用户名: 密码: 验证码:
中国辣椒叶斑病病原学及分子检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辣椒叶斑病(leaf spot of pepper)是我国新报道发生病害,在保护地辣椒生产中,病害发生面积及其危害呈上升趋势。目前对于该病的发生危害、病原学、致病机理、病害发生规律乃至分子检测等均缺乏系统的研究,制约着病害防治策略的制定及病害的防控。本文针对这些问题,以辣椒叶斑病为研究对象,对其致病病原进行了鉴定,从病菌生物学特性、致病力分化、种群遗传多样性和侵染特性4个方面进行了病原学的系统研究;对其病原菌致病机理进行了初步探讨;并建立了辣椒叶斑病菌的分子检测技术,以期为病害的早期诊断提供有效方法。
     1.首次鉴定明确了我国辣椒叶斑病的致病菌
     2009年6月在辽宁省大连瓦房店市首次发现辣椒叶斑病。2009年至2012年,全面调查了辽宁省各辣椒栽培地区辣椒叶斑病的发生危害情况。通过组织分离和显微形态鉴定,分离获得病原菌22株。经常规的形态学观察和柯赫氏法则证病试验,并采用分子技术——多基因联合分析方法,对病菌的rDNA-ITS、β-tubulin和Actin基因序列进行比对,鉴定明确了我国辣椒叶斑病的致病菌为尖孢枝孢Cladosporium oxysporum。
     2.系统测定了辣椒叶斑病致病菌尖孢枝孢的生物学特性
     通过采用不同的营养、温度、pH值、光照等条件,对病菌菌丝生长及孢子萌发影响因素测定试验结果表明,对于病菌菌丝生长,以V8汁培养基为最适;能有效利用多种糖和氮源,分别以山梨醇和麦芽浸膏最佳;适宜温度为20~25℃;最适pH值为6~8;光照可促进菌丝生长;菌丝致死温度为77℃。而对于病菌分生孢子萌发,对碳源无特殊需要,在清水中萌发率最高;氮源培养液严重抑制孢子萌发;20~30℃为孢子萌发适宜温度;最适pH值为7;光照对孢子萌发无明显的促进作用;分生孢子致死温度为48℃。
     3.测定探讨了辽宁省不同地理来源的辣椒叶斑病菌的致病力
     采用人工接种方法,选用4个辣椒栽培品种(迅驰、沈椒4号、杭椒一号和新金号角),对采自辽宁省不同地区的辣椒叶斑病菌22个菌株,进行了致病力测定。根据供试菌株对4个供试辣椒栽培品种的抗感反应,将22个菌株划分为3个致病类型,即强致病类型、中等致病类型和弱致病类型。表明我国辣椒叶斑病菌存在明显的致病力分化现象,但地理来源与致病力分化之间无明显的相关性,相同地理来源的病原菌群体中致病力存在强、中、弱的差异。
     4.测定分析了辣椒叶斑病菌的遗传多样性
     应用ISSR和SRAP两种分子标记技术,对供试辣椒叶斑病菌22个菌株进行了遗传多样性分析,依据不同地理来源尖孢枝孢的ISSR和SRAP指纹图谱分别构建UPGMA系统发育树,从分子水平探究致病菌的遗传演变和进化。测定结果表明,ISSR标记的菌株间相似系数在0.56~0.93之间,在相似系数0.65处被划分成4个类群;SRAP标记的菌株间相似系数在0.59~0.90之间,在相似系数约0.63处被划分为3个类群。表明供试辣椒叶斑病菌群体具有丰富的遗传多样性和明显的遗传分化现象,遗传聚类组群与菌株的地理来源具有一定的相关性,而与菌株的致病性无明显的相关性。
     5.初步探讨了辣椒叶斑病的侵染循环
     试验研究结果表明,辣椒叶斑病菌尖孢枝孢以菌丝体在植株残体上潜伏,随病残体残落于土壤越冬,作为病害翌年危害的初侵染源。温度和湿度是影响病害发生的最主要因素,病菌侵染植株的最适温度为20~25℃,潜育期为7~8d;在适温条件下,保湿时间越长,病害发病率越高。罹病辣椒叶片的显微及超微观察结果显示,病菌以菌丝通过表皮和气孔2种途径侵入寄主组织;接种后8h,即可观察到分生孢子萌发产生芽管,进而形成菌丝,在叶片组织中穿行扩展;老熟后的菌丝上产生分生孢子梗,其上产生大量产生分生孢子;分生孢子成熟后自然脱落,可经多次再侵染反复循环传播;病菌菌丝在寄主组织中不断扩展,导致受侵细胞被破坏,最终崩解。
     6.初步研究了辣椒叶斑病菌的致病机理
     辣椒叶斑病菌在人工培养条件下可以产生毒素,对辣椒叶片具有明显的毒害作用,引致与田间症状类似的病斑,而且可导致幼苗萎蔫,抑制种子萌发和胚根生长。病菌最佳产毒条件为采用pH值为7的Richard培养液,置于25℃黑暗条件下,持续振荡培养14d。活体内外辣椒叶斑病菌产生的细胞壁降解酶活性测定结果表明,病菌能产生果胶酶(PG、PMG、PGTE、PMTE)和纤维素酶(Cx、β-葡萄糖苷酶),人工培养条件下,果胶酶活性明显高于纤维素酶,是活体外病菌产生的主要细胞壁降解酶;辣椒叶片接种病菌后,果胶酶活性显著提高,在接种3~4d后达到活性高峰,推测其在病菌致病过程中先起作用,而纤维素酶活性逐渐增强,推测其参与病菌在寄主组织内的扩展。
     7.初步建立了辣椒叶斑病菌巢式PCR分子检测体系
     根据尖孢枝孢rDNA-ITS区序列,设计了特异性引物Clad-F/Clad-R,在常规PCR反应的基础上,以Clad-F/Clad-R为外引物,设计合成了内引物Clad-NF/Clad-NR,建立了辣椒叶斑病菌巢式PCR分子检测体系。分子检测结果表明,人工接种发病情况下,该方法对病原菌的最低检测量为1fgDNA/μL。应用巢氏PCR方法对人工接种辣椒叶斑病菌处于不同潜育期的辣椒叶片进行检测,结果表明,接种后第二天的叶片即可检测到病原菌。在辣椒生产田中,按五点取样法对自然侵染的辣椒叶片在显症前进行随机取样,巢式PCR检测病叶带菌率为52%,离体叶片培养调查发病率为32%。本研究初步建立的分子检测方法,具有比传统方法更高的灵敏度,可用以在病害潜育期即未显症期对其进行早期诊断。
The newly occurred pepper disease, pepper leaf spot, observed in greenhouse of Liaoning Province has become more and more serious in China in recent years. Because limited knowledgement is known on the etiology, pathogenic mechanism, occurrence regularity and molecular detection of the disease, the effective control strategies have not been established by now. In order to solve these problems, firstly the pathogen was identified in this study. In the aspect of etiology research, biological characteristics, pathogenicity, genetic diversity and infection characteristics were studied systematicly. Then a preliminary study on pathogenic mechanism of the pathogen was carried on. Besides, a molecular technigue for early diagnosis was established.
