用户名: 密码: 验证码:
遥操作工程机器人系统设计及力反馈控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥操作工程机器人是由人操作的在恶劣环境下作业的工程机械。为了使遥操作系统具有良好的力反馈控制特性,需要实现准确实时的力反馈。为此,本文建立了遥操作工程机器人系统,并对系统的阶跃响应特性、位置跟随特性以及力反馈控制特性进行了实验研究;为改善系统力反馈控制特性,提出了一种基于回归模型的力反馈控制方法,并通过实验验证了其有效性。本文主要研究内容如下:
     1.确定了遥操作工程机器人系统的总体设计方案;采用类比法设计了工程机器人的抓手结构;利用相似原理将挖机改装成了工程机器人;对遥操作工程机器人的液压系统进行了参数设计;还完成了其电控系统设计
     2.基于Windows平台,在VC++环境下,用MFC开发了相应的控制软件系统;利用DirectX编程接口实现了遥控手柄与计算机间的通信。
     3.设计了系统从动手机构的PID串联校正控制器,进行了系统的阶跃响应特性和位置跟随特性等实验研究,实现了较为满意的控制效果。
     4.空载运行已建立好的遥操作工程机器人系统,得到了抓手机构的位移、速度、加速度等运动参数数据以及空载驱动力数据,利用得到的数据,在Sigma Plot软件平台上分析了这些运动参数对空载驱动力的影响规律,假定了它们之间的多元非线性函数关系;对假定的多元函数关系,利用泰勒展开式对其进行了逼近,采用了非线性回归拟合找到了这些运动参数与空载驱动力之间的最佳回归方程和最优回归系数,最终得到了抓手机构的空载驱动力多元非线性回归模型。
     5.根据回归模型,设计了基于空载驱动力回归模型的间接力反馈控制方法;利用该方法,在遥操作工程机器人系统上进行了力反馈控制特性实验研究;与常规的间接力反馈控制方法进行对比实验可知:改进的方法提高了力反馈的准确度和同步程度,改善了系统的力反馈控制特性,同时验证了假定的函数关系和得到的回归模型是正确的。
     本文研究成果对改善遥操作工程机器人力反馈控制特性有借鉴作用。
The tele-operated construction robot is construction machinery, which is controlled by people, working in extreme environments. In order to ensure that the tele-operation system has good control characteristic of force feedback, the accurate and real time force feedback should be achieved. Therefore, this thesis develops a tele-operated construction robot system, and experimental researches on step response characteristic, position follow characteristic and force feedback characteristic of the system are performed. A force feedback control method based on regression model was proposed to improve force feedback control characteristic of the system. And the usefulness of proposed method is confirmed by experiment. The main research of the paper is as follow.
     1. The holistic design scheme of the tele-operated construction robot system is determined. The fork glove structure of the construction robot is designed by analogy. A excavator is modified to be the construction robot based on similarity principle. The parameters of the hydraulic system of the construction robot are designed. And the electronic control system of the tele-operated construction robot is designed too.
     2. The corresponding control software system is developed in the VC++Environment by means of MFC based on Windows operation system. The communications between the joysticks and the computer are developed using DirectX programming interfaces.
     3. A PID series compensator controller on the slave of the system is devised. Experimental researches on step response characteristic and position follow characteristic are done to improve the position control effect of the system.
     4. The data of kinetic parameters and no-load driving force of the fork glove are obtained by running the construction robot on no-load condition. According to these data, the influence of the kinetic parameters acting on no-load driving force is analyzed on the Sigma Plot platform and the multivariate nonlinear functional relationship between them is assumed. And then, Taylor's expansion of multi-function is used to approximate it. Moreover, the optimal regression equations and data about them are obtained by nonlinear regression fitting and the multivariate nonlinear regression model of no-load driving force of the fork glove is built up finally.
     5. An improved indirect force feedback control method based on the regression model is designed. Experimental researches on force feedback control characteristic are carried on using the novel method. Comparing with the experiment of the conventional indirect force feedback control method, we learn that the improved control method increases the accuracy and synchronization of force-feedback, improves force feedback control characteristic of the system. And then, meanwhile, correctness of the assumed functional relationship and the regression model is verified.
