用户名: 密码: 验证码:
重型履带车辆软地面行驶性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了缓解能源需求的巨大压力,“十二五”期间国家重点发展5000万吨级、亿吨级特大型煤炭企业。在特大型煤炭企业中,斗轮挖掘机、排土机、堆取料机和移动式破碎站等连续性开采设备得到了广泛应用。重型履带行走装置是担负这些设备承重、移动及转向功能的重要载体,其性能优劣直接影响到整车的工作效率和可靠性。开发具有高效率、高可靠性的重型履带行走装置,已经成为当前的重要任务。本文结合“产学研”项目,主要针对重型履带车辆在软地面上的行驶性能进行研究。
     在广泛查阅国内外资料基础上,介绍了重型履带软地面行驶性能的研究背景和研究意义;综述了重型履带与软地面作用原理的研究现状;从数字化物理样机、功能样机等方面介绍了虚拟样机技术在重型履带研究中的应用;指出巨型化、零部件的通用化、远程控制和智能控制是重型履带的发展趋势。
     对重型履带的结构类型、转向方式、驱动方式和功能特点进行了介绍。考虑速度瞬心偏移、质心偏移等因素,结合贝克沉陷理论,分析了履带在软地面行驶时受到的沉陷阻力、转向推土阻力、转向摩擦阻力、运行阻力、惯性阻力、爬坡阻力以及风阻力等作用力,给出了不同工况下履带驱动功率的计算方法。通过对比履带在密执安土、砂壤土和粘土等三种土壤下的沉陷阻力及沉陷量,确定了本文的研究路面为密执安土壤,并研究了履带宽长比对履带车辆行驶性能的影响。
     定义了履带链节随动坐标系与大地坐标系的关系,将重型履带分为上部自由段、与地面接触的支持段、与导向轮接触的部分及与驱动轮接触的部分等四部分,分别对每一部分的履带链节进行力学分析,建立了刚性履带环与软地面作用的数学模型,确定了每一个履带链节的位置和受力关系。
     针对某重型双履带排土机的转向性能进行了理论计算,分析了在外侧履带驱动轮转速为3.33r/min时,转向半径、质心偏移、履带宽长比以及履带轨距等因素对内、外侧履带驱动力、驱动功率以及转向摩擦阻力矩等性能的影响。
     应用大型多体动力学仿真软件Recurdyn创建了某重型履带的虚拟样机模型,并对平地直行、爬坡直行和平地转向等多种工况进行了仿真分析,得到了该履带在上述工况下的驱动力、张紧力以及驱动轮、支重轮、平衡梁和履带的支反力。通过与理论计算结果进行对比,进行了相互验证。
     对某排土机重型履带进行了实车试验。采用“有线测试”与“无线遥测”相结合的方法搭建了电机参数、扭矩、转速和应力等多参数测试系统,确定了各个测点位置、被测件的标定方法以及测试工况。通过处理分析测试数据,得到了重型履带不同工况下的运行规律,并与理论计算、虚拟样机仿真结果进行对比,验证了软地面行驶理论及虚拟样机仿真结果的正确性。
     本文研究了重型履带车辆与软地面作用原理、主要结构参数的对行驶性能的影响、虚拟样机仿真以及实车试验方法,为重型履带行走装置的设计提供了一定的依据。
In order to alleviate the enormous pressure of the energy, our country majority developthe5000ton and hundred million tonlarge coal enterprises during the “12th Five-Year”.Continuous mining equipment such as bucket-wheel excavator, dump machine,stacker-reclaimer and full-mobile crusher station are applied widely in large coalmine.Heavy crawler travel unit is an important carrier of the weight of above mentionedequipment, and the function of moving and steering, whose performance directly effects theworking efficiency and the reliability of the whole machine. To meet the urgent needs of themining industry, it has been a significant task to develop highly reliable heavy crawler travelunit. Combined with the “Ceeusro”, this paper focuses on the study of the riding performa-nce of the heavy tracked vehicle through the soft ground.
     Base on the extensively review about the information at home and abroad, this studyintroduced the research background and significance of the soft ground driving performanceof the heavy crawler. Overviewed the research status of the action principle between theheavy crawler and the soft ground. From the digital physical prototype and the functionalprototype, this paper introduced the application of the virtual prototype technology on theresearch of the heavy crawler. Pointed out that the giant, the generalization of the compon-ents, remote control and intelligent control is the development trend of heavy crawler.
