OjERF基因提高了烟草的抗旱耐盐能力。
Mondo Grass is an important Liliaceae perennial evergreen herb, like grass, flowering plants, preferring growing in warm and humid climate. It is distributed widely in China, often used as an ornamental garden plant. It has excellent characteristics of drought, salt, shade, cold and long green period. At the same time, it has good medicinal value.The Yin and traditional Chinese medicines are widely used in clinical for the long-term. Therefore, it will have important implications for improving varieties by cloning quality gene and functional identification with modern molecular biology techniques. On the other hand, the AP2/ERF transcription factors have been cloned in many species, they are play important roles in the transmission of the signal, regulation of downstream responses gene expression and cell development. They can be combined with the GCC-box, DRE/CRT cis-acting elements involved in biotic and abiotic stress response. The research on improving plant resistance through transformation separate AP2/ERF transcription factors has become hotspots.
     Because of the serious global shortage of water resources and soil salinization.Drought and Salt stress have become a major limiting factor in plant growth and crop yields. Salt and drought-resistance involve a number of complex metabolic pathways and the molecular mechanism has not been known clearly. The research is still in the initial stage. Cloning drought and salt-related transcription factor and reveals its participation in signal transduction network, and study the function of the gene by transgenic technology in adversity stress, which will provide theoretical basis for breeding of new varieties of plants under environmental stresses.
     In this study, we cloned the transcription factor OjERF gene from Mondo Grass and identified its biological characteristics, and through transformation tobacco plants to study the mechanism of regulation of plant drought and salt tolerance. The specific experimental results are as follows:
     1. The ERF Class transcription factor OjERF gene was isolated by RT-PCR method from Mondo Grass.The open reading frame of the gene is1047bp encoding348amino acids. The predicted amino acid sequence analysis showed that:it contained a AP2/ERF typical domain, a putative nuclear localization signal and a transcription activation. It is a new gene in Liliaceae and N-teminal has a conserved amino MCGGAII motif, which belongs to the fourth class of the ERF transcription factor.
     2. RT-PCR analysis results showed that the OjERF gene which had no tissue-specific expression characteristics was expressed in the roots, stems and leaves. The expression level was leaf> stem> root. OjERF gene expression were also affected by drought, high salt, low temperature, ABA and ET, but their variation degrees are different which illustrated the OjERF gene may have acertain role in abiotic stresses and also probably through the ABA signal transduction pathways involved in the Stress Response.
     3. By PEG-mediated constructed PEZR (K)-LC-OjERF plasmid transformation into rice protoplast cells. Subcellular localization results showed:OjERF protein located in the nucleus.
     4. OjERF gene was fused into GAL4DB and transformed into yeast cells. Studies have shown that: OjERF gene had transcriptional activation ability and also can activate the reporter gene expression.
     5. The full-length cDNA sequence of OjERF gene, was cloned into the prokaryotic expression vector pEASY-E1Expression to construct the recombinant plasmid pEASY-E1-OjERF. After induced, expression product was detected by SDA-PAGE electrophoresis and showed that the target protein was successfully expressed in E. coli cell.
     6. The OjERF gene was cloned into PBI121and then transferred into tobacco by Agrobacterium infection. TO generation plants were identified by molecular method. Salt-tolerance and drought-tolerance experiments showed that under high salt stress, the chlorophyll content of transgenic tobacco is3-fold greater than that in the wild-type control; After20d drought treatment, the transgenic tobacco had lower electrolyte leakage and malondialdehyde content and higher proline content and SOD, CAT activity compared to the control, which suggest that transgenic tobacco plants have stronger drought and salt tolerance. Under normal growth conditions, resistance related gene of NtERD10B, NtERD10C, NtERF5, NtSOD and NtCAT1expression level were significantly higher than that of non-transgenic control. Overexpression of the OjERF gene can efficiently activate downstream resistance related gene expression.
     7. Quantitative real-time PCR results showed that:The expression level of ABA synthesis genes NtSDR was higher in the transgenic tobacco than that in the non-transgenic control. Measured by ELASA found that ABA content is in the transgenic tobacco plants were higher than wide-type,which may indicate the OjERF gene can be combined with multiple cis-acting elements and activiates the expression of stress responsive and ABA biosynthesis-related genes consequently causing ABA accumulation, and ultimately by the ABA-dependent signal transduction pathways to improve plant resistance to drought and high salt stress. These results indicated that overexpression OjERF can enhance tobacco tolerance under high salinity and drought.
引文
1.郭天麒,麦冬Rubisco活化酶基因OjRCA的克隆及功能初步分析[D].北京林业大学,2011.
    2.李明亮,韩一凡.乙烯在植物生长发育和抗病反应中的作用及其生物合成的反义抑制[J].林业科学,2000,36(4):77-84.
    3.刘强,张贵友,陈受宜.植物转录因子的结构与调控作用[J].科学通报,2002,45(14):1465-1474.
    4.刘元风,李晓芳,李玲.乙烯受体与信号转导成员的研究进展[J].生命科学研究,2003,7(2):70-74.
    5.潘求真,徐曙光,李佳,等.绿色荧光蛋白表达载体的改造和表达[J].黑龙江畜牧兽医,2007(1):13-15.
    6.邱志刚,徐兆师,郑天慧,等.小麦ERF转录因子W17互作蛋白的筛选和解析[J].作物学报,2011,37(5):803-810.
    7.孙海桃,徐兆师,侯建华,等.小麦TaDREB6转录因子互作蛋白的筛选[J].中国农业科学,2011,44(22):47404747.
    8.徐晶宇.番茄乙烯信号转导相关基因EN3/EILs的克隆及表达研究[D].博士学位论文.北京:中国农业大学,2002.
    9.杨德鑫,周时荣,权瑞党,等AP2/ERF蛋白调控植物的非生物胁迫应答机制[J].中国农业科技导报,2012,14(6):23-29.
    10.翟晓霏,张文,赵旭勉,等MdRGLla基因对烟草遗传转化研究[J].中国农业大学学报,2011,16(1):36-41.
    11.翟莹.大豆ERF转录因子GmERF6和GmERF7的克隆和初步鉴定[D].吉林大学,2012.
