用户名: 密码: 验证码:
液压挖掘机的主从控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一直以来,工程机械如挖掘机、装载机、起重机等都是通过单杆机液手柄对执行器的速度控制来使设备动作,进而完成各种作业。这种传统的操作方式缺乏直观性,对驾驶员的操作水平要求较高。本文以多自由度力反馈手柄PHANTOM Omni和工程机械液压挖掘机为研究对象,以现有的多自由度挖掘机机械臂操控实验台为基础,构建了挖掘机的主从式控制实验平台,实现了挖掘机的主从控制,且具有操作简单直观、可力觉感知等优点。实验表明该主从控制系统能实现挖掘机工作装置对力反馈手柄的轨迹跟踪,证明了这种控制方案的合理性与可操作性。论文的主要研究内容如下:
     第一章,介绍了主从控制技术与力反馈技术及其在工程机械领域的国内外研究现状,指出了本课题的研究目的和意义,概述了课题的主要研究内容。
     第二章,建立了挖掘机工作装置(包括回转)的运动学数学模型,在MATLAB/Simulink中进行了运动仿真与分析。利用该模型实现挖掘机工作空间包络图的快速准确自动化绘制。
     第三章,利用拉格朗日动力学方法建立了挖掘机工作装置的动力学数学模型,分别在MATLAB/Simulink和Solidworks/Cosmosmotion中进行了动力学仿真与分析。同时针对液压缸、连杆等其它杆件的影响,对模型做了进一步的分析与简化,以提高模型的准确性。
     第四章,详述了主从控制实验平台的结构框架及各组成部分的实现方式。在力反馈手柄数据采集程序Visual C++与主实时控制程序Matlab/xPC Target之间建立了基于UDP/IP的通讯接口。针对力反馈手柄与挖掘机之间的工作空间匹配问题提出了基于关节的空间匹配方式和基于位置增量的空间匹配方式。建立了挖掘机的虚拟现实系统,并利用虚拟现实对通讯和空间匹配方法进行了模拟与可视化仿真。
     第五章,针对基于关节的位置控制模式和基于位置增量的位置控制模式,采用改进的增量式PID控制算法对挖掘机主从控制系统的轨迹跟踪性能进行了实验研究,实验结果证明该主从控制系统能实现挖掘机工作装置对力反馈手柄的轨迹跟踪。
     第六章,对全文进行总结,并对下一步的研究工作进行了具体展望。
Most construction machines such as excavators, loaders, cranes are operated with single lever mechanical-hydraulic joysticks in the way of speed control. The traditional way of operation is short of intuition and requires higher operation skills of the driver. In this thesis, a more intuitive operation named master-slave control system has been developed based on a multi-lever force feedback joystick PHANTOM Omni and the existing integrated multi-DOF test rig of 2 ton excavator. Experiments showed that the bucket can achieve a fine trajectory tracking with the master-slave control system, proving of this control scheme reasonable and feasible.
     The thesis is outlined as follows:
     In chapter 1, the master-slave control and force feedback technology were introduced. The current research progresses of its application in the field of construction machinery were reviewed all over the world. Then, the main research objective, significance and topics of the study in the thesis were pointed out and discussed.
     In chapter 2, the kinematic mathematical model of the 4-DOF excavator working device including swing was established. And a simulation model was built in Matlab/Simulink. Based on the analysis and simulation of kinematics, the working space diagram of the excavator can be get rapidly and exactly.
     In chapter 3, the dynamic mathematical model of the 4-DOF excavator working device was established using Lagrangian dynamics method. And then dynamic simulation and analysis were carried out both in MATLAB/Simulink and Solidworks/Cosmosmotion environment. As for the influence of the hydraulic cylinders and other link rods, the dynamic model was further analysised and simplified in order to improve the accuracy.