     1. The First Identification of Pepper Leaf Spot Pathogen in China
     In June2009, for the first time, leaf spotting was observed on pepper leaves in Wafangdian County of Liaoning Province. During2009to2012, a comprehensive survey of the occurrence and damage of pepper leaf spot was conducted in pepper cultivation areas of Liaoning Province. By tissue isolation and morphological identification,22strains of the pathogenic were collected. The pathogen was identified as Cladosporium oxysporum according to morphology and Koch's postulates testing, in combination with rDNA-ITS, β-tubulin, Actin genes sequences data sets.
     2. Systematic Determination of Biological Characteristics of C. oxysporum
     The results of effect factors on mycelium growth and conidium germination of the pathogen showed that the best medium for mycelium growth was V8juice. The pathogen could effectively use of sugar and nitrogen sources. Sorbitol and malt extract were used as better carbon and nitrogen sources for mycelium growth, respectively. The optimum temperature for mycelium growth was20to25℃and the optimum pH was6to8. Light could promote mycelium growth. The mycelium lethal temperature was77℃. Water was best for conidium germination without special carbon sources. But nitrogen sources seriously inhibited conidium germination. The optimum temperature for conidium germination was20to30℃and the optimum pH was7. Light had no obvious promoting effect on conidium germination. The conidium lethal temperature was48℃.
     3. Determination of the Pathogenicity of C. oxysporum from Different Geographic Origins in Liaoning Province
     Pathogenicity was determined of C. oxysporum from different geographic origins in Liaoning Province on four pepper cultivars (Xunchi,4th Shen pepper,1st Hang pepper and New golden horn) by artifical inoculation. The results showed22strains could be classified into three pathogenic types, which were strong pathogenic type, moderate pathogenic type and weak pathogenic type. The C. oxysporum strains showed significant difference in pathogenicity, while there was no significant correlation between the pathogenic types of strains and their geographic origins. The strains from the same geographic origin also exhibited different levels of pathogenicity.
     4. Aanlysis of the Genetic Diversity of C. oxysporum
     In order to explore heredity variation and evolution of the pathogen on molecular level, genetic diversity of all C. oxysporum strains was analyzed by ISSR and SRAP technique. The phylogenetic tree based on ISSR markers revealed that similarity coefficient of22strains was from0.56to0.93, and the strains were divided into four clusters at the threshold of genetic similar coefficient0.65by UPGMA. The phylogenetic tree based on SRAP markers revealed that similarity coefficient of22strains was from0.59to0.90, and the strains were divided into three clusters at the threshold of genetic similar coefficient approximately0.63by UPGMA. Both ISSR and SRAP analysis showed that there were abundant genetic diversity and remarkable genetic differentiation among C. oxysporum strains. The genetic clusters of C. oxysporum strains were associated with their geographic origins, but there was no significant correlation between the genetic relationships and pathogenicity of the strains.
     5. Preliminary Study on the Infection Cycle of Pepper Leaf Spot
     The results showed that C. oxysporum adhering to plant residues could overwinter successfully and become primary infection sources of the disease. Temperature and humidity were two main factors on disease occurring. The optimum temperature for infection was20to25℃when incubation period was7to8days. Under optimum temperature, keeping moist increased incidence of the disease. The infection process of C. oxysporum on pepper leaves was studied micrologically and ultramicrologically. It showed that the pathogen was able to penetrate host through two paths such as epidermis and stomata. The infectious stage started with conidium germination8h after inoculation, subsequently germinated hyphae grew over the tissue and conidiophores emerged through the stomata which produced conidia. Conidia fell off naturally after matured, then repeated infection. A large number of mycelia expanded rapidly within leaf tissue, and infected cells were damaged and died finally.
     6. Preliminary Study on the Pathogenic Mechanism of C. oxysporum
     The pathogen could produce toxin in fluid media. The biological activity assay of the crude toxin showed that it could induce the characteristic symptom of pepper leaf spot, cause seeding wilting and inhibit seed germination and radicle growth. The optimum conditions of producing toxin were Richard culture filtrate with pH7and sustained oscillation culture for14d in dark at25℃. A series of cell wall degrading enzymes (CWDEs) including pectinase (PG, PMG, PGTE and PMTE) and cellulase (Cx and β-glucosidase) were found in the pathogen. Pectinase produced from the pathogen showed higher activities as compared with cellulase in vitro CWDEs. Activities of pectinase were significantly improved after inoculation and reached the peak in3-4d after inoculation. Perhaps pectinase firstly play a role in pathogenic process. Activities of cellulase were gradually increased after inoculation. Maybe cellulase was conducive to the expansion of pathogen in the host tissues.