    12.张倩,何婧,王桢,等.中华芦荟在不同胁迫下的丙二醛和可溶性糖含量的变化[J].西南民族学院学报(自然科学版),2009,35(2):290-292.
    13. Abe H, Urao T, Ho T, et al.2003, Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling[J]. Plant Cell,15(1):63-78
    14. Agarwal P, Agarwal P K, Nair S, et al. Stress-inducible DREB2A transcription factor from Pennisetum glaucum is a phosphoprotein and its phosphorylation negatively regulates its DNA-binding activity[J]. Mol Genet Genomics,2007,277:189-198.
    15. Allen M D, Yamasaki K, Ohme-Takagi M, et al.1 A novel mode of DNA recognition by a β-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO J.1998,17:5484-5496.
    16. Alonso J M, Hirayama T, Roman G,et al. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis[J]. Science,1999,284:2148-2152.
    17. Alonso J M, Stepanova A N, Solano R, et al. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis[J]. Proc Natl Acad Sci USA.2003,100(5):2992-2997.
    18. Andriankaja A, Boisson-Dernier A, Frances L, et al. AP2-ERF transcription factors mediate Nod factor dependent Mt ENOD11 activation in root hairs via a novel cis-regulatory motif[J]. Plant Cell,2007,19:2866-2885.
    19. Arteca J M, Arteca R N. A multi-responsive gene encoding 1-aminocyclopropane-l-carboxylate synthase (ACS6) in mature Arabidopsis leaves[J]. Plant Molecular Biology,1999,39:209-219
    20. Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arabidopsis thaliana cor 15a has cis-acting elements that confer cold-, drought-and ABA-regulated gene expression[J]. Plant Molecular Biology,1994, 24:701-713
    21. Balaguc C, Watson C F, Turner A J, et al. Isolation of a ripening and wound-induced cDNA from Cucumis melo L. encoding a protein with homolog y to the ethylene-forming enzyme [J]. Eur J Biochem,1993,212:27-34.
    22. Barrs H D, Weatherley P E.A re-examination of the relative turgidity technique for estimating water deficits in leaves[J].Aust. J. Biol. Sci.,1962,24:519-570.
    23. Barry C S, Blume B, Bouzayen M, et al. Differential expression of 1-aminocyclopro pane-1-carb-oxylate oxidase genes family of tomato [J]. Plant J,1996,9:525-535.
    24. Bates L S, WaldrenR P, Teare I D.Rapid determination of free proline for water-stress studies[J]. Plant Soil,1973,39:205-207-
    25. Beers R F, Jr, Sizer I W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase[J]. J. Biol. Chem.,1952,195:133-140.
    26. Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. Plant J,2002,29: 23-32.
    27. Bethke G, Unthan T, Uhrig J F, et al. Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling[J]. Proc. Natl. Acad. Sci. USA,2009,106:8067-8072.
    28. Biedenkapp H, Borgmeyer U, Sippel A E, et al. Viral myb oncogene encodes a sequence specific DNA-binding activity[J]. Nature,1988,335:835-837.
    29. Binder B M, Mortimore L A, Stepanova A N, et al. Short-Term Growth Responses to Ethylene in Arabidopsis Seedlings Are EIN3/EIL1 Independent[J]. Plant Physiology,2004,136:2921-2927
    30. Bleecker A B and Schaller G E.The Mechanism of Ethylene Perception[J]. Plant Physiol,1996,111: 653~660
    31. Bleecker A B, Estelle M A, Somerville C, et al. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana[J]. Science,1988,241:1086-1089.
    32. Bleecker A B, Kende H. Ethylene:a gaseous signal molecule in plants[J]. Annu Rev Cell Dev Biol, 2000,16:1-18.
    33. Boller T, Herner R C, Kende H. Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-l-carboxylic acid[J]. Planta,1979, 145:293-303
    34. Brown R L, Kazan K, McGrath K C, et al. A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis[J]. Plant Physiol,2003,132:1020-1032
    35. Busk P K, Jensen A B, Pages M. Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize[J]. The Plant Journal, 1997, 11:1285-1295.
    36. Busov V, Meilan R, Pearce D W, et al. Transgenic modification of gai or rgll causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus[J]. Planta, 2006, 224:288-299.
    37. Cao Y F, Wu Y F, Zheng Z, et al. Overexpression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco[J]. Physiol Mol Plant Pathol,2005,67, 202-211.
    38. Cao Y, Song F, Goodman R M, et al. Molecular characterization of four rice genes encoding ethyleneresponsive transcriptional factors and their expressions in response to biotic and abiotic stress[J]. J Plant Physiol,2006,163,1167-1178.
    39. Casaretto J, Ho T D. The transcription factors HvABI5 and HvVPl are required for the abscisic acid induction of gene expression in barley aleurone cells[J]. The Plant Cell,2003,15:271-284.
    40. Cavalcante J J V, Vargas, C, Nogueira E M, et al. Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bactcria[J]. J. Exp. Bot,2007,58:673-683.
    41. Century K, Rcuber T L, Ratcliffc O J. Regulating the regulators:the future prospects for transcription-factor-based agricultural biotechnology products[J]. Plant Physiology,2008,147:20-29.
    42. Chae H S, Faure F, Kieber J J. The etol, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein[J]. Plant Cell,2003, 15:545-559.
    43. Champion A, Hebrard E, Parra B, et al. Molecular diversity and gene expression of cotton ERF transcription factors reveal that group IXa members are responsive to jasmonate,ethylene and Xanthomonas[J]. Molecular Plant Pathology,2009,10(4):471-485.
    44. Chang C S, Li Y H, Chen L T, et al. LZFI, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation[J]. Plant J,2008, 54:205-219.
    45. Chang C, Kwok S F, Bleecker A B, et al. Arabidopsis ethylene response gene ETR1:similarity of product to two component regulators [J]. Science, 1993,262:539-544.
    46. Chao Q, Rothenberg M, Solano R, et al. Action of Ethylene Gas Response Pathway in Arabidopsis by Nuclear Protein ETHYLENE-INSENSITIVE3 and Related Proteins[J]. Cell, 1997.89:1133-1144.
    47. Chen T, Yang Q, Gruber M, et al. Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity[J]. Molecular Biology Reports,2012,39:6067-6075.
    48. Chen W, Provart N J, Glazebrook J, et al.Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses[J]. Plant Cell 2002,14:559-574.