     In chapter 4, the structure of the master-slave control system and its main components were explained in details. Using socket programming, UDP/IP communication interface was established to exchange information between the PHANTOM software Visual C++ and the control program in Matlab/xPC Target environment. As for the workspace differences between PHANTOM Omni and the excavator, two kinds of workspace matching methods, which are based on joints and position increments, were proposed. A virtual reality monitoring system was also developped to make the simulation and operation visualized.
     In chapter 5, an improved PID control algorithm was introduced to test the trajectory tracking performance of the master-slave control system.The experimental results showed that this kind of operation mode is intuitive and simple and the bucket could track the position of PHANTOM Omni well.
     In chapter 6, some conclusions are given and some new views are put forward in the future.
引文
[1]同济大学.单斗液压挖掘机[M].北京:中国建筑工业出版社,1985.
    [2]R. Greer, C. Haas, et al. Advances in Control Systems for Construction Manipula-tors[C]. Proceedings of the 13th ISARC, Tokyo, Japan,1996.
    [3]孙立宁.机器人技术发展状况[EB/OL]. http://www.baisi.net/thread-765321-1-1.html, 2004-01-31.
    [4]高娜.医疗机器人主操作臂控制系统的研究[D].天津:河北工业大学,2007.
    [5]谢叻,张艳等.虚拟手术中的力学变形和力觉感知[J].医用生物力学,2006,21(3).
    [6]S. D. Laycock, A. M. Day. Recent Developments and Applications of Haptic Devices [C]. Computer Graphics Forum, Volume 22 (2003), number 2,117-132.
    [7]李佳佳,齐元胜等.基于虚拟现实的力反馈设备的研究与应用[J].机械科学与技术,2011,30(7).
    [8]H Uchino, M Takada, T Shimizu, et al. System for Controlling a Power Shovel[P]. US Patent:4059196, Nov.22,1977.
    [9]M.Ostoja-Starzewski, M.Skibniewski. A Master-Slave Manipulator for Excavation and Construction Tasks[C]. Robotics and Autonomous Systems, Issue 4,1989,333-337.
    [10]Sanguk Son, Kyunghwan Kim, et al. A Human-Friendly Manipulation System using a 6DOF Haptic Device[C]. Proceedings of the 32nd ISR,19-21 April 2001.
    [11]Matthew Kontz. Haptic Enhancement of Operator Capabilities in Hydraulic Equipment [D]. School of Mechanical EngineeringEngineering, Georgia Institute of Technology,2002.
    [12]Matthew E.Kontz, Jonathan Beckwith, et al. Evaluation of a Teleoperated Haptic Forklift [C]. Proceedings of the 2005 IEEE/ASMEInternational Conference on Advanced Intellige-nt Mechatronics, Monterey, California, USA,24-28 July,2005.
    [13]Joseph George Frankel. Development of a Haptic Backhoe Testbed[D]. School of Me- chanical Engineering, Georgia Institute of Technolog, 2004.
    [14]Matthew E.Kontz. Haptic Control of Hydraulic Machinery using Proportional Valves [D], Georgia Institute of Technology,2007.
    [15]Mark David Elton. An efficient Haptic Interface for a Variable Displacement Pump Controlled Excavator[D], Georgia Institute of Technology,2009.
    [16]Junichi Akizono, Taketsugu Hirabayashi, et al. Teleoperation of Construction Machin-es with Haptic Information for Underwater Applications [C]. International Association for Automation and Roboticsin Construction (IAARC),2004,340-345.
    [17]Taketsugu Hirabayashi, Takashi Yamamoto, et al. Experiment On Teleoperation Of Underwater Backhoe with Haptic Information[C]. The 23rd International Symposium on Automation and Robotics in Construction (ISARC),2006,36-41.
    [18]Yamada, H, Sugimoto, Hand Muto, T. Construction Ttele-Robotic System with Virt-ual Reality (CG presentation of Virtual Robot and Task Object using Stereo Vision Syst-em)[C]. Proceedings of the 5th JFPS International Symposium on Fluid Power,2002, 831-836.