     The achievements of this study provide the beneficial reference for improving the force feedback control characteristic of the tele-operated construction robot.
引文
[1]郭晓波,宋爱国.基于Internet力觉临场感遥操作机器人系统的研究[J].制造业自动化,2006,11:40-46.
    [2]陈启军,陈辉堂,王月娟.基于Internet的机器人控制技术及其应用[J].电气自动化,2001(1):7-10.
    [3]Yamada H., Muto T.. Development of a Hydraulic Tele-operated construction robot using virtual reality (New master-slave control method and an evaluation of a visual feedback system) [J]. International Journal of Fluid Power,2003,4(2):35-42.
    [4]John Owens. Microcomputer-Based Industrial Robot Simulator and Off-line Programming System[J]. Robotics Today,1995(8)2:1-3.
    [5]N.Baakini and E.H.Mamdani. PrcseriPtive methods force driving control policy in a fuzzy-Logic controller [J]. Electron. Lett.,1975,11:625-626.
    [6]LAWRENCED A. Stability and transparency in bilateral teleoperation[J]. IEEE Transactions on Robotics and Automation,1993,9(5):624-637.
    [7]ELHAJJI, XIN, LIUYH. Real-time control of internet based teleoperation with force reflection [A]. Proc of IEEE Inter. Conf. on Rob. and Auto[C],2000.3284-3289.
    [8]PARKJH, CHO HC. Sliding-mode controller for bilateral teleoperation with varying time delaylRl. Proceeding of the 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronic,1999:311-316.
    [9]ANDERSON R J, SPONG M W. Bilateral control of teleoperators with time delay[J]. IEEE Trans. Auto-mat. Contr.,1989,34(4):494-501.
    [10]SCHEBOR F S, TRUMEY J L. Realistic and Consistent Telerobotics Simulation[A]. IEEE Int. Conf. on Rob.& Auto[C],1991:1059-1067.
    [11]KOTOKU T. A predictive display with force feedback and Its application to remote manipulation system with transmissition time delay [A]. IEEE SJ Inter. Conf. on Intelligent Robots and Systems[C],1992:239-246.
    [12]ROSENBERG L. Using of virtual fixture to enhance teleoperation with time delay [A]. Proc. of ASME Winter Annual Meeting[C],1993:29-36.
    [13]PENIN L F, MATSUMOTO K, WAKABAYASHL S. Force reflection for time-delayed teleoperation of space robots[A]. Proc of IEEE Inter. Conf. on Rob. and Auto[C],2000:3120-3125.
    [14]Yamada H., Mukota S., Zhao D., Muto T.. Construction Telerobot System with Virtual Reality (Development of a bilateral construction robot) [J]. Proc. of VSMM 98,1:152-157.
    [15]Yamada H., Kato H., Muto T.. Master-slave control for a Tele-operation system of construction robot[J]. Journal of Robotics and Mechanics,2003,15(1):54-60.
    [16]JOHNP. Augmenting reality for telerobotics unifying real and virtual worlds[J]. Industrial Robot,1998,25(6):401-407.
    [17]周玮,苏剑波.一种基于用户意图建模的Internet移动机器人控制方法[J].自动化学报,2006,32(5):819-823.
    [18]孙立宁,谢小辉,富立新等.基于Internet的机器人遥外科手术的问题及对策[J].哈尔滨工业大学学报,2003,35(2):129-133.
    [19]李岩.基于WEB的机器人遥操作及其运动仿真的研究[D].山东:山东大学机械工程学院,2007.
    [20]马宏鹏,翁春华,张蕾,赵新等.机器人遥操作中的网络传输延迟分析[J].计算机工程与应用,2002,5:156-158.
    [21]王永,谢圆,周建亮.空间机器人大时延遥操作技术研究综述[J].宇航学报,2010,31(2):299-306.
    [22]高龙琴,黄惟一,宋爱国.交互式遥操作机器人实验平台中的通信时延问题研究[J].测控技术,2005,24(7):42-45.
    [23]栾昌海,王盟,燕爱华.基于虚拟现实的Internet机器人网络控制研究[J].现代电子技术,2000,4:39-41.