    49. Chen X, Guo Z. Tobacco OPBP1 enhances salt tolerance and disease resistance of transgenic rice[J]. Int J Mol Sci,2008,9 (12):2601-2613.
    50. Chen Y F, Randlett M D, Findell J L,et al. Localization of the ethylene receptor ETR1 to the endoplasmic reticulum of Arabidopsis[J]. J. Biol. Chem,2002,277:19861-19866.
    51. Chen Y Y, Wang L F, Dai L J, et al. Characterization of HbEREBP1, a wound-responsive transcription factor gene in laticifers of Heveabrasiliensis Muell. Arg[J]. Molecular Biology Reports, 2012,39:3713-3719.
    52. Cheng M C, Hsieh E J, Chen J H, et al. Arabidopsis RGLG2, functioning as a RING E3 ligase, interacts with AtERF53 and negatively regulates the plant drought stress response[J]. Plant Physiology,2012,158:363-375.
    53. Cheong Y H, Chang H S, Gupta R, et al.Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis[J]. Plant Physiol,2002, 129:661-677.
    54. Chowdhury R S, Choudhuri M A. Hydrogen peroxide metabolism as an index of water stress tolerance in jute[J]. Plant Physiol.,1985,65:476-480.
    55. Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP)[J]. Gene,1996, 173(1):33-38.
    56. De Boer K, Tilleman S, Pauwels L, et al. APETALA2/ETHYLENE RESPONSE FACTOR and basic helix-loop-helix tobacco transcription factors cooperatively mediate jasmonate-elicited nicotine biosynthesis[J]. The Plant Journal,2011,66:1053-1065.
    57. De Smet I, Zhang H, Inzc D, ct al. A novel role for abscisic acid emerges from underground[J]. Trends in plant science,2006,11:434-439.
    58. Dclessert C, Kazan K, Wilson I W, et al. The transcription factor ATAF2 represses the expression of pathogenesis related genes in Arabidopsis[J]. Plant J,2005,43 (5):745-757.
    59. Desikan R, Cheung M, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. J Exp Bot,2004,55:205-212.
    60. Despres C, Chubak C, Rochon A, et al. The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain leucine zipper transcription factor TGA1[J]. Plant Cell,2003,15(9):2181-2191.
    61. Dong J G. Cloning of a eDNA encoding 1-aminocyclopropane-l-carboxylate synthase and expression of its mRNA in ripening apple fruit[J]. Planta,1991,185:38-45.
    62. Dong J, Chen C, Chen Z. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol,2003,51(1):21-37.
    63. Dong J, Wang X, Wang K, et al. Isolation and characterization of a gene encoding an ethylene responsive factor protein from Ceratoides arborescens[J]. Molecular Biology Reports,2012, 39:1349-1357.
    64. Dong N, Liu X, Lu Y, et al. Overexpression of TaPIEPl, a pathogen induced ERF gene of wheat, confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana[J]. Funct Integr Genomics,2010,10(2):215-226.
    65. Dong X. SA, JA, ethylene, and disease resistance in plants[J]. Current opinion in plant biology, 1998,1:316-323.
    66. Duan M R, Nan J, Liang Y H, et al. DNA binding mechanism revealed by high resolution crystal structure of Arabidopsis thaliana WRKY1 protein[J]. Nucl. Acids Res.2007, 35 (4):1145-1154.
    67. Dubos C, Stracke R, Grotewold E, et al. MYB transcription factors in Arabidopsis[J]. Trends Plant Sci,2010,15(10):573-581.
    68. Dubouzet J G, Sakuma Y, Ito Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. Plant J,2003, 33:751-763.
    69. Duval M, Hsieh T F, Kim S Y, et al. Molecular characterization of AtNAM:a member of the Arabidopsis NAC domain superfamily [J]. Plant Mol Biol,2002,50(2):237-248.
    70. Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci,2000,5(5):199-206.
    71. Fan W, Dong X. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis[J]. Plant Cell,2002,14:1377-1389.
    72. Feys B J, Parker J E. Interplay of signaling pathways in plant disease resistance[J]. Trends in Genetics,2000,16:449-455.
    73. Fischer U, Droge-Laser W. Overexpression of NtERF5, a new member of the tobacco ethylene response transcription factor family enhances resistance to tobacco mosaic virus[J]. Molecular plant-microbe interactions,2004,17:1162-1171.
    74. Fujimoto S Y, Ohta M, Usui A, et al. Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box mediated gene expression[J]. Plant Cell,2000, 12,393-404.
    75. Fukao T, Yeung E, Bailey-Serres J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. The Plant Cell Online,2011,23:412-427.
    76. Gamble R L, Qu X, Schaller G E. Mutational analysis of the ethylene receptor ETR1.Role of the histidine kinase domain in dominant ethylene insensitivity[J]. Plant Physiol,2002,128:1428-1438.
    77. Gao S, Zhang H, Tian Y, ct al. Expression of TERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity[J]. Plant Cell Reports, 2008,27:1787-1795.
    78. Gao Z, Chen Y F, Randlett M D, et al. Localization of the Raf-like kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes[J]. Journal of Biological Chemistry,2003,278,34725-34732.
    79. Goel D, Singh A, Yadav V, et al.Overexpression of osmotin gene confers tolerance to salt and drought stresses in transgenic tomato (Solanum lycopersicum L.) [J]. Protoplasma,2010, 245:133-141.
    80. Golldack D, Luking I, Yang O. Plant tolerance to drought and salinity:Stress regulating transcription factors and their functional significance in the cellular transcriptional network[J]. Plant Cell Rep,2011,30(8):1383-1391.
    81. Gosti F, Beaudoin N, Serizet C, et al. ABI protein phosphatase 2C is a negative regulator of abscisic acid signaling[J]. Plant Cell,1999,11(10):1897-1910.
    82. Gu Y Q, Wildermuth M C, Chakravarthy S, et al. Tomato transcription factors pti4, pti5, pti6 activate defense responses when expressed in Arabidopsts[J]. Plant Cell, 2002,14:817-831.
    83. Gu Y Q, Yang C, Thara V K, et al. Pti4 is induced by ethylene and salicylic acid, and its product is phosphorylated by the Pto kinase[J]. Plant Cell,2000,12,771-786.
