用户名: 密码: 验证码:
高硫铝土矿浮选除硫及溶出性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国铝土矿资源丰富,90%以上为高铝、低铁的一水硬铝石矿。在这些高铝、低铁的一水硬铝石矿中,有近一半的矿石因含有较高的硫元素而无法在工业上得到应用。其中高品级矿石占57.2%,中低品级矿石占42.8%。此类矿石高品位所占比例大,但需经过除硫后才能应用,因此研究合理的铝土矿除硫方法意义重大。
     本文在查阅了大量文献的基础上,确定采用浮选法作为高硫铝土矿除硫的方法。研究了高硫铝土矿浮选除硫捕收剂优选、浮选工艺参数、浮选动力学和浮选工艺流程等方面的内容。
     首先,研究了重庆某地区高硫铝土矿物相组成。结果表明:铝土矿主要矿相为一水硬铝石,另外还含有一定量的针铁矿、高岭石和黄铁矿,其中硫元素主要以FeS2的形式存在,其含量为2.08%。黄铁矿与一水硬铝石嵌布不均。
     其次,采用一步粗选流程,考察了十二烷基苯磺酸钠、乙黄药、乙硫氮、丁黄药和异丁黄药对矿物中含硫矿物的捕收能力,并研究了主要参数对浮选药剂捕收能力的影响。结果表明:十二烷基苯磺酸钠对含硫矿物的捕收能力和选择性很差,不能用作高硫铝土矿浮选除硫的捕收剂;乙黄药和乙硫氮可以作为捕收剂应用到高硫铝土矿浮选除硫实验中,但是选择性和捕收能力均不如丁黄药和异丁黄药;丁黄药捕收能力强于异丁黄药,但选择性却低于异丁黄药。
     第三,适合乙硫氮浮选除硫的工艺参数为:用量0.5kg·t-1,矿浆pH=4,矿石粒度小于0.09mm,液固比为10:1;适合乙黄药浮选除硫的参数为:用量为0.4kg·t-1,矿浆pH=8,矿石粒度小于0.09mm,液固比为9:1。在上述浮选参数下,采用一粗二精二扫流程,二者均可以获得硫含量低于0.55%,氧化铝的回收率达到98%的铝土矿。
     第四,研究了使用丁黄药和异丁黄药作为捕收剂时浮选工艺条件对浮选效果的影响,丁黄药和异丁黄药最优的浮选参数相同,均为矿浆pH=10,矿石粒度小于0.09mm,液固比为10,黄药用量为0.16kg·t-1,浮选时间为15min。在此参数下,采用一粗一扫的工艺流程,可以获得硫含量低于0.6%,氧化铝的回收率达到98%的铝土矿。同时得到含硫量超过20%的硫精矿。
     第五,浮选过程动力学研究表明:丁黄药浮选动力学方程为R=R∞(1-e-kt),其中k=2.934×10-3,此模型为经典一级浮选动力学模型;乙黄药浮选动力学方程为R=16.15t1.63/(1+0.21t1.63),异丁黄药的浮选动力学方程为R=52.87t-0.83/(1+0.59t0.83),式中R为脱硫率,t为浮选时间。
     第六,浮选机理分析表明,无论是黄药类捕收剂还是硫氮类捕收剂,在浮选过程中都是发生了双聚反应,并产生了二聚物。二聚物的产生,有利于增加矿物吸附捕收剂后表面的疏水性能。浮选过程中利用CuSO4作为硫化物的活化剂。Cu2+起到活化作用的原因也是因为其促进了浮选捕收剂二聚物的生成。
     第七,对比了原矿及浮选矿的溶出和沉降性能,结果表明:原矿和浮选矿适宜的溶出条件相同,均为石灰添加量15%、苛性碱浓度240g·L-1、溶出温度240℃、溶出时间60min、配料分子比1.5,在此工艺条件下,原矿及浮选矿中氧化铝的相对溶出率分别为95.35%和95.03%,浮选过程基本没有影响铝土矿的溶出性能;在溶出过程中,浮选矿明显溶出后赤泥变黑的程度较原矿有所下降。赤泥沉降性能研究结果表明,浮选矿赤泥沉降性能与原矿赤泥沉降性能基本一致。
Ninety percent of the bauxite in China is diaspore with high content of aluminum and low content of iron. Almost half of the high aluminum, low iron diaspore ore can not be applied in industry for containing high-sulfur. Among the high-sulfur diaspore, high-grade ore accounted for57.2%, medium and low grade ore accounted for42.8%. If processing of desulfurization from the high-sulfur diaspore, such a large proportion of high-grade ore can be applied in industry, so researching the economic desulfurization method has great potential industrial significance.