     The structure feature, steering method, driving method and function features of heavycrawler are introduced in this paper. Considering the offset of the center of speed and thecenter of mass and combined with the sinkage method proposed by Bekker, forces duringdriving on soft ground such as the sinking resistance, steering bulldozing resistance, steeringfriction, running resistance, inertial resistance, climbing resistance and wind resistance areanalyzed. Calculation of the crawler drive power under different conditions are given. Byconstracting the sinking resistance and sinkage of the track on Michigan soil,sandy loam andclay, the Michigan soil is used in this paper. Width to length ratio influence on driving perfo- rmance of tracked vehicles is researched.
     The track link relationship between the fixed coordinate system and the geodeticcoordinate system is defined and the track chain is divided into four segments: the upper freesegment, support segment in contact with the ground, segment in contact with the guidewheel, and segment in contact with the driving wheel. The mechanical analysis for the tracklink in each of the four segments is carried out. A mathematical model of the interactionbetween the rigid track ring and the soft ground is established. The location of each tracklink and forces on it are determined.
     For a heavy double track of dumping machine, steering performance is calculated. Thispaper analyzes the influence of steering radius, mass migration and Width to length ratio,crawler wide longer than the interior and the lateral, caterpillar gauge crawler drive, drivepower, steering torque friction and other factors for the performance,when the drivingwheels on the crawler speed is3.33r/min.
     A VP model of heavy tracks is constructed in Recurdyn--a large multi-body dynamicssimulation software. Different working conditions such as straight moving on plain, straightclimbing, and turning around on plain are simulated to get the results of reaction forces actedon driving wheels, thrust wheels, balance beam and tracks as well as the driving and tensionforce of the tracks. The results from simulation and those got from theoretical calculationreaches fine mutual verification.
     The real vehicle test of heavy tracks of a conveyer loader combines wired and unwiredtesting methods to make up the multi-parameter testing system which contains parameters ofelectric motor, torque, rotate speed and stress. Those two testing methods also help fix thelocation of test points and determine the calibration methods as well as testing conditions.The operation law of the heavy track under different working conditions is obtained throughthe test which is contrasted with results from theoretical calculation and VP simulation inorder to prove their correctness.
     The function principle when heavy tracked vehicle works on soft ground and itsstructural parameters' influence on driving performance are researched in this paper. Testedby both virtual and physical tests, the results could provide basis when designing running gear of heavy tracked vehicles.
引文
[1] Durst W, Vogt W.斗轮挖掘机[M].天津:天津科技翻译出版公司,1992.
    [2]陈舜海等.LT140移动式破碎站在龙滩大法坪石料场的应用[J].水力发电,2005,31(10):28-30.
    [3]卢寿彭等.国外斗轮式挖掘机概况[J].工程机械,1973,(8):63-68.
    [4]胡际勇,赵智强,韩进城.大型履带行走装置综述[J].工程机械,2010,21(12):48-51.
    [5]孙海涛,王国强,王良.软路面履带转向阻力的研究[J].建筑机械,1995,9:23-27.
    [6]马若丁.大型履带机械接地比压的动态预测[J].建筑机械,2004,(4):41-44.
    [7]陈秉聪.土壤-车辆系统力学[M].北京:中国农业机械出版社,1987.
    [8]侯敬巍.基于RecurDyn的4自由度液压机器人的动力学建模研究[J].起重运输机械,2011(3):50-53.
    [9]胡坤.双滚筒分别驱动带式输送机虚拟样机研究[D].合肥:安徽理工大学,2008.
    [10]谢加保.带式输送机传动滚筒虚拟样机的设计与研究[D].合肥:安徽理工大学,2009,6.
    [11] O. Benoit, Ph. Gotteland. Modelling of sinkage tests in tilled soils for mobilitystudy[J]. Soil&Tillage Research,2005,80:215-231.
    [12] Q. Li, P.D. Ayers, A.B. Anderson. Modeling of terrain impact caused by trackedvehicles [J]. Journal of Terramechanics,2007,44:395-410.
    [13] Tran Dang Thai, TatsuroMuro. Numerical analysis to predict turning characteristics ofrigid suspension tracked vehicle[J]. Journal of Terramechanics,1999,36:183-196.
    [14]徐飞军,黄文倩,陈立平.履带拖拉机软土地行走动力学仿真[J].农机化研究,2009,(12):204-207.