    84. Guiltinan M J, Miller L. Molecular characterization of the DNA-binding and dimerization domains of the bZIP transcription factor, EmBP-1[J]. Plant Mol Biol, 1994, 26:1041-1053.
    85. Guo H, Ecker J R. Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor[J]. Cell,2003,115,667-677.
    86. Guo H,Ecker J R. The ethylene signaling pathway:new insights. Current Opinion in Plant[J]. Biology, 2004, 7(1):40-49.
    87. Guo Z J, Chen X J, Wu X L. Overexpression of the AP2/EREBP transcription factor OPBP1 enhances disease resistance and salt tolerance in tobacco[J].Plant Molecular Biology, 2004, 55:607-618.
    88. Gutterson N, Reuber T L. Regulation of disease resistance pathways by AP2/ERF transcription factors[J]. Curr. Opin. Plant Biol,2004, 7:465-471.
    89. Guzman P, Ecker J R. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants[J]. Plant Cell,1990,2:513-523.
    90. Hahn S. Structure and function of acidic transcription activators[J]. Cell,1993,72,481-483.
    91. Hall W J, Bean C W, Pollard M. Transmission of fowl leucosis through chick embryos and young chicks[J]. Am. J. Vet. Research,1941,2:272-279.
    92. Ham B K, Park J M, Lee S B, et al. Tobacco Tsipl, a DnaJ-type Zn finger protein, is recruited to and potentiates Tsil-mediated transcriptional activation[J]. The Plant Cell,2006,18(8):2005-2020.
    93. Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive elementbinding factor (ERF domain) in Plants[J].J Biol Chem, 1998,273 (41):26857-26861.
    94. Hare P D, Cress W A. Metabolic implications of stress induced proline accumulation in plants[J]. Plant Growth Regulat,1997,21:79~102
    95. Hernsndez-Blanco C, Feng, Hu J, et al. Impairment of cellulose synthases required for Arabidopsis secondary cell wall formation enhances disease resistance[J]. The Plant Cell,2007,19(3):890-903.
    96. Hertwig B, Streb P, Feierabend J. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions[J]. Plant Physiol,1992,100:1547-1553.
    97. Hirayama T, Shinozaki K. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA[J]. Trends Plant Sci,2007,12:343-351.
    98. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era:past, present and future[J]. Plant Journal,2010,61:1041-1052.
    99. HirayamaT, Kieber J J, Hirayama N, et al. RESPONSIVE-TO-ANTAGONIST1, a Menkes/ Wilson disease related copper transporter, is required for ethylene signaling in Arabidopsis[J]. Cell 1999,97:383-393.
    100. Hsieh T H, Lee J T, Charng Y Y, et al. Tomato plants ectopically expressing arabidopsis CBF1 show enhanced resistance to water deficit stress[J]. Plant Physiol,2002,130:618-626.
    101. Hu H H, Dai M Q, Yao J L, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci USA,2006, 103(35):12987-12992.
    102. Hua J, Meyerowitz E M. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell,1998,94:261-271.
    103. Huang X, Liu J, Chen X. Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes[J]. BMC Plant Biol,2010,10:230-247.
    104. Huang Y, Li H, Hutchison C E,et al. Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis[J]. Plant J,2003,33:221-233.
    105. Hundertmark M, Hincha D K. LEA (late embryogenesis abundant) proteins and their encoding genes in arabidopsis thaliana[J]. BMC Genomics,2008,9:118.
    106. Ingram J, Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annu Rev Plant Physiol Plant Mol Biol,1996,47:377-403.
    107. Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'upstream regions of genes coding for sporamin and beta-amylase from sweet potato[J]. Mol Gen Genet,1994,244(6):563-571.
    108. Ito Y, Katsura K, Maruyama K. Functional analysis of rice DREBl/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant and Cell Physiology,2006, 47(1):141-153.
    109. Jia J, Xing J H, Dong J G, et al. Functional analysis of MYB73 of Arabidopsis thaliana against Bipolaris oryzae[J]. Agric Sci Chn,2011,10(5):721-727.
    110. Jiang Q, Zhang J, Guo X, et al. Physiological characteristics of transgenic alfalfa (Medicago sativa) plants for improved drought tolerance[J]. Intl. J. Plant Sci,2009,170:969-978.
    111.Jofuku K D, Den Boer B, Van Montagu M, et al. Control of Arabidopsis flower and seed development by the homeotic gene APETALA2[J]. The Plant Cell Online,1994,6:1211-1225.
    112. Johnson C S, Kolevski B, Smyth D R. TRANSPARENT TESTA GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor[J]. The Plant Cell June,2002,14:1359-1375.
    113. Johnson P R, Ecker J R. The ethylene gas signal transduction pathway:a molecular perspective[J]. Annu Rev Genet 1998,32:227-254.
    114. Jung J, Won S Y, Suh C, et al. The barley ERF-type transcription factor HvRAF confers enhanced pathogen resistance and salt tolerance in Arabidopsis[J]. Planta,2007,225:575-588.
    115. Kain S R, Adams M, Kondepudi A, et al. Green fluorescent protein as a reporter of gene expression and protein localization[J]. Bio Techniques,1995,19(4):650-655.
    116. Kang J Y, Choi H I, Im M Y, et al. Arabidopsis basic leucine zipper proteins mediate stress responsive abscisic acid signaling[J]. Plant Cell,2002,14(2):343-357.
    117. Karaba A, Dixit S, Greco R, et al. Improvement of water use efficiency in rice by expression of HARDY, an arabidopsis drought and salt tolerance gene[J]. Proc. Natl. Acad. Sci. U.S.A, 2007, 104:15270-15275.
    118. Kasuga M, Miura S, Shinozaki K, et al. A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco by gene transfer[J]. Plant Cell Physiol, 2004,45:346-350.
    119. Katagiri F, Seipel K, Chua N H. Identification of a novel dimmer stabilization region in a plant bZIP transcription activator[J]. Mol Cell Biol,1992,12:4809~4816.
    120. Kieber J J, Rothenberg M, Roman G, et al. CR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases [J]. Cell,1993.72: 427-441.
    121. Kishor P K, Sangam S, Amrutha R, et al. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance[J]. Curr Sci,2005,88:424-438.