    [24]曾庆军,曾芬芳,黄唯一.VR技术在力觉临场感遥控作业系统中的应用研究[J].系统仿真学报,1999,1l(4):297-301.
    [25]杨志晓,韩金池,欧仁辉.基于OpenGL的虚拟机器人建模的优化方法[J].计算机 系统应用,2008(11):39-41.
    [26]陈俊杰,黄惟一,宋爱国.基于虚拟现实的临场感遥控作业系统的研究动向[J].机器人,2000,22(6):514-526.
    [27]邓乐,赵丁选,倪涛,郑宏宇.基于Stewart平台的6自由度力反馈手控器[J].农业机械学报,2005,36(7):118-121.
    [28]黄卜夫,熊蓉,黄琪等.基于视觉足球机器人无线通讯子系统的设计[J].工程设计学报,2002,9(5):265-267.
    [29]倪涛等.遥操作工程机器人遥控软件设计[J].工程机械,2003(02):4-6.
    [30]潘彬,蒋志坚,张雷.机器人遥操作通信平台的设计[J].北京建筑工程学院学报,2009,25(1):38-41.
    [31]邓乐,王岩等.主从机器人系统新型力觉双向伺服控制方法[J].机械与电子,2005(4):52-54.
    [32]文广,赵丁选等.遥操作工程机器人力觉双向伺服控制系统[J].吉林大学学报(工学版),2006,36(6):919-923.
    [33]赵丁选,侯敬巍等.遥操作机器人执行末端的力反射型变增益力反馈算法[J].吉林大学学报(工学版),2008,38(3):570-574.
    [34]邓乐,赵丁选.一种新的力觉临场感遥操作机器人系统的控制方法[J].机电工程,2005,22(7):26-29.
    [35]邓乐,李新等.新的遥操作工程机器人系统的双向控制策略研究[J].工程机械,2005(7):47-49.
    [36]冯石柱等.遥操作工程机器入p-f力反馈控制方法[J].农业机械学报,2008,39(2):120-124.
    [37]巩明德等.力觉反馈的电液位置伺服控制系统研究[J].农业机械学报,2003,34(1):104-107.
    [38]邓乐,赵丁选,唐新星.具有力觉临场感的遥操作操纵器关键技术研究[J].工程设计学报,2005,12(3):159-162.
    [39]巩明德,赵丁选等.电液伺服遥操作机器人的力觉临场感研究[J].南京理工大学,2004,28(4):395-399.
    [40]巩明德,赵丁选,官口等.遥操作机器入存在时延的位置控制研究[J].农业机械学报,2004,35(1):93-95.
    [41]赵丁选,冯石柱,巩明德等.遥操作工程机器人改进力反馈控制方法[J].吉林大学学报(工学版),2008,38(3):575-579.
    [42]李笑,山田宏尚.基于阻抗辨识器的摇操作工程机器人主从控制[J].机床与液压,2006(9):19l-193.
    [43]李笑,山田宏尚.基于神经网络的遥操作工程机器人力觉反馈技术[J].机床与液压,2005(12):49-51.
    [44]李响,王越超.结合操作者意图分析的Internet机器人控制方法研究[J].计算机工程与应用,2009,45(21):29-32.
    [45]王世华,胥布工,刘云辉.基于Internet的实时遥操作移动机器人系统[J].华南理工大学学报(自然科学版),2008,36(1):81-88.
    [46]于涛.具有力觉反馈的遥操作机器人研究[D].吉林:吉林大学机械科学与工程学院,2005.
    [47]孙鑫,余安萍编著.VC++深入详解[M].北京:电子工业出版社,2010.
    [48]叶至军编著.Visual C++/DirectX9 3D游戏开发导引[M].北京:人民邮电出版社,2006.
    [49](美)Allen Sherrod著.DirectX游戏开发终极指南[M].北京:清华大学出版社,2008.
    [50]田敏,郑瑶,李江全等编著.Visual C++数据采集与串口通信测控应用实战[M].北京:人民邮电出版社,2010.
    [51]何晓群,刘文卿编著.应用回归分析[M].北京:中国人民大学出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700