    [15] W. Merhof, E. M. Hackbarth.履带车辆行驶力学[M].北京:国防工业出版社,1989.5.
    [16] Bekker M G.地面-车辆系统导轮[M].北京:机械工业出版社,1978.
    [17] Wong J Y, Garber M, Preston-Thomas J. Theoretical prediction and experimentalsubstantiation of the ground pressure distribution and tractive performance of trackedvehicles[J]. Journal of Transport Engineering,1984,198:265-85.
    [18] Wong J Y. Introduction To Terramechanics[J]. Journal of Terramechanics,1983,21:5-17.
    [19] Wong J Y. On The Study Of Wheel-Soil Interaction[J]. Journal of Terramechanics,1984.21:117-131.
    [20] Wong J Y, Preston-Thomas J. Investigation into the effects of suspensioncharacteristics and design parameters on the performance of tracked vehicles using anadvanced computer simulation model[J]. Journal of Transport Engineering,1988,202:143-161.
    [21]黄祖永.地面车辆原理[M].北京:机械工业出版社,1985.
    [22] Wong J Y, Huang W."Wheels vs. tracks"-A fundamental evaluation from the tractionperspective[J]. Journal of Terramechanics,2006,43:27-42.
    [23] Gao Y, Wong J Y. The development and validation of a computer-aided method fordesign evaluation of tracked vehicles with rigid links[J]. Journal of AutomobileEngineering,1994,208:207-215.
    [24] Rubinstein D, Galili N. Rekem-a design-oriented simulation program for off-roadtrack vehicle[J]. Journal of Terramechanics,1994,31:329-352.
    [25] Rubinstein D, Hitron R. A detailed multi-body model for dynamic simulation ofoff-road tracked vehicles[J]. Journal of Terramechanics,2004,41:163-173.
    [26] Ferretti G, Girelli R. Modelling and simulation of an agricultural tracked vehicle[J].Journal of Terramechanics,1999,36:139-158.
    [27] Li Q. Modeling of terrain impact caused by off-road vehicles[D]. Knoxville,Tennessee, US: The University of Tennessee,2006.
    [28] Alexandr G. Thrust and slip of a track determined by the compression-slidingapproach[J]. Journal of Terramechanics,2007,44:451-459.
    [29]吴大林,马吉胜,王兴贵.履带车辆地面仿真研究[J].计算机仿真,2004,12:121-124.
    [30]刘延柱.多刚体系统动力学[M].北京:高等教育出版社,1989.
    [31]焦晓娟,张湝渭,彭斌彬..RecurDyn多体系统优化仿真技术[M].北京:清华大学出版社,2010.
    [32]王国强,张进平.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [33]隋文涛.大型矿用挖掘机履带行走装置动力学仿真研究[D].吉林大学,2007
    [34] Gigler J K, Ward M. Simulation model for the prediction of the ground pressuredistribution under tracked vehicles[J]. Journal of Terramechanics,1993,30:461-469.
    [35] Mark Eberlein, Ralf Musiol, Holcer Haut. Kinematic analysis of the crawler travelgear of a bucket wheel excavator using multi-body simulation [J]. World of Mining–Surface&Underground,2008,60(4):232-241.
    [36]卢进军,魏来生,赵韬硕.基于RecurDyn的履带车辆启动加速过程滑转率仿真与试验研究[J].兵工学报,2009,30(10):1281-1286.
    [37] Sr anBo njak, ZoranPetkovi, NenadZrni. Failure analysis and redesign of thebucket wheel excavator two-wheel bogie[J]. Engineering Failure Analysis,2010,17(2):473-485.
    [38]姚怀新.工程机械底盘理论[M].北京:人民交通出版社,2001.12.
    [39]同济大学等.工程机械底盘构造与设计[M].北京:中国建筑工业出版社,1990.
    [40]刘莉.重型履带车辆行走装置设计理论与方法研究[D].长春:吉林大学,2005,6.
    [41]盛建清.多履带行走装置传动系统优化技术应用研究[D].长春:吉林大学,2011,6.
    [42]李勇.多履带行走装置关键设计技术研究[D].长春:吉林大学,2011,12.
    [43]宋跃.双履带斗轮挖掘机运行阻力计算及电机选型[J].工程机械,1989.12:16-20.
    [44]王国强,朱祥,程悦荪等.多履带机械稳态转向特性的研究[J].煤炭学报,1996,21(5):547-552.