     7. Establishment of the Nested PCR Detection System of C。 oxysporum
     Based on the rDNA-ITS conservative sequence of C. oxysporum, one pair of specific primers Clad-F/Clad-R was designed. Then intermal primers Clad-NF/Clad-NR were designed based on the regular PCR product amplified with the primers Clad-F/Clad-R as outer primers. Combined these two kinds of primers, a nested PCR protocol was established. The sensitivity of this assay was1fg DNA of C. oxysporum. The nested PCR detection results in artificially inoculated pepper leaves with different incubation period showed that pathogen could be detected on the second day after inoculation. For symptomless samples that randomly collected from fields, the efficiency of the nested PCR assay was compared to that of culture in vitro method. As a result, the detection rate of nested PCR was52%, while incidence of leaves culture in vitro was32%. These data showed that the nested PCR had higher sensitivity than traditional method. The nested PCR could be effective to diagnose disease in incubation period when pepper leaves without visible symptoms in field.
引文
1.柴贵贤.2010.辣椒疫霉菌遗传多样性分析及致病机理研究.硕士学位论文.杨凌:西北农林科技大学.
    2.曹广丽,陈立梅,徐文静,徐文静,杜茜,李启云,杨石嶂,董英山,许修宏.2006.番茄叶霉病菌拮抗链霉菌BPS2发酵条件的研究.中国农学通报,22(5):342-345.
    3.陈怀谷,方正,陈厚德,林玲,王裕中.2005.小麦纹枯病菌的分子检测.植物保护学报,32(3):261-265.
    4.陈雯,王探应,梁耀琦.1997.番茄叶霉病的发生与防治研究.西北农业学报,6(4):77-80.
    5.陈宇飞.2000.我国番茄叶霉病研究进展.东北农业大学学报,31(4):411-414.
    6.董艳玲.2005.苹果黑星病菌遗传多样性的SSR分析.硕士学位论文.杨凌:西北农林科技大学.
    7.杜洪忠,吴品珊,严进.2009.葡萄苦腐病菌的分子检测.植物检疫,23(6):13-15.
    8.段会军,姬惜珠,张彩英,李兴红,郭小敏,马峙英.2005.几种瓜类枯萎病菌专化型的AFLP分析.河北农业大学学报,28(5):71-74.
    9.范文艳,文景芝,金丽娜,马建,陈瑾.2008.黑龙江省水稻纹枯病菌的致病力分化与AFLP分析.植物保护,34(6):57-61.
    10.范永山,曹志艳,谷守芹,董金皋.2004.不同诱导因素对玉米大斑病菌附着胞产生的影响.中国农业科学,37(5):769-772.
    11.方正.2003.小麦纹枯病菌的多样性和分子检测.硕士学位论文.扬州:扬州大学.
    12.方中达.1998.植病研究方法.第三版.北京:中国农业出版社,117-118.
    13.冯东听,朱国仁,李宝栋.2001.菜豆锈病菌侵染对寄主超微结构的作用及菜豆抗锈病的细胞学表现.植物病理学报,31(3):246-250.
    14.冯兰香,徐玲,刘坤,杨翠荣.1994.番茄苗期对病毒病和叶霉病多抗性鉴定方法.中国蔬菜,3:52-55.
    15.伏颖.2011.烟草靶斑病菌遗传分化、侵染特性及致病机理研究.博士学位论文.沈阳:沈阳农业大学.
    16.甘丽萍,王荣生.2004.RAPD标记在植物病原真菌遗传多样性及生理分化研究中的应用.甘肃农业大学学报,39(1):72-76.
    17.高军.2003.小麦叶锈菌(Puccinia recondita f.sp tritici)毒性及AFLP分析.硕士学位论文.保定: 河北农业大学.
    18.高苇.2011.我国黄瓜棒孢叶斑病的病原学及诊断技术的研究.博士学位论文.北京:中国农业科学院.
    19.高永洋,王楠,高观朋,王伟.2010.瓜黑星病菌、枯萎病菌和蔓枯病菌的三重PCR检测.植物病理学报,40(4):343-350.
    20.顾沛雯,张军翔,徐红敏.2004.番茄叶霉病菌生物学特性研究.宁夏农学院学报,25(3):21-23.
    21.古月台.2001.甜辣椒叶霉病的发生与防治.吉林蔬菜,5:12.
    22.顾真荣,马承铸,徐华.2003.枯草芽抱杆菌G3菌剂防治番茄叶霉病田间试验.中国生物防治,19(4):206-207.
    23.郭大龙,张君玉,李猛,张国海,刘崇怀.2010.葡萄SRAP反应体系优化及引物筛选.基因组学与应用生物学,29(2):379-384.
    24.韩文华,许文奎,张英杰,李春福,张国良.1997.番茄叶霉病菌形态特征鉴定及生物学特性研究.辽宁农业科学,5:16-20.
    25.韩晓莹.2010.番茄叶霉病菌生理小种DNA指纹图谱的构建.硕士学位论文.哈尔滨:东北农业大学.
    26.何末军.2009.油茶炭疽病检验检测技术研究.硕士学位论文.长沙:中南林业科技大学.
    27.贾瑞祥.2005.中国小麦条锈菌主要流行小种DNA多态性分析.硕士学位论文.北京:中国农业大学.
    28.胡棕棂,蔡红,范静华,陈海如.2009.水稻稻瘟病菌TaqMan探针实时荧光PCR检测方法的建立.云南农业大学学报,24(3):349-353.