     Based on lots of datum about desulfurization home and abroad, the paper considered that the flotation method is the effective method of desulfurization. It is necessary that the sulfur collectors, flotation process parameters, flotation kinetics and flotation process for high-sulfur diaspore should be further studied.
     Firstly, the phase composition of high-sulfur bauxite of Chongqing China was studied. The results show that:the diaspore is the main phase of high-sulfur bauxite. Furthermore, this also contains a certain amount of goethite, kaolinite and pyrite. The element of sulfur is mainly in the form of FeS2. Sulfur content is2.08%. Pyrite embedded fabric diaspore uneven.
     Secondly, the sulfur capture abilities of sodium dodecyl sulfonate, ethyl xanthate, ethyl-thio carbamate, butyl xanthate and isobutyl xanthate were studied by one-stage cleaning process. Furthermore, the influences of these collectors by process parameters were studied too. The results show that:the collective and selective abilities of sodium dodecyl sulfonate are very poor. So it can not be used as sulfur collector in high-sulfur bauxite desulfurization. Although the ethyl xanthate and ethyl thio carbamate can be used as capture agents in the desulphurization experiments of high-sulfur bauxite, the selectivity and capture ability are not as good as butyl xanthate and iso-butyl xanthate. Butyl xanthate has stronger capture ability than isobutyl xanthate, but the selectivity is lower than isobutyl xanthate.
     Thirdly, The optimum flotation process parameters of ethyl thio carbamate were:the dose0.5kg·t-1, pH=4, ore size≦0.09mm, liquid/solid ratio10; The optimum flotation process parameters of ethyl xanthate:dose0.4kg·t-1, pH=8, ore size no more than0.09mm, L/S=9:1; The flotation experiments by the circle test of one-stage roughing, two-stage scavenging and two-stage cleaning flotation under these flotation process parameters were studied. The results as flows:the sulfur containt was lower than0.55%, the aluminium recovery was98%.
     Fourthly, Butyl xanthate and iso-butyl xanthate have the same optimum flotation process parameters:dose0.16kg·t-1, pH=10, ore size no more than0.09mm, L/S=10. The flotation time of these collectors are15min. The flotation experiments by the circle test of one-stage roughing and one-stage cleaning flotation under these flotation process parameters were studied. The results as follows:the sulfur containt of bauxite was lower than0.6%and the aluminium recovery was98%. The sulfur containt was more than20%of the sulfur concentrate.
     Fifthly, the results of flotation kinetics showed that:the flotation dynamic equation of butyl xanthate was R=R∞o(1-e-kt), k=2.934×10-3. The flotation dynamic equation of ethyl xanthate was R=16.15t1.63/(1+0.21t1.63), while the flotation dynamic equation of isobutyl xanthate was R=52.87t0.83/(1+0.59t0.83), R means desulfurization,t means flotation time.
     Sixthly, the flotation mechanism was studied, too. The double-poly reaction was occurred in the flotation process whether xanthate or thio carbamate agents was the flotation collectors. The double-poly could increase the hydrophobic properties of mineral surface which adsorbed the collectors. CuSO4used as the sulfide activator in the flotation test. The reason of Cu2+,s activation is that it could promote dimmer formation of flotation collectors.
     Seventhly, the digestion performance and settling performance of raw ore and flotation ore were studied. The result showed that the optimum digestion performance conditions were similar. The digestion conditions were temperature220℃, lime addition15%, time60minutes, ANk240g·L-1and molecular ratio1.5. The digestion rates of the flotation ores were95.03%which was lower than that of raw ores'95.35%. But both have reached the requirements of industrial production of alumina. In the digestion process, the flotation ore greatly improved the phenomenon of dark red mud. The settling performance studied showed that the flotation ore and raw ore had the same performance.
引文
[1]邱竹贤,黎强.铝电解原理与应用[M].中国矿业大学出版社,1998,1-2.
    [2]董英.常用有色金属资源开发与加工[M].北京:冶金工业出版社,2005,307-321.
    [3]郎大展.中国铝工业发展形势[J].中国金属通报,2008,(35):34-37.
    [4]邱定蕃,徐传华.有色金属资源循环利用[M].北京:冶金工业出版社,2006,121-124.