    [45]王国强,马若丁,陈向东等.三履带机器非稳态转向特性的研究[J].建筑机械,1997,(9):28-37.
    [46]朱亚云,王国强,陈向东,朱祥.具有三条履带的机器转向性能的理论分析[J].矿山机械,1994,(4):19-23.
    [47]程军伟,高连华,王红岩.基于打滑条件下的履带车辆转向分析[J].机械工程学报,2006,42(5):192-195.
    [48]宋必文.三履带机械滑移转向的理论研究及虚拟样机仿真[D].长春:吉林大学,2011,6.
    [49]倪娜.大型履带行走装置履带板的拓扑优化研究[D].长春:吉林大学,2011,6.
    [50]王国强,党国忠,陈向东,等.履带宽度对车辆转向阻力矩的影响[J].工程机械,1994,6:11-15.
    [51]鲁振.大型静定履带行走装置履带架强度有限元分析研究[D].长春:吉林大学,2011,6.
    [52]李勇,姚宗伟,王国强.四履带车辆转向性能仿真研究[J].北京:农业机械学报,2011,42(2):34-38.
    [53]周君.履带起重机转向阻力矩及转向半径研究[D].大连:大连理工大学,2009.
    [54] Hun K, Choi J, Yoo H. Development of a multi-body Dynamics simulation tool fortracked vehicles:(Part II, Application to track tension controller design): Special issueon multibody dynamics[J]. JSME international journal. Series C, Mechanical systems,machine elements and manufacturing,2003,46(2):550-556.
    [55] SrdjanBo njaka, NenadZrni a, AleksandarSimonovi a. Failure analysis of the end eyeconnection of the bucket wheel excavator portal tie-rod support [J]. EngineeringFailure Analysis,2009,16(3):740-750.
    [56]程军伟,高连华,王红岩等.履带车辆转向分析[J].兵工学报,2007,28(9):1110-1115.
    [57]史青录,孙逢春.履带式车辆斜坡转向稳定性研究[J].农业机械学报,2007,7:22-26.
    [58]王国强.多履带行走装置转向特性研究[D].长春:吉林工业大学,1994.
    [59]毕小平,王普凯,李海军,等.履带车辆动态转向过程的仿真模型[J].兵工学报,2003,24(4):551-554.
    [60] Van Wyk D J, Spoelstra K J, KLerk J H. Mathematical modelling of the interactionbetween a tracked vehicle and the terrain[J]. Applied Mathematical Modelling,1996,20:838-847.
    [61] Bruce M. A skid steering model with track pad flexibility[J]. Journal ofTerramechanics,2007,44:95-110.
    [62] Nakanishi T, Shabana. On the Numerical Solution of Tracked Vehicle DynamicEquations[J]. Nonlinear Dynamics,1994,6(4):391-417.
    [63] Sarwar M, Nakanish T, Shabana A. Chain Link Deformation in The NonlinearDynamics of Tracked Vehicles[J] Journal of Vibration and Control,1995,1(2):201-224.
    [64] Yamakawa J, Watanabe K. A spatial motion analysis model of tracked vehicles withtorsion bar type suspension[J]. Journal of Terramechanics,2004,41:113-126.
    [65]程悦荪.多履带机械结构参数、驱动方式对转向性能的影响[J].农业机械学报,1996.27(3):27-31.
    [66]王国强.大型履带机械最佳履带宽度的探讨[J].农业机械学报,1997.28(2):38-41.
    [67]荆崇波,魏超,刘丁华.履带车辆差速转向机构转向过程动态特性的试验研究[J].液压与气动,2009,(7):54-56.
    [68]荆崇波,魏超,李雪原.履带车辆差速转向机构转向过程动态特性的试验方法[J].农业工程学报,2009,25(7):62-66.
    [69] ModestI.Lyasko. How to calculate the effect of soil conditions on tractive performance[J]. Journal of Terramechanics,47(2010):423-445.
    [70]史力晨,王良曦等.履带车辆转向动力学仿真[J].兵工学报,2003,24(3):289-294.
    [71]马春宇.大型斗轮机的结构优化及力学性能测试[D].长春:吉林大学,2007.06.
    [72]邵明亮,贾建章,贾贵忱.多机拖动的大型带式输送机功率测试[J].起重运输机械,1994,(11):14-18.
    [73]贾海波.轮式装载机传动系载荷谱测试与编制方法研究[D].长春:吉林大学,2009.06.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700