    29.康振生.1996.植物病原真菌超微结构.北京:中国科学技术出版社.
    30.李宝聚,周长力,赵奎华,李凤云,刘武成,刘长令.1999.黄瓜黑星病菌致病机理的研究Ⅰ*黄瓜黑星病菌致病毒素的分离和纯化.植物病理学报,29(4):349-353.
    31.李宝聚,周长力,赵奎华,李凤云,陈红漫.2000.黄瓜黑星病致病机理的研究Ⅱ细胞壁降解酶及其在致病中的作用.植物病理学报,30(1):13-18.
    32.李宝聚,周长力,赵奎华,李凤云,黄国坤.2001.黄瓜黑星病致病机理的研究Ⅲ细胞壁降解酶和毒素对寄主超微结构的影响及其协同作用.植物病理学报,31(1):63-69.
    33.李成云,李进斌,周晓罡,董爱荣,许明辉.2004.稻瘟病菌基因组中微卫星序列的频率和分布.中国水稻科学,18(3):269-273.
    34.李川,刘海英,范永山,李聪文.2003.植物病原真菌群体遗传学研究进展.河北农业大学学报,26(Sup):177-179.
    35.李建国,黄旭明,黄辉白.2003.裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较.植物生理与分子生物学报,29(2):141-146.
    36.李利霞,赵奎华,刘长远,梁春浩,关天舒,王辉,杨卫娟,马晓飞.2012.葡萄炭疽病菌SRAP遗传多样性分析.中国农学通报,28(12):230-235.
    37.李龙生,李宝聚,朱辉,唐乐尘,石延霞.2006.中国茄子绒菌斑病病原菌的订正.菌物学报,25(3):505-508.
    38.李天飞,张中义.1992.枝抱属分类研究*.云南农业大学学报,7(2):63-70.
    39.李小波,康立功,路盼,张贺,李景富.2010.番茄叶霉病菌产毒条件研究.植物保护,36(1):83-86.
    40.李晓慧,王从彦,张四普,常高正.2007.西瓜SRAP-PCR程序和体系优化.安徽农业科学,35(27):8461-8463.
    41.李严,张春庆.2005.新型分子标记——SRAP技术体系优化及应用前景分析.农业生物技术科学,21(5):108-112.
    42.李元春,沈林,曾燕如.2011.山核桃SRAP体系的建立及与RAPD和ISSR标记的比较.浙江农林大学学报,28(3):505-512.
    43.李正力.2010.应用SRAP和ISJ技术研究中国苹果树腐烂病菌Valsa mali多样性.硕士学位论文.杨凌:西北农林科技大学.
    44.梁景霞,祁建民,吴为人,周东新,陈顺辉,王涛,陶爱芬.2005.烟DNA的提取与SRAP反应体系的建立.中国烟草学报,11(4):33-38.
    45.刘长远,赵奎华,李凤云,苗则彦,朱茂山,王艳玲,董玉玺.2001.防治番茄叶霉病新药剂—25%斯克可湿性粉剂毒性及应用研究.沈阳农业大学学报,32(6):426-428.
    46.刘慧芹,刘慧平,韩巨才.2004.叶霉病菌粗毒素对番茄的生物活性测定.天津农学院学报,1:10-13.
    47.刘秋,吴元华,于基成.2004.东北地区保护地土壤拮抗放线菌的筛选.土壤,36(5):573-575.
    48.刘志恒,刘薇薇,王成明,李艳丽,魏松红,唐鹏,刘秋.2003.茄子叶霉病菌生物学特性及药剂抑菌效果研究.沈阳农业大学学报,34(2):95-98.
    49.陆家云.2000.植物病原真菌学。北京:中国农业出版社,412-413.
    50.鲁绍琴,杨斌,付惠,罗开华.2006.泽兰尾孢菌的产毒培养与毒素提取.西南林学院学报,26(2):40-43.
    51.吕翔.2011.不同产地角倍性状的差异及角倍蚜(Schlechtendalia chinensis)遗传多样性的SSR分析.硕士学位论文.北京:中国林业科学研究院.
    52.毛岚.2009.棉花黄萎病菌的遗传多样性分析.硕士学位论文.杨凌:西北农林科技大学.
    53.彭斌.2011.河南省苹果轮纹病菌枝干致病力分化与遗传多样性.硕士学位论文.北京:中国农业科学院.
    54.朴红梅,李万良,穆楠,尹航.2007.ISSR标记的研究与应用.吉林农业科学,32(5):28-32.
    55.钱迎倩等.1994.生物多样性研究的原理与方法.北京:中国科学技术出版社,13-36.
    56.秦旭升,刘学敏,于荣利.2003.运用PCR-RFLP标记检测南瓜疫病菌.东北农业大学学报,34(4):368-371.
    57.茹水江,陈笑芸,戴丹丽,王汉荣,宁国云,赵沛忠.2002.浙江省番茄叶霉病病原生物学特性研究.浙江农业学报,14(1):38-41.
    58.山川帮夫.1982.蔬菜抗病品种及其应用.北京:北京农业出版社.
    59.邵秀玲,甘琴华,赵文军,厉艳,王英超,庞国兴.2009.利用实时荧光PCR技术检测风信子黄腐病菌.植物检疫,23(5):25-27.
    60.盛文涛,周劲松,汤泳萍,罗绍春,陈光宇.2010.芦笋SRAP反应体系优化及引物筛选.分子植物育种,8(3):612-618.
    61.宋培玲.2009.棉花黄萎病菌遗传多样性的ISSR分析.硕士学位论文.杨凌:西北农林科技大学.
    62.宋培玲,李之钦,杨家荣.2011.棉花黄萎病菌遗传多样性的ISSR分析.西北农林科技大学学报(自然科学版),39(1):113-118.