    [5]郭学益,田庆华.有色金属资源循环理论与方法[M].长沙:中南大学出版社,2008,25-33.
    [6]刘维平.资源循环利用[M].北京:化学工业出版社,2009,8-10.
    [7]董英.常用有色金属资源开发与加工[M].北京:冶金工业出版社,2005,330-331.
    [8]邱定蕃,徐传华.有色金属资源循环利用[M].北京:冶金工业出版社,2006,12-14.
    [9]刘中凡.世界铝土矿资源综述[J].轻金属,2001,(5):7-12.
    [10]王秋霞,张克仁,赵军伟,等.我国铝土矿资源及开发利用现状问题及对策[J].矿产保护和利用,2008,(5):46-50.
    [11]车玲.我国氧化铝工业技术现状与发展趋势[J].世界有色金属,2005,(5):14-18.
    [12]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报,2005,(S1):91-97.
    [13]何润德,胡四春,黎志英,等.用高硫型铝土矿生产氧化铝过程中湿法除硫方法讨论[J].湿法冶金,2004,23(2):66-68.
    [14]李钟模.中朝准地台本溪组硫铁矿的分布规律及预测兼论铝土矿的分布规律[J].化工地质,1994,16(1):41-48.
    [15]邢东生,管永诗.我国铝土矿资源及氧化铝工业的现状[J].采矿技术,2001,1(2):53-55.
    [16]刘祥民.中国铝土矿资源可持续发展战略研究[J].中国金属通报,2005,(14):9-11.
    [17]顾松青.我国氧化铝工业可持续发展之路[A].中国有色金属学会第六届学术年会论文集,2005,15.
    [18]徐大富.贵州矿产资源特点及西部大开发中的战略选择[J].中国地质矿产经济,2000,(6):16-19.
    [19]戚立宽.低品位和高硫铝土矿的处理法[J],轻金属,1995,(1):14-16.
    [20]袁华俊,李琴琴.氧化铝生产过程中黄铁矿硫的脱除方法评述[J].贵州科学,1995,13(1):59-63.
    [21]孙志伟,鹿爱莉.我国铝土矿资源开发利用现状问题与对策[J].中国矿业,2008(5):13-15.
    [22]富崇彦,侯斌,张佳荣.中铝山西分公司铝土矿资源发展战略[J].采矿技术,2005,(2):8-10.
    [23]陈万坤,彭关才.一水硬铝石型铝土矿的强化溶出技术[M],北京:冶金工业出版社,1998,112-116.
    [24]J.S.拉斯哥夫斯基.用阳离子捕收剂浮选硫化矿物[J].国外金属矿选矿,2004,(3):12-18.
    [25]何伯泉,罗琳.试论我国高硫铝土矿脱硫新方案[J].轻金属,1996,(12):3-5.
    [26]扬巧芳,赵清洁.氧化铝生产中排除硫酸钠的研究[J],河南冶金,1998,(7):14-18.
    [27]R H Andrew, K. B Suresh, C G Stephen. The surface chemistry of Bayer process solids: A review[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1999, 146(1-3):359-374.
    [28]Qi Yongqin, Li Wen, Chen Haokan, et al. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel and Energy Abstracts,2004,45(6):705-712.
    [29]吕国志,张廷安,鲍丽,等.高硫铝土矿的焙烧预处理[J].过程工程学报,2008,8(5):892-896.
    [30]Li M, Peng Z H, Liu G H, etal. Intensifying digestion of diaspore and separation of alumina and silica[J]. Transactions of Nonferrous Metals Society of China,2003, 13(3)671-678.
    [34]吕国志,张廷安,鲍丽,等.高硫铝土矿流化焙烧预处理及溶出性能研究[J].过程工程学报,2008,9(S 1):71-75.
    [35]陈文泪,谢巧玲,胡小莲,等.高硫铝土矿反浮选除硫试验研究[J].矿冶工程,2008(3):34-37.
    [36]戚立宽.低品位和高硫铝土矿的处理法[J].轻金属,1995(1):14-16.
    [37]陈文泪,谢巧玲,胡小莲,等.高硫铝土矿反浮选除硫加工成合格产品实验研究[J].轻金属,2008(9):8-12.
    [38]牛芳银,张覃,张杰.某高硫铝土矿浮选脱硫的正交试验[J].矿物学报,2007,27(3):393-395.
    [39]吕国志,张廷安,鲍丽,等.高硫铝土矿的焙烧预处理及溶出性能[J].中国有色金属学报,2009,19(9):1684-1689.