    122. Kitajima S, Koyama T, Ohme-Takagi M, et al. Characterization of gene expression of NsERFs, transcription factors of basic PR genes from Nicotiana sylvestris[J].Plant Cell Physiol,2000, 41(6):817-824.
    123. Klessig D F, Durner J, Noad R, et al. Nitric oxide and salicylic acid signaling in plant defense[J]. Proceedings of the National Academy of Sciences,2000,97:8849-8855.
    124. Kranz H D, Denekamp M, Greco R, et al. Towards functional characterisation of the members of theR2R3-MYBgene family from Arabidopsis thaliana[J]. The Plant Journal,1998,16:263-276.
    125. Kuhlmann M, Horvay K, Stathmann A, et al. The a-helical D1 domain of the bZIP transcription factor BZI-1 interacts with the ankyrin repeat protein ANK1, and is essential for BZI-1 function, both in auxin signaling and pathogen response[J]. J Biol Chem,2003,278(10):8786-8794.
    126. Kurkela S, Borg-Franck M. Structure and expression of kin2, one of two cold-and ABA-induced genes of Arabidopsis thaliana[J]. Plant Molecular Biology, 1992,19:689-692.
    127. Kurkela S, Franck M. Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene[J]. Plant Molecular Biology, 1990, 15:137-144.
    128. Lai L B, Nadeau J A, Lucas J, et al.The Arabidopsis R2R3 MYB proteins FOUR LIPS and MYB88 restrict divisions late in the stomatal cell lineage[J]. Plant Cell,2005,17(10):2754-2767
    129. Lang V, Palva E T. The expression of a rab-related gene, rabl 8, is induced by abscisic acid during the cold acclimation process of Arabidopsis thaliana (L.) Heynh[J]. Plant Molecular Biology,1992, 20:951-962.
    130. Lebel E, Heifetz P, Thorne L, et al. Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis[J]. Plant J, 1998, 16(2): 223-233.
    131. Lee J H, Hong J P, Oh S K, et at. The ethylene-respongsive factor likeprotein I (CaERFLP1) of hot pepper(Capsicum annuum L.) interacts in vitro with both GCC and DRE/CRTsequences with different binding affinities:possible biological roles of CaERFLPl in response to pathogen infection and high salinity conditions in transgenic tobacco plants[J]. Plant Molecular Biology, 2004,55 (1):61-81.
    132. Lee J, He K, Stole V, et al.Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development[J]. Plant Cell,2007, 19, 731-749.
    133. Lee S J, Park J H, Lee M H, et al. Isolation and functional characterization of CE1 binding proteins[J]. BMC Plant Biol,2010(10):277-289.
    134. Leung J, Giraudat J. Abscisic acid signal transduction[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998,49:199-222.
    135. Liang H X, Lu Y, Liu H X, et al. A novel activator-type ERF of Thinopyrum intermedium, TiERF1, positively regulates defence responses[J]. Journal of Experimental Botany,2008,59(11):3111-3120.
    136. Liang X, Abel S, Keller J A,et al. Theologis A.The 1-aminocyclopropane-l-carboxylate Synthase gene family of Arabidopsis thaliana. Proceedings of the National Academy of Sciences,1992, 89:11046-11050.
    137. Lipsick J S. One billion years of Myb[J]. Oncogene,1996,13(2):223-235.
    138. Liu D, Chen X, Liu J, et ai. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt toterance[J]. Journal of Experimental Botany,2012, 63:3899-3911.
    139. Liu Q, Kasuga M, Salcuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA-binding domain separate two cellular signal transduction pathways in drought and low-temperature-responsive gene expression in Arabidopsis[J]. Plant Cell,1998,10(8): 1391-1406.
    140. Liu WY, Chiou S J, Ko C Y, et al. Functional characterization of three ethylene response factor genes from Bupleurum kaoi indicates that BkERFs mediate resistance to Botrytis cinerea[J].J Plant Physiol,2010,168(4):375-381.
    141. Liu Y G, Shirano Y, Fukaki H, et al. Complementation of plant mutants with large genomic DNA fragments by a transformation-competent artificial chromosome vector accelerates positional cloning[J]. Proceedings of the National Academy of Sciences,1999,96:6535-6540.
    142. Liu Y, Su L, Yang S F. (1984) Metabolism of a-aminioisobutyric acid in mungbean hypocotyls in relation to metabolism of 1-aminiocyclopropane-l-carboxylic acid[J]. Planta,161,439-443.
    143. Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2-△△Ct method[J]. Methods,2001,25:402-408.
    144. Lorenzo O, Piqueras R, Sanchez-Serrano J J, et al. ETHYLENE RESPONSE FACTOR 1 integrates signals from ethylene and jasmonate pathways in plant defense[J]. Plant Cell,2003,15:165-178.
    145. Lu C, Shao Y, Li L, et al.Overexpression of SIERF1 tomato gene encoding an ERF-type transcription activator enhances salt tolerance[J]. Russian Journal of Plant Physiology,2011, 58:118-125.
    146. Lu X, Jiang W, Zhang L, et al. Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments[J]. Molecular Biology Reports, 2012,39:9521-9527.
    147. Lyon S J M, Raison J K. Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury[J].Plant Physiol,1970,45:386-389.
    148. Machado A, Wu Y R, Yang Y M, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development[J]. Plant J, 2009, 59(1):52-62.
    149. Man D, Bao Y X, Han L B, et al. Drought tolerance associated with proline and hormone metabolism in two tall fescue cultivars[J]. HortScience,2010,46:1027-1032.
    150. Mare C, Mazzucotelli E, Crosatti C, et al. Hv-WRKY38:a new transcription factor involved in cold-and drought-response in barley[J]. Plant Molecular Biology, 2004, 55:399-416.
    151.McCann S, Huang B. Turfgrass drought physiology and irrigation management, p.431-445. In: Pessarakli, M. (ed.). Hand book of turfgrass management and physiology. CRC Press, New York, NY.2008.
    152. McClintock B. The significance of responses of the genome to challenge[J]. Science, 1984, 226, 792-801.
    153. McGrath K C, Dombrecht B, Manners J M,et al. Repressor-and activator type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of Arabidopsis transcription factor gene expression[J]. Plant Physiol,2005,139: 949-959.