    63.孙广宇,张荣,彭友良.2003.随机扩增多态性DNA的重复性和可靠性问题.植物保护,29(4):44-46.
    64.谭诤,宋莉英,高峰.2004.生物技术在辣椒育种研究上的应用.生物技术,14(2):74-76.
    65.王洪凯,林福呈,王政逸.2004.植物病原真菌附着胞的机械穿透力.菌物学报,23(1):151-157.
    66.王美琴,王海荣,刘慧平,韩巨才.2003.番茄叶霉病菌的生物学特性研究.山西农业大学学报,23(4):303-307.
    67.王楠,王剑,尹丹韩,高观朋,王伟.2010.三重PCR检测草莓灰霉病菌、炭疽病菌和黄萎病菌.中国农业科学,43(21):4392-4400.
    68.王伟,杨文鹏,戴保威,关琦.2008.DNA指纹图谱技术及其在玉米遗传育种上的应用.种子,27(1):46-50.
    69.王育水,王玉,许会才,刘永英,姬生栋.2008.黄瓜黑星病菌的生物学特性研究.湖北农业科学,47(1):62-64.
    70.王宗华,鲁国东.1998.对植物病原真菌群体遗传研究范畴及其意义的认识.植物病理学报,28(1):5-9.
    71.魏景超.1979.真菌鉴定手册.第一版.上海:上海科学出版社,546-547.
    72.翁祖信.1994.蔬菜病虫害诊断与防治.天津:科学技术出版社,124-126.
    73.吴小芹,熊大斌.2006.松枯梢病菌RAPD分子水平遗传距离分析.南京林业大学学报(自然科学版),30(1):13-16.
    74.徐秉良.1993.番茄叶霉菌生物学性状的初步研究.甘肃农业大学学报,28(3):283-286.
    75.徐秉良,郁继华.1994.番茄叶霉病初侵染再侵染及发病条件的研究.甘肃农业大学学报,30(4):386-391.
    76.许修宏,程志明,矫洪双.1994.番茄叶霉病菌生物学特性的研究.东北农业大学学报,25(3):224-228.
    77.许修宏,刘亚光,郭亚芬,张喜萍.1999.番茄叶霉病药剂防治研究.东北农业大学学报,30(1):36-40.
    78.许勇,周强.1994.黄瓜黑星病的研究.中国蔬菜,6:54-57.
    79.杨若林,刘建云,吕欣,王新宇.2001.白粉菌侵染对小麦叶片显微及超微结构的影响.西北植物学报,21(2):293-296.
    80.易齐,王蔚,王传英.1987.黄瓜黑星病及其蔓延危害现状.植物保护,6:40-41.
    81.袁美丽,杨玉范,陈秀艳,刘文生,卢香春,王敏.1991.黄瓜黑星病侵染和发病规律及其生态防治的研究.植物保护学报,18(3):273-278.
    82.袁晓华,杨中汉.1982.植物生理生化实验.北京:高等教育出版社.
    83.臧睿.2012.中国苹果树腐烂病菌的种群组成、分子检测及其ISSR遗传分析.博士学位论文.杨凌:西北农林科技大学.
    84.曾晓葳,骆勇,周益林,段霞瑜。2008.基于小麦白粉病菌rDNA ITS序列的PCR分子检测.植物病理学报,38(2):211-214.
    85.翟凤艳,刘英杰,李玉.2010.枝孢属11个种18S rDNA序列测定及与近似属序列分析.河南大学 学报(自然科学版),40(4):395-398.
    86.翟凤艳,高扬帆,吕文彦,刘英杰,宋明月.2011.多主枝孢粗毒素提取及抑茵活性研究.资源开发与市场,27(01):6-8.
    87.张环,柴敏.1988.双抗2号番茄新品种的育成.中国蔬菜,4:31-32.
    88.张环,张乐民.1996.保护地番茄新品种佳粉15号.中国蔬菜,2:4-6.
    89.张培培,梁晨.2010.番茄叶霉病菌ISSR-PCR体系的建立.菌物研究,8(2):107-114。
    90.张启发,段国录,杨官品.1992.中国大麦叶绿体DNA和核糖体RNA基因限制片段长度多型性.遗传学报,19(2):131-139.
    91.张星耀,赵仕光,朴春根,吕全,贾秀贞.1999.树木溃疡病病原真菌类群分子遗传多样性研究Ⅰ*——小穴壳菌属、疡壳孢属、壳囊孢属、盾壳霉属分类地位的分子证明.林业研究,35(3):3440.
    92.张英杰,张举梅,张赓红.1998.国外番茄抗病育种研究概述.北方园艺,3:41-42.
    93.张中义,王学英,李华,刘云龙,浦卫琼.1991.园林花卉真菌病害研究之二.云南农业大学学报,6(2):223-229.
    94.张中义.2003.中国真菌志第十四卷枝孢属黑星孢属梨孢属.第一版.北京:科学出版社,5-139.
    95.赵国屏.2002.生物信息学.北京:科学出版社,113-114.
    96.赵晓军,王美琴,刘慧平,韩巨才.2005.番茄叶霉病菌不同菌株粗毒素对种子萌发的影响.山西农业科学,33(1):50-52.
    97.赵永强,张成玲,张薇,李璐宁,张广民.2009.烟草根黑腐病菌的PCR分子检测,39(1):23-29.
    98. Ahmad R, Potter D, Southwick SM.2004. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular markers. Journal of the American Society for Horticultural Sciences,129 (2):204-210.