    [40]吕国志,张廷安,鲍丽,等.高硫铝土矿的焙烧预处理[J].过程工程学报,2008,8(5):892-896.
    [41]吕国志,张廷安,鲍丽,等.高硫铝土矿焙烧预处理的赤泥沉降性能[J].东北大学学报(自然科学版),2009,30(2):242-245.
    [42]吕国志,张廷安,鲍丽,等.高硫铝土矿流化焙烧预处理及溶出性能研究[J].第十二届(2008年)冶金反应工程学会议论文集[C].北京:科学出版社,2009,71-75.
    [43]吕国志,张廷安,鲍丽,等.高硫铝土矿的硫化焙烧脱硫及对溶出性能的影响[J].矿业工程,2008,28(6):58-61.
    [44]陈文泪,谢巧玲,胡小莲,等.高硫铝土矿反浮选除硫试验研究[J].矿冶工程,2008,(3):34-37.
    [45]戚立宽.低品位和高硫铝土矿的处理法[J].轻金属,1995,(1):14-16.
    [46]陈文泪,谢巧玲,胡小莲,等.高硫铝土矿反浮选除硫加工成合格产品实验研究[J].轻金属,2008,(9):8-12.
    [47]牛芳银,张覃,张杰.某高硫铝土矿浮选脱硫的正交试验[J].矿物学报,2007,(3):393-395.
    [48]王晓民,张廷安,吕国志,等.丁黄药用于高硫铝土矿浮选除硫的捕收剂[J].过程工程学报,2009,(3):498-502.
    [49]史金东,刘义伦.我国氧化铝工业可持续发展问题的思考[J].轻金属,2006,(11):3-6.
    [50]吴荣庆.我国矿产资源总体形势及主要短缺矿产的发展趋势[J].中国金属通报,2006,(43):13-18.
    [51]蔡璋.浮游选煤与选矿[M].北京:煤炭工业出版社,1991.
    [52]胡熙庚,黄和慰,毛钜凡,等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991.
    [53]冯其明,陈荩,等.硫化矿物浮选电化学[M].长沙:中南工业大学出版社,1992.
    [54]刘炯天,樊民强.试验研究方法[M].徐州:中国矿业大学出版社,2006.246-269.
    [55]《选矿手册》编辑委员会.选矿手册[M].北京:冶金工业出版社,1993.
    [56]周乐光.工艺矿物学[M].北京:冶金工业出版社,2002.
    [57]许时.矿石可选性研究[M].北京:冶金工业出版社,1981.
    [58]李和平.铝土矿工艺矿物学特性研究[J].云南冶金,1997,2(3):61-66.
    [59]曾凡,胡永平,杨毅,等.矿物加工颗粒学[M].徐州:中国矿业大学出版社,2001.
    [60]陈炳辰.磨矿原理[M].北京:冶金工业出版社,1989.
    [61]陈霞.焙烧预处理对一水硬铝石矿微观结构和溶出性能[D].沈阳:东北大学材料与冶金学院.2007,48-50.
    [62]王一雍.一水硬铝石强化溶出过程的基础研究[D].沈阳:东北大学材料与冶金学院.2008,58-60.
    [63]钱胜涛, 肖安陆, 胡典明,等.元素硫微量分析综述[J].安徽化工,2005(5):4-6.
    [64]有色金属工业分析丛书编辑委员会.轻金属冶金分析[M].北京:冶金工业出版社,1992.
    [65]张树朝.现代轻金属冶金分析[M].北京:化学工业出版社,2007.
    [66]胡为柏.浮选[M].北京:冶金工业出版社,1982.
    [67]王淀佐,邱冠周,胡岳华.资源加工学[M].北京:科学出版社,2005.
    [68]钟宣.浮选药剂的结构与性能—浮选药剂的HLB计算法[J].有色金属(选冶部分),1977(1):36-40.
    [69]钟宣.浮选药剂的结构与性能—起泡剂性能的等张比容计算法[J].有色金属(选冶部分),1977,(2):42-44.
    [70]谢广元.选矿学[M].徐州:中国矿业大学出版社,2001.
    [71]朱俊士.选矿实验研究与产业化[M].北京:冶金工业出版社,2004.
    [72]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987.
    [73]邱冠周,袁明亮,杨华明,等.矿物材料加工学[M].长沙:中南工业大学出版社,2003.