    154. Melotto M, Underwood W, Koczan J, et al. Plant stomata function in innate immunity against bacterial invasion[J]. Cell,2006, 126 (5):969-980.
    155. Moffat C S, Ingle R A, Wathugala D L, et al.ERF5 and ERF6 play redundant roles as positive regulators of JA/Et-mediated defense against botrytis cinerea in arabidopsis[J]. Plos One,2012,7 (4):1-11.
    156. Mohr P G, Cahill D M. Suppression by ABA of salicylic acid and ligin accumulation and the expression of multiple genes, in Arabidopsis infected with Pseudomonas syringae pv.tomato[J]. Functional and Integrative Genomics,2007,7(3):181-191.
    157. Mysore K S, Crasta O R, Tuori R P, et al. Comprehensive transcript profiling of Pto-and Prf-mediated host defense responses to infection by Pseudomonas syringae pv.tomato[J]. The Plant Journal,2002,32:299-315.
    158. Nakai K, Kanehisa M. A knowledge base for predicting protein localization sites in eukaryotic cells[J]. Genomics,1992,14:897-911.
    159. Nakano O, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol,2006,140:411-432.
    160. Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology,2006,140:411-432.
    161. Nakatsuka A, Murachi S, Okunishi H. Differential Expression and Internal Feedback Regulation of 1-Aminocyclopropane-1-Carboxylate Synthase,1-Aminocyclopropane-1-Carboxylate Oxidase, and Ethylene Receptor Genes in Tomato Fruit during Development and Ripening[J]. Plant Physiology, 1998,118:1295-1305.
    162.Nambara E, Marion-Poll A. Abscisic acid biosynthesis and catabolism[J]. Annu Rev Plant Biol, 2005,56:165-185.
    163. Ohme-Takagi M, Shinshi H. Ethylene-Inducible DNA-Binding Proteins That Interact with an Ethylene-Responsive Element[J]. Plant Cell,1995,7:173-182.
    164. Ohta M, Matsui K, Hiratsu K, et al. Repression domains of class Ⅱ ERF transcriptional repressors share an essential motif for active repression[J]. Plant Cell,2001,13(8):1959-1968.
    165. Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proc Natl Acad Sci USA.1997,94:7076-7081.
    166. Olmedo G, Guo H, Gregory B D, et al. ETHYLENE-INSENSITIVE5 encodes a 5'→3' exoribonuclease required for regulation of the EIN3-targeting F-box proteins EBF1/2[J]. Proc Natl Acad Sci USA,2006,103:13286-13293
    167. Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors:structurally distinct, functionally diverse[J]. Trends Plant Sci,2005,10(2):79-87.
    168. Onate-Sanchez L, Anderson J P, Young J, et al. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense[J]. Plant Physiology, 2007,143:400-409.
    169. Onate-Sanchez L, Singh K B. Identification of Arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection[J].Plant Physiol,2002,128: 1313-1322.
    170. Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA Res, 2003,10(6): 239-247.
    171. Pan I C, Li C W, Su R C, et al. Ectopic expression of an EAR motif deletion mutant of SIERF3 enhances tolerance to salt stress and Ralstonia solanacearum in tomato[J]. Planta,2010, 232:1075-1086.
    172. Park J M, Park C J, Lee S B, et al. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco[J]. Plant Cell,2001,13:1035-1046.
    173. Pawson T, Scott J D. Signaling through scaffold, anchoring, and adaptor proteins[J]. Science 1997, 278(5346):2075-2080.
    174. Phillips G J. Green fluorescent protein-a bright idea for the study of bacterial protein localization[J]. FEMS Microbial Letters,2001,204(1):9-18.
    175. Pieterse C M J, Ton J, van Loon L C. Cross-talk between plant defense signaling pathways:boost or burden [J]. Agbiotechnet, 2001,3:1-8.
    176. Qin F, Li J, Zhang GY, et al. Isolation and structural analysis of DRE-binding transcription actor from Maize(Zea mays L.)[J].Acta Botanica Sinica,2003,45(3):331-339.
    177. Qin J, Zhao J Y, Zuo K J, et al. Isolation and characterization of an ERF-like gene from Gossypium barbadense[J].Plant Sci,2004,167:1383-1389.
    178. Qin J, Zuo K, Zhao J, et al. Overexpression ofGbERF confers alteration of ethylene-responsive gene expression and enhanced resistance toPseudomonas syringae in transgenic tobacco[J]. Journal of Biosciences,2006,31:255-263.
    179. Quan R, Hu S, Zhang Z, et al. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance[J]. Plant Biotechnol. J,2010,8:476-488.
    180. Raikhel N V. Nuclear targeting in plants[J]. Plant Physiol,1992,100:1627-1632.
    181. Ramirez V, Agorio A, Coego A, et al. MYB46 modulates disease susceptibility to Botrytis cinerea in Arabidopsis[J]. Plant Physiol,2011,155(4):1920-1935.
    182. Raz V, Fluhr R. Ethylene signal is transduced via protein phosphorylation events in p!ants[J]. Plant Cell,1993,5:523-530.
    183. Riechmann J L, Heard J, Martin G, et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J].Science,2000,290(5499):2105-2110.
    184. Riechmann J L, Meyerowitz E M. The AP2/EREBP family of plant transcription factors[J]. Biol. Chem,1998,379:633-646.
    185. RiechmnanJ L, Heard J, Martin G, et al. Arabidopsis Transcription factors:genome-wide comparative analysis among eukayrotes[J].Seiene2000,290:2105-2110.
    186. Robatzek S, Somssich I E. Targets of AtWRKY6 regulation during plant senescence and pathogen defense[J]. Genes & Dev, 2002.16:1139-1149.
    187. Rodriguez F I, Esch J J, Hall A E,et al. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis[J]. Science,1999,283:996-998.
    188. Saibo N J, Lourenco T, Oliveira M M.Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses[J]. Ann Bot,2009,103,:609-623.
    189. Sakuma Y, Liu Q, Dubouzet J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs transcription factors involved in dehydration and cold inducible gene expression[J]. Biochem Biophys Res Commun,2002,290(3):998-1009.
    190. Saumonneau A, Agasse A, Bidoven M T, et al. Interaction of grape ASR proteins with a DREB transcription factor in the nuclcus[J]. FEBS Lett,2008,582,3281-3287.