    99. Aleksic Z, Aleksic D.1976. The most important diseases of pepper in Serbia. Poljoprivreda,23 (252): 17-23.
    100. Arnone A, Assante G, Modugno VD, Merlini L, Nasini G. 1988. Perylenequinones from cucumber seedlings infected with Cladosporium cucumerinum. Phytochemistry,27 (6):1675-1678.
    101. Atan S, Hamid NH.2003. Differentiating races of Corynespora cassiicola using RAPD and internal transcribed spacer markers. Journal of Rubber Research,6 (1):58-64.
    102. Babu AM, Kumar V, Datta RK.1999. Development of special hyphal branches of Phyllactinia corylea on host and non-host surfaces. Mycopathologia,145:29-33.
    103. Baiswar P, Chandra S, Bag TK, Patel RK, Ngachan SV, Deka BC.2011. Cladosporium oxysporum on Prunus nepalensis in India. Australasian Plant Disease Notes,6 (1):3-6.
    104. Bedlan G, Plenk A, Ambrosch A.2012. First report of Passalora capsicicola (syn. Cladosporium capsici) on Capsicum annuum in Austria. Journal fur Kulturpflanzen,64 (1):29-32.
    105. Bensch K, Groenewal JZ, Dijksterhuis J, Starink-Willemse M, Andersen B, Summerell BA, Shin H-D, et al.2010. Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology,67:1-94.
    106. Bond TET.1938. Infection experiments with Cladosporium julvum Cooke and related species. Annals of Applied Biology,25 (2):277-307.
    107. Braun U, Crous PW, Dugan F, Groenewald JZ, Hoog GS de.2003. Phylogeny and taxonomy of Cladosporium-liks hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycological Progress,2 (1):3-18.
    108. Budak H, Shearman RC, Parmaksiz I, Dweikat I.2004. Comparative analysis of seeded and vegetative biotype buffalo grasses based on phylogenetic relationship using ISSRs, SSRs, RAPDs, and SRAPs. Theoretical and Applied Genetics,109 (2):280-288.
    109. Carder JH, Barbara DJ.1991. Molecular variation and restriction fragment length polymorphisms (RFLPs) within and between six species of Verticillium. Mycological Research,95 (8):935-942.
    110. Ceresini PC, Shew HD, Vilgalys RJ, Cubeta MA.2002. Genetic diversity of Rhizoctonia solani AG-3 from potato and tobacco in North Carolina. Mycologia,94 (3):437-449.
    111. Cornelissen BJC, Melchers LS.1993. Strategies for control of fungal diseases with transgenic plants. Plant Physiology,101 (3):709-712.
    112. Cote MJ, Tardif MC, Meldrum AJ.2004. Identification of Monilinia fructigen, M. fructicola, M.laxa, and Monilia polystroma on Inoculated and Naturally Infected Fruit Using Multiplex PCR. Plant Disease,88 (11):1219-1225.
    113. de Vries GA.1967. Contibution to the knowledge of the genus Cladosporium. Baam:1-50.
    114. de Wit PJGM.1977. A light and scanning-electron microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium Julvum. Netherlands Journal of Plant Pathology,83 (3): 109-122.
    115. de Wit PJGM, Hofinan AE, Velthuis GCM, Toma IMJ.1987. Specificity of actit defence responses in plant-fungus interactions:Tomsto-Cladosporium Julvum a case study. Plant Physiology and Biochemistry,25:345-351.
    116. Dean RA.1997. Signal pathways and appressorium morphogenesis. Annual Review of Phytopathology,35:211-234.
    117. Deising HB, Werner S, Wernitz M.2000. The role of fungal appressoria in plant infection. Microbes and Infection,2 (13):1631-1641.
    118. Dow JM, Callow JA.1979. Partial characterization of glycopeptides from culture filtrates of Fulvia fulva (Cooke) Ciferri (syn. Cladosporium fulvum), the tomato leaf mould pathogen. Microbiology,113 (1):57-66.
    119. Duncan S, Barton J, Philip A, O'Brien.1993. Analysis of variation in isolates of Rhizoctonia solani by random amplified polymorphic DNA assay. Mycological Research,97 (9):1075-1082.
    120. Enjalbert J, Duan X, Leconte M.2002. Genetic evidence of local adaptation of wheat yellow rust (Puccinia striformis f. sp. tritici) within France. Molecular Ecology,14:2065-2073.
    121. Ferriol M, Pico B, Nuez F.2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics,107 (2):271-282.
    122. Flowers J, Hartman J, Vaillancourt L.2003. Detection of Latent Sphaeropsis sapinea Infections in Austrian Pine Tissues Using Nested-Polymerase Chain Reaction. Phytopathology,93 (12):1471-1477.
    123. Ge YH, Guest DI.2011. Light and scanning electron microscopy studies on the infection process of melon leaves by Colletotrichum lagenarium. Physiological and Molecular Plant Pathology,76:67-74.
    124. Glass NL, Donaldson GC.1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Applied and environmental microbiology,61 (4):1323-1330.
    125. Goodwin PH, Annis SL.1991. Rapid identification of genetic variation and pathotypes of Leptosphareia maculans by random amplified polymorphic DNA assay. Applied and Environmental Microbiolgy,57 (9):2482-2486.
    126. Grodzicker T, Williams J, Sharp P, Sambrook J.1974. Physical mapping of temperature-sensitive mutations of adenoviruses. Cold Spring Harbor Symposia on Quantitative Biology,39:439-446.
    127. Hammouda AM.1992. A new leaf spot of pepper caused by Cladosporium oxysporum. Plant Disease, 76:536-537.
    128. Han QM, Zhao HY, Huang LL, Buchenauer H, Zuo YH, Kang ZH.2011. Light and electron microscopy studies on the infection of a wild-type and metalaxyl-resistant isolate of Phytophthora sojae in soybean hypocotyls. Journal of Phytopathology-phytopathologische Zeitschrift,159: 368-376.