    [74]王淀佐.矿物加工学[M].徐州:中国矿业大学出版社,2003.
    [75]许洪刚.齐大山铁矿浮选工艺流程优化研究[D].鞍山:辽宁科技大学,2007.
    [76]周振英,刘炯天.选煤工艺试验研究方法[M].徐州:中国矿业大学出版社,1991.
    [77]A.C.阿鲁吉欧.铁矿浮选药剂[J].国外金属矿选矿,2006.2:4-7.
    [78]刘静,张建强,刘炯天.铁矿浮选药剂现状综述[J].中国矿业,2007.2:106-108.
    [79]任建伟,王毓华.铁矿反浮脱硅的试验研究[J].矿产保护与利用,2004(1):31-34.
    [80]岩崎严.铁矿浮选的历史回顾和未来展望[J].国外金属矿选矿,2001.8:17-21.
    [81]黄先本.选矿厂生产技术检验[M].北京:冶金工业出版社,1985.
    [82]吴大为.浮游选煤技术[M].徐州:中国矿业大学出版社,2004.
    [83]刘炯天,樊民强.试验研究方法[M].徐州:中国矿业大学出版社,2006.5.
    [84]边炳鑫,陈清如,韦鲁滨.浮选矿浆的磁化处理效应和机理研究[J].煤炭学报,2004,29(1):97-100.
    [85]朱玉霜.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996:13-17.
    [86]边炳鑫,陈清如,韦鲁滨.药剂磁化处理对煤泥浮选效果影响的研究[J].中国矿业大学学报,2004,33(3):343-346.
    [87]Zhongehun Chun, S. Dunean, K. K. Chwala, etal. Characterization of interfacial reaction products in alumina fiber/barium zirconate coating/alumina matrix composite [J]. MateriealsCharaeterization,2002,48:305-314.
    [88]方启学,黄国智.铝土矿选矿脱硅技术研究[J].有色金属(选矿部分),2001,(3):1-7.
    [89]《选矿手册》编辑委员会.选矿手册[M].北京:冶金工业出版社,1993.
    [90]C. H. G. Bushell, Kinetics of flotation[J]. Trans. A. I. M. E.,1962(223):266-278.
    [91]李光辉,董海刚,肖春梅,等.高铁铝土矿的工艺矿物学及铝铁分离技术[J].中南大学学报(自然科学版),2006,37(2):235-240.
    [92]任天忠.选矿数学模型及模拟[M].长沙:中南工业大学出版社,1990.
    [93]尹蒂,李松仁.选矿数学模型[M].长沙:中南工业大学出版社,1993.
    [94]Bayat O, Ucurum M, Poole C. Effect of size distriution on flotation kinetics of Turkish sphalerite [J]. Mineral Processing and Extractive Metallurgy,2004, (3):53-59.
    [95]丁浩.江西金溪石墨矿浮选动力学模型的研究[J].矿产综合利用,1991,(2):43-47.
    [96]孙德四,施爱加.灰色预测模型与浮选动力学多重模型[J].金属矿山,2002,(8):37-39.
    [97]毛来群,刘慧纳,刘其瑞,等.东鞍山铁矿浮选动力学研究[J].金属矿山,988,(,5):48-50.
    [98]陶有俊,路迈西,蔡璋,等.煤泥浮选动力学模型的研究[J].选煤技术,1994,(6):22-26.
    [99]陶有俊,路迈西,蔡璋,等.细粒煤浮选动力学特性研究[J].中国矿业大学学报,2003,(6):694-697.
    [100]Meftuni Yekeler, et al. Effect of the hydrophobic fraction and particle size in the collectorless column flotation kinetics [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997, (2):9-13.
    [101]Cilek E C. Estimation of flotation kinetic parameters by considering interactions of the operating variables [J]. Minerals Engineering,2004,17:81-85.
    [102]卫玉花,樊民强.屯兰矿小于0.25mm粒级原煤浮选动力学研究[J].洁净煤技术,2004,(4):26-29.
    [103]邱显扬,李松平,邓海波等.菱锌矿加温硫化浮选动力学研究[J].有色金属:选矿部分,2007,(1):24-26.
    [104]王爱丽,张全有.氯化钠浮选动力学研究[J].化工矿物与加工,2007(3):5-7.
    [105]卡里奥依宁J,奈依蒂T.粗粒浮选动力学基本原理和分级机沉砂浮选实践[J].非金属矿,1987,(1):58-61.