    191. Seo Y J, Park J B, Cho Y J, et al. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidopsis plants[J]. Molecules and Cells,2010,30(3):271-277.
    192. Shan D P, Huang J G, Yang Y T, et al. Cotton GhDREB1 increases plant tolerance to low temperature and is negatively regulated by gibberellic acid[J]. New Phytologist, 2007,176(1) 70-81.
    193. Sharma P, Sharma N, Deswal R.The molecular biology of the low-temperature response in plants[J]. Bioessays, 2005,27(10):1048-1059.
    194. Shen Y G, Zhang W K, He S J, et al. An EREBP/AP2-type protein in Triticum aestivum was a DRE binding transcription factor induced by cold, dehydration and ABA stress[J]. Theor Appl Genet 2003,106:923-930.
    195. Shimomura O. Structure of the chromophore of Aequorea green fluorescent protein[J]. FEBS Letters,1979,104(2):220-222.
    196. Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response[J]. Plant Physiology, 1997, 115:327-334.
    197. Slooten L, Capiau K, Van Camp W, et al. Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts[J]. Plant Physiol,1995,107:737-750.
    198. Smirnoff N, Cumbes Q J. Hydroxylradical scavenging activity of compatible solutes[J]. Phytochemistry, 1989,28:1057-1060.
    199. Smirnoff N. Antioxidants and reactive oxygen species in plants. Blackwell, Oxford, UK.2005.
    200. Sohn K H, Lee S C, Jung H W, et al.Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J]. Plant Mol. Biol,2006,61,897-915.
    201.Solano R, Stepanova A, Chao Q, et al. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENEINSENSITIVE3 and ETHYLENE-RESPONSE-FACTORI[J]. Genes Dev,1998, 12:3703-3714.
    202. Song C P, Agarwal M, Ohta M, et al. Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses[J]. Plant Cell,2005,17(8):2384-2396.
    203. Souer E, Houwelingen A V, Kloos, et al. The No Apical Meristem gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell,1996,(85):159-170.
    204. Stepanova AN, Ecker J R. Ethylene signaling:from mutants to molecules[J]. Curr Opin Plant Biol, 2000,3:353-360.
    205. Takahara A Y K, Akashi K. Water stress, p.15-40. In:Rao, K.M., Raghavendra A, Reddy K.J (eds.). Physiology and molecular biology of stress tolerance in plants. Springer, Dordrecht, The Netherlands,2006.
    206. Takatsuji H. Zinc-finger transcription factors in plant[J]. Cell Mol Life Sci,1998,54(6):582-596.
    207. Tang M, Sun J, Liu Y, et al. Isolation and functional characterization of the JcERF gene, a putative AP2/EREBP domain-containing transcription factor, in the woody oil plant Jatropha curcasfJ]. Plant Molecular Biology,2007,63:419-428.
    208. Tang W, Charles T M, Newton R J. Overexpression of the pepper transcription factor CaPFl in transgenic Virginia pine (Pinus virginiana Mill.) confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005,59:603-617.
    209. Tang Y M, Liu M Y, Gao S Q, et al. Molecular characterization of novel TaNAC genes in wheat and ovcrexpression of TaNAC2a confers drought tolerance in tobacco[J]. Physiol Plant,2012, 114(3):210-224.
    21O.Tatsuki M, Hitoshi M. Phosphorylation of Tomato 1-Aminocyclopropane-l-carboxylic Acid Synthase, LE-ACS2, at the C-terminal Region[J].The Journal of Biological Chemistry,2001,276, 28051-28057.
    211. Thara, V K, Tang X, Gu Y Q, et al. Pseudomonas syringae pv tomato induces the expression of tomato EREBP-Iike genes Pti4 and Pti5 independent of ethylene, salicylate and jasmonate[J]. Plant J,1999,20,475-483.
    212. Thomashow M F. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annual Review of Plant Biology,1999,50:571-599.
    213. Tian Y, Zhang H W, Pan X W, et al. Overexpression of ethylene response factor TERF2 confers cold tolerance in rice seedlings[J]. Transgenic Res,2011,20:857-866.
    214. Tournier B, Sanchez-Ballesta M T, Jones B, et al. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element[J]. FEBS Lett,2003,550: 149-154.
    215.Trujillo L, Sotolongo M, Menendez C, et al. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt and drought tolerance when overexpressed in tobacco plants[J]. Plant Cell Physiol,2008,49:512-525.
    216. Tuskan G A, Difazio S, Jansson S, et al. Genome of black cottonwood, Populus trichocarpa (Torn & Gray) [J]. Science, 2006, 313:1596-1604.
    217. Tuteja N, Sopory S K. Chemical signaling under abiotic stress environment in plants [J]. Plant Signal Behav,2008,3:525-536.
    218. Urrutia M E, Duman J G,Knight C A. Plant thermal hysteresis Proteins.Biochim[J]. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology,1992,1121:199-206.
    219. Van der Ent S, Verhagen B W M, Van Doom R, et al. MYB72 is required in early signaling steps of rhizobacteriainduced systemic resistance in Arabidopsis[J]. Plant Physiol,2008,146(3):1293-1304.
    220. Van Der Straeten D, Rodrigues-Pousada R A, Villarroel R, et al. Cloning, genetic mapping, and expression analysis of an Arabidopsis thaliana gene that encodes 1-aminocyclopropane-l-carboxylate synthase[J]. Proceedings of the National Academy of Sciences,1992,89:9969-9973.
    221. Vandenabeele S, Van Der Kelen K, Dat J, et al. A comprehensive analysis of hydrogen peroxid-induced gene expression in tobacco[J].Proc Natl Acad Sci USA,2003,100:16113-16118.
    222. Verslues P, Zhu J. Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J]. Biochem Soc Trans,2005,33:375-379.
    223. Vogel J P, Woeste K E, Theologis A, et al. Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively[J]. Proc. Natl. Acad. Sci. USA,1998,95:4766-4771.
    224. Vogel J P, Schuerman P, Woeste K, et al. Isolation and Characterization of Arabidopsis Mutants Defective in the Induction of Ethylene Biosynthesis by Cytokinin[J]. Genetics,1998,149:417-427
    225. Wang D, Pan Y, Zhao X, et al. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice[J]. BMC Genomics,2011,12:149.
    226. Wang H, Huang Z J, Chen Q, et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance[J]. Plant Molecular Biology,2004,55: 183-192.