    129. Hawsworth DL, Sutton BC, Ainsworth GC.1983. Ainsworth & Bisby's dictionary of the fungi.7th ed. Commonwealth Mycological Institute,126.
    130. Hsieh TF, Huang JW, Shiang T.2001. Light and scanning electron microscopy studies on the infection of oriental lily leaves by Botrytis elliptica. European Journal of Plant Pathology,107:571-581.
    131. Huang XY, Liu ZH, Yang H, Hu JX, Wang SW, ZouY, Zhang S.2012. First report of a leaf spot on pepper caused by Cladosporium oxysporum in China. Plant Disease,96 (7):1072-1073.
    132. Jeffreys AJ, Wilson V, Thein SL.1985. Hypervariable 'minisatellite'regions in human DNA. Nature, 314 (6006):67-73.
    133. Jong SN de, Levesque CA, Verkley GJM, Abeln ESA, Rahe JE, Braun PG 2001. Phylogenetic relationships among Neofabraea species causing tree cankers and bull's-eye rot of apple based on DNA sequencing of ITS nuclear rDNA, mitochondrial rDNA, and the β-tubulin gene. Mycological Research,105 (6):658-669.
    134. Joosten MHAJ, de Wit PJGM.1989. Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as 1,3-β-glucananses and chitinases. Plant Physiology,89 (3):945-951.
    135. Kepley JB.2009. Cytospora canker complex on Populus tremuloides Michx. Doctor Dissertation. Fort Collins:Colorado State Univerisity,203.
    136. Kirk PM, Cannon PF, David JC, et al.2001. Ainsworth & Bisby's dictionary of the fungi.9th ed. UK: CAB International Publishing,655.
    137. Kuc J.1962. Production of extracellular enzymes by Cladosporium cucumerinum. Phytopathology,52: 961-963.
    138. Kullnig-Gradinger CM, Szakacs G, Kubicek CP.2002. Phylogen and evolution of the genus Trichoderma:multigene approach. Mycological Research,106 (7):757-767.
    139. Lamboy JS, Dillard HR.1997. First report of a leaf spot caused by Cladosporium oxysporum on greenhouse tomato. Plant disease,81 (2):228.
    140. Latunde-Dada AO, Bailey JAS Lucas JA.1997. Infection process of Colletotrichum destructivum O'Gara from lucerne (Medicago sativa L.). European Journal of Plant Pathology,103:35-41.
    141. Lauge R, Joosten MHA, Ackerveken GFJM van den, Broek HWJ van den, Wit PJGM de.1997. The in planta-produced extracellular proteins ECP1 and ECP2 of Cladosporium Julvum are virulence factors. Molecular Plant-Microbe Interactions,10 (6):725-734.
    142. Lauge R, Joosten MHA, Haanstra JPW, Goodwin PH, Lindhout P, Wit PJGM de.1998. Suceessful search for a resistance gene in tomato targeted against a virulence factor of a fungal Pathogen. Proceedings of the National Academy of Sciences of the United states of America,95 (15): 9014-9018.
    143. Lazarovits G, Higgins VJ.1979. Biological activity and specificity of a toxin produced by Cladosporium julvum. Physiology and Biochemistry,69 (10):1056-1061.
    144. Li G, Quiros CF.2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica. Theor Appl Genet.,103:455-461.
    145. Li G, Quiros CF.2002. Genetic analysis, expression and molecular characterization of BoGSL-ELONG, a major gene involved in the aliphatic glucosinolate pathway of Brassica species. Genetics, 162 (4):1937-1943.
    146. Li S, Hartman GL.2003. Molecular detection of Fusarium solani f. sp. glycines in soybean roots and soil. Plant Pathology,2:74-83.
    147. Majer D, Mithen R, Lewis BG, Vos P, Oliver RP.1996. The use of AFLP fingerprinting for the detection of genetic variation in fungi. Mycological Research,100 (9):1107-1111.
    148. Martin RR, James D, Levesque CA.2000. Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology,38:207-239.
    149. Money NP, Howard RJ.1996. Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genetics and Biology,20: 217-227.
    150. Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich.1986. Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology, LI:263-273.
    151. Nei M, Li WH.1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA,76:5269-5273.
    151. Nguyen AN, Jugah K, Sunderasan E, Abdullah MP, Malik A, Napis S.2008. Morphological and inter simple sequence repeat (ISSR) markers analyses of Corynespora cassiicola isolates from rubber plan tations in Malaysia. Mycopathologia,166 (4):189-201.
    152. Niks RE, Rubiales D.2002. Potentially durable resistance mechanisms in plants to specialized fungal pathogens. Euphytica,124:201-216.
    153. Overeem JC, Sijpesteijn A, Fuchs A.1967. The formation of perylenequinones in etiolated cucumber seedlings infected with Cladosporium cucumerinum. Phytochemistry,6 (1):99-105.
    154. Pascual CB, Toda T, Raymondo AD, Hyakumachi M.2000. Characterization by conventional techniques and PCR of Rhizoctonia solani isolates causing banded leaf sheath blight in maize. Plant Pathology,49(1):108-118.
    155. Paus F, Raa J.1973. An electron microscope study of infection and disease development in cucumber hypocotyls inoculated with Cladosporium cucumerinum. Physiological Plant Pathology,3:461-464.
    156. Peever TL, Higgins VJ.1989. Electrolyte Leakage, Lipoxygenase, and Lipid Peroxidation Induced in Tomato Leaf Tissue by Specific and Nonspecific Elicitors from Cladosporium fulvum. Plant Physiology,90 (3):867-875.
    157. Riquelme M, Reynaga-Pena CG, Gierz G, Bartnicki-Gracia S.1998. What determines growth direction in fungal hyphae. Fungal Genetics and Biology,24:101-109.