    [106]杨松荣.分支浮选的浮选动力学浅析[J].有色矿山,1989,(5):40-43.
    [107]Yuan XM, Palsson B I, Forssberg K S E. Statistical interp retation of flotation kinetics for a comp lex sulphide ore[J]. Minerals Engineering,1996, (4):429-442.
    [108]Feng D, Aldrich C. Effect of particle size on flotation performance of comp lex sulphide ores [J]. Minerals Engineering,1999, (7):721-731.
    [109]杨松荣,夏菊芳,邓朝安.浮选回路配置的浮选动力学探讨[J].有色矿山,2001,(7):26-28.
    [110]Hernainz F, Calero M, Blazquez G. Kinetics consideration in the flotation of phosphate ore [J]. Advanced Powder Technol,2005, (4):347-361.
    [111]沈政昌,卢世杰,刘桂芝.浮选机节能技术研究的新探索[J].有色金属:选矿部分,2001,(5):14-16.
    [112]沈政昌.160 m3浮选机浮选动力学研究[J].有色金属:选矿部分,2005,(5): 33-35.
    [113]沈政昌,陈东.充气式浮选机浮选动力学模型研究[J].有色金属:选矿部分,2006,(1):22-25.
    [114]沈政昌,史帅星,卢世杰KYZ-B型浮选柱系统的设计研究[J].有色金属:选矿部分,2006,(4):20-24.
    [115]BourassaM,等.浮选动力学放大:实验室批次试验与试验厂生产对比[J].国外金属矿选矿,1989,(2):35-40.
    [116]亚纳托斯J B等.大尺寸浮选槽的特征[J].国外金属矿选矿,2006,(9):23-45.
    [117]《选矿手册》编辑委员会.选矿手册(第三卷第二分册)[M].北京:冶金工业出版社.2005,27.
    [118]胡为柏.浮选基本原理[M].湖南:冶金工业出版社,1982,112-135.
    [119]牛福生,刘瑞琴,郑卫民等.选矿知识600问[M].北京:冶金工业出版社,2008.9.135-143.
    [120]胡熙庚.有色金属硫化矿选矿[M].北京:冶金工业出版社,1987:47-56.
    [121]胡熙庚,黄和慰,毛钜凡等.浮选理论与工艺[M].长沙:中南工业大学出版社,1991:176-184.
    [122]冯其明,陈荩等.硫化矿物浮选电化学[M].长沙:中南工业大学出版社,1992:203-244.
    [123]刘炯天,樊民强.试验研究方法[M].徐州:中国矿业大学出版社,2006.246-269.
    [124]《选矿手册》编辑委员会.选矿手册[M].北京:冶金工业出版社,1993:149-156.
    [125]朱玉霜.浮选药剂的化学原理[M].长沙:中南工业大学出版社,1996:13-17.
    [126]周振英,刘炯天.选煤工艺试验研究方法[M].徐州:中国矿业大学出版社,1991:324-327.
    [127]王建立,何静华.影响一水硬铝石型铝土矿溶出因素比较分析[J].轻金属,2000,(12):25-27.
    [128]莫鼎成.冶金动力学[M].北京:冶金工业出版社,1993,26.
    [129]赵清杰.一水硬铝石溶出新工艺的研究[J].轻金属,2000,(1):17-21.
    [130]A D Lester. Chemical additives in Bayer process[J]. Light Metals,1991,155-158.
    [131]I Paspaliaris, A Karalis. The effect of various additives on diasporic bauxite leaching by the Bayer process[J]. Light Metals,1993,35-39.
    [132]阿布拉莫夫主编,陈谦德等译.碱法综合处理含铝原料德物理化学原理[M].长沙:中南工业大学出版社,1988:111-151.
    [133]H Mercier, R Magrone. Influence de I'addition de charx a I'attaque alcalline on voie humide des bauxites a diaspore[J]. ICSOBA 3# Congres, Nice,1973, (7):513-521.
    [134]Karoly Solymar, Jozsef Zoldi. Lime in the Bayer process present state and furture trends[J]. Light Metals,1993, (5):185-193.
    [135]项阳,袁艺,李海波等.拜耳法中石灰添加量对氧化铝溶出率的影响[J].贵州化工2004,29(1):8-10.
    [136]曹彦卓,董放战,张生.石灰活性对氧化铝溶出率的影响[J].轻金属,2007,(5):21-23.
    [137]王艳利.后加矿增溶溶出技术处理我国一水硬铝石矿的研究[D].沈阳:东北大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700