    227. Webber H, Hellmann H. Arabidopsis thaliana BTB/POZ-MATH proteins interact with members of the ERF/AP2 transcription factor family[J]. FEBS J,2009,276(22):6624-6635.
    228. Wei W, Zhang Y, Han L, et al. A novel WRKY transcriptional factor from Thlaspi cacrulesccns negatively regulates the osmotic stress tolerance of transgenic tobacco[J]. Plant cell reports,2008, 27:795-803.
    229. Woeste K E, Vogcl J P, Kieber J J.Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings[J]. Physiologia Plantarum,2002,105:478-484.
    230. Woodger F J, Millar A, Murry F, et al. The role of GAM YB transcription factors in GA-regulated gene expression[J]. J. Plant Growth Regul,2003,22(2):176-184.
    231. Wu K L, Guo Z J, Wang H H, et al. The WRKY family of transcription factors in rice and Arabidopsis and their origins[J]. DNA Res,2005,12(1):9-26.
    232. Wu L, Chen X, Ren H, et al. ERF protein JERF1 that transcriptionally modulates the expression of abscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold in tobacco[J]. Planta,2007,226:815-825
    233. Wu L, Zhang Z, Zhang H, et al. Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing!J]. Plant Physiol,2008,148:1953-1963.
    234. Xiao H, Tang J, Li Y, et al. STAMENLESS 1, encoding a single C2H2 zinc finger protein, regulates floral organ identity in rice[J]. The Plant Journal,2009,59:789-801.
    235. Xu P, Ling J, Li D, et al. Identification of a novel DNA-binding protein to osmotin promoter[J]. Sci China C Life Sci,1998,41(6):657-663.
    236. Xu Z S, Ni Z Y, Liu L, et al. Characterization of the TaAIDFa gene encoding a CRT/DREbinding factor responsive to drought, high-salt, and cold stress in wheat[J]. Mol Genet Genomics,2008, 280:497-508.
    237. Xu Z S, Xia L Q, Chen M, et al. Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance[J]. Plant Molecular Biology,2007,65:719-732.
    238. Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress[J]. The Plant Cell Online, 1994,6:251-264.
    239. Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants[J]. Annu Rev Plant Physiol,1993,35,155-189.
    240. Yang Z, Tian L, Latoszek-Green M,et al.Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses[J]. Plant Molecular Biology,2005,58 (4):585-596.
    241. Yi SY, Kim J H, Joung Y H, et al. The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis[J]. Plant Physiol,2004,136:2862-2874
    242. Yu Y B, Adams D O,Yang S F.1-Aminocyclopropanecarboxylate synthase, a key enzyme in ethylene biosynthesis[J]. Archives of Biochemistry and Biophysics, 1979, 280-286.
    243. Zarembinski T I, Theologis A. Ethylene biosynthesis and action:a case of conservation[J]. Plant Mol Biol,1994,26:1579-1597.
    244. Zhang G Y, Chen M, Li L C, et al. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco[J]. J Exp Bot,2009,60(13):3781-3796.
    245. Zhang H W, Liu W, Wan L Y, et al. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice[J]. Transgenic Research, 2010,19(5):809-818.
    246. Zhang H, Huang Z, Xie B, et al. The ethylene-, jasmonate-, abscisic acid-and NaCI responsive tomato transcription factor JERF1 modulates expression of GCC box-containing genes and salt tolerance in tobacco[J]. Planta,2004,220(2):262-270.
    247. Zhang H, Yang Y, Zhang Z, et al. Expression of the ethylene response factor gene TSRF1 enhances abscisic acid responses during seeding development in tobacco[J]. Planta,2008,228 (5):777-787.
    248. Zhang H, Zhang D, Chen J, et al. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum[J]. Plant Molecular Biology,2004,55(6):825-834.
    249. Zhang J Y, Broeckling C D, Sumner L W, et al. Heterologous expression of two Medicago truncatula putative ERF transcription factor genes, WXP1 and WXP2, in Arabidopsis led to increased leaf wax accumulation and improved drought tolerance, but differential response in freezing tolerance[J]. Plant Mol Biol,2007,64:265-278.
    250. Zhang J, Kirkham M B. Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species[J]. Plant Cell Physiol,1994,35:785-791.
    251. Zhang J, Kirkham M B. Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants[J]. Plant Sci,1996,113:139-147.
    252. Zhang X, Schmidt R S. Antioxidant responses to hormone containing product in kentucky bluegrass subjected to drought[J]. Crop Sci,1999,39:545-551.
    253. Zhang X, Ervin E H. Physiological assessment of coolseason turfgrasses under ultraviolet-B stress[J]. HortScience,2009,44:1785-1789.
    254. Zhang Y, Zhang G, Xia N, et al. Cloning and characterization of a bZIP transcription factor gene in wheat and its expression in response to stnperust pathogen infection and abiotic stresses[J]. Physiol Mol Plant P,2009,73(4-5):88-94.
    255. Zhang Z, Li F, Li D, et al. Expression of ethylene response factor JERF1 in rice improves tolerance to drought[J]. Planta,2010,232:765-774.
    256. Zhang Z, Wang J, Zhang R, et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J]. The Plant Journal.2012,71(2):273-287.
    257. Zhang Z, Yao W L, Dong N, et al. A novel ERF transcription activator in wheat and its induction kinetics after pathogen and hormone treatments[J]. J Exp Bot,2007,58(11):2993-3003.
    258. Zhu Q, Zhang J, Gao X, et al. The Arabidopsis AP2/ERF transcription factor RAP2.6 participates in ABA, salt and osmotic stress responses[J]. Gene,2010,457(1-2):1-12.
    259. Zhuang J, Cai B, Peng R H, et al. Genome-wide analysis of ERF gene family in Populus trichocarpa[J]. Biochem Biophys Res Commun,2008,371(3):468-474.
    260. Zuo K J, Wang J, Wu W S, et al. Isolation and characterization differentially expressed ESTs from sea-island cotton (Gossypium barbadense L.) infected with Verticillium pathogens[J]. Mol. Biol, 200,39:214-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700