    158. Rohlf FJ.1998. Ntsyspc numerical taxonomy and multivariate analysis system, version 2.02. New York:Exeter Software.
    159. Romruensukharom P, Tragoonrung S, Vanavichit A, Toojinda T.2005. Genetic variability of Corynespora cassiicola populations in Thailand. Journal of Rubber Research,8:38-49.
    160. Roustaee A, Dechamp-Guillaume G, Gelie B, Savy C, Dargent R, Barrault G.2000. Ultrastructural studies of the mode of penetration by Phoma macdonaldii in sunflower seedlings. Phytopathology, 90 (8):915-920.
    161. Saha TA, Kumar AS, Sreena G.2000. Genetic variability of Corynespora cassiicola infecting Hevea brasiliensis isolated from the traditional rubber growing areas in India. Indian Journal of Natural Rubber Research,13 (1):1-10.
    162. Salazar O, Julian MC, Rubio V.2000. Primers based on specific rDNA-ITS sequences for PCR detection of Rhizoctonia solani, R.solani AG2 subgroups and ecological types, and binucleate Rhizoctonia. Mycological Research,104 (3):281-285.
    163. Schroeder KL, Okubara PA, Tambong JL.2006. Identification and quantification of pathogenic Pythium spp. from soils in eastern Washington using real-time polymerase chain reaction. Ecology and Epidemiology,96 (6):637-647.
    164. Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, et al.2007. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology,58:105-156.
    165. Schubert R, Bahnweg G, Nechwatal J, Jung T, Cooke DEL, Duncan JM, Muller-Starck G, Langebartels C, Sandermann JH, OBwald W.1999. Detection and quantification of Phytophthora species which are associated with root-rot diseases in European deciduous forests by species-specific polymerase chain reaction. European Journal of Forest Pathology,29 (3):169-188.
    166. Sharma R, Singh US.2003. Vegetative compatibility in Rhizoctonia solani using three-way-culture methods. Journal of Mycology and Plant Pathology,33 (1):65-68.
    167. Slippers B, Fourie G, Crous PW, Coutinho TA, Wingfield BD, Wingfield MJ.2004. Multiple gene sequences delimit Botryosphaeria australis sp. nov. from B. lutea. Mycologia,96 (5):1030-1041.
    168. Smith LJ, Datnoff LE, Pernezny K, Schlub RL.2009. Phylogenetic and pathogenic characterization of Corynespora cassiicola. Acta Horticulturae,808:51-56.
    169. Sreenivasprasad S, Sharand K, Brown AE, Mills PR.1996. PCR-based detection of Colletotrichum acutatum on strawberry. Plant Pathology,45 (4):650-655.
    170. Stabentheiner E, Minihofer T, Huss H.2009. Infection of barley by Ramularia collo-cygni:scanning electron microscopic investigations. Mycopathologia,168:135-143.
    171. Strider DL, Winstead NN.1961. Production of cell-wall dissolving enzymes by Cladosporinm cuncmerinum in cucumber tissue and artificial media. Phytopathalogy,51:765-768.
    172. Swinburne TR, Corden ME.1969. A comparison of the polygalacturonases produced in vivo and in vitm by Penicillium expansum Thom. Journal of General and Applied Microbiology,55 (1):75-87.
    173. Talbot NJ.1999. Fungal biology coming up for air and sporulation. Nature,398:295-296.
    174. Thompson JN, Burdon JJ.1992. Gene-for-gene coevolution between plant and parasites. Nature,360 (12):121-125.
    175. Tucker SL, Talbot NJ.2001. Surface attachment and prepenetration stage development by plant pathogenic fungi. Annual Review of Phytopathology,39:385-411.
    176. Uzun A, Gulsen O, Seday U, Bircan M, Yilmaz KU.2010. SRAP based genetic analysis of some apricot cultivars. Romanian Biotechnological Letters,15 (4):5396-5404.
    177. Vos P, Hogers R, Bleeker M, Reijans M, Lee T van den, Homes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M.1995. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research, 23 (21):4407-4414.
    178. Welsh J, McClelland M.1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,18 (24):7213-7218.
    179. White TJ, Bruns T, Lee S.1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phyogenetics. In Innis MA, Gelfand DH, Sninsky JJ, White TJ. PCR protocols a guide to method and applications. San Diego:Academic Press,315-322.
    180. Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV.1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research,18 (22):6531-6535.
    181. Wirsel SGR, Runge-Frobo'se C, Ahre'n DG, et al.2002. Four or more species of Cladosporium sympatrically colonize Phragmites australis. Fungal Genetics and Biology,35:99-113.
    182. Wubben JP, Joosten MHAJ, Wit PJGM de.1994. Expression and localization of two in planta induced extracellar proteins of the fungal tomato pathogen Cladosporium fulvum. Molecular Plant-Microbe Interactions,7 (4):516-524.
    183. Zalar P, Hoog GS de, Schroers HJ, Crous PW, Groenewald JZ, Gunde-Cimerman N.2007. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Studies in Mycology,58:157-183.
    184. Zang R, Li ZL, Ke XW, Wang XJ, Yin ZY, Kang ZS, Huang LL.2012. A nested PCR assay for detecting Valsa mali var. mali in different tissues of apple trees. Plant Disease,96:1645-1652,
    185. Zhou SG, Smith DR, Stanosz GR.2001. Differentiation of Botryosphaeria species and related anamorphic fungi using inter simple or short sequence repeat (ISSR) fingerprinting. Mycological Research,105 (8):919-926.
    186. Zietkiewicz E, Rafalski A, Labuda D.1994. Genome fingerprinting by simple sequence repeat (ssr)-anchored polymerase chain reaction amplification. Genomics,20 (2):176-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700