    [19]Xinxing Tang, Hironao Yamada, et al. Haptic Interaction in Tele-operation Control S-ystem of Construction Robot Based on Virtual Reality[C]. Proceedings of the 2009 IEE-E International Conference on Mechatronics and Automation, Changchun, China.
    [20]Hironao Yamada, Gong Ming-de and Zhao Dingxuan. Master-Slave Control for Cons-truction Robot Teleoperation-Application of a Velocity Control with a Force Feedback Model[J]. Journal of Robotics and Mechatronics, Vol.19, No.1,2007.
    [21]Dongnam Kim, Kyeongwon Oh, Daehie Hong, et al. Design of a Haptic device for Dismantling Processes using Excavator[C]. The 24rd International Symposium on Automa-tion and Robotics in Construction (ISARC),2007,175-180.
    [22]Kyeong Won Oh, Dongnam Kim, Daehie Hong, et al. Design of a Haptic Device for Excavator Equipped with Crusher[C]. The 24rd International Symposium on Automati-on & Robotics in Construction (ISARC),2008,202-208.
    [23]Dongnam Kim, Kyeong Won Oh, Daehie Hong, et al. Remote Control of Excavat-or with Designed Haptic Device[C]. International Conference on Control, Automation and Systems in Coex, Seoul, Korea,2008.
    [24]Dongmok Kim, Jongwon Kim, Kyouhee Lee, et al. Excavator Tele-Operation Syste-m using a Human Arm[J]. Automation in Construction 18,2009,173-182.
    [25]Jarno Uusisalo, Otso Karhu and Kalevi Huhtala. Assisting Force Feedback Function for Hand-Held Remote Control of Excavator[C]. Proceedings of the 7th JFPS Internation-al Symposium on Fluid Power, Toyama,2008.
    [26]Henning Hayn, Dieter Schwarzmann. A Haptically Enhanced Operational Concept for a Hydraulic Excavator[C]. Advances in Haptics,2010,199-220.
    [27]Akinori ISHII. Operating System of a Double-Front Work Machine for Simultaneous Operation[C]. The 23rd International Symposium on Automation and Robotics in Constru-ction (ISARC),2006,539-542.
    [28]黄玲涛.四自由度工程机器人自主作业的模糊控制技术研究[D].长春:吉林大学,2008.
    [29]巩明德,赵丁选等.工程机器人异构从手设计[J].工程机械,2003,(12):1-3.
    [30]侯敬巍,赵丁选等.遥操作机器人的新型力反馈算法[J].计算机应用研究,2011,28(5):1679-1681.
    [31]朱猛.基于虚拟现实的临场感遥操作工程机器人系统研究[D].长春:吉林大学,2008.
    [32]倪涛,赵丁选等.大时延环境下的虚拟现实临场感遥操作机器人系统[C].中国工程机械学会2003年年会论文集,2003.
    [33]侯敬巍.基于虚拟现实的遥操作工程机器人系统研究[D].长春:吉林大学,2008.
    [34]倪涛.虚拟现实临场感遥操作工程机器人系统研究[D].长春:吉林大学,2003.
    [35]倪涛.有力学及视觉临场感的遥操作机器人系统研究[D].长春:吉林大学,2006.
    [36]许志峰.主从式远程操作机器人系统研究[D].南京:东南大学,2004.
    [37]高龙琴.力反馈数据手套与遥操作机器人系统研究[D].南京:东南大学,2004.
    [38]戴金桥,王爱民等.适用于力反馈数据手套的被动力觉驱动器[J].东南大学学报,2010,40(1),123-127.
    [39]张海涛.液压挖掘机器人工作装置运动控制系统的研究[D].长沙:中南大学,2004.
    [40]张大庆.液压挖掘机工作装置运动控制研究[D].长沙:中南大学,2006.
    [41]刘极峰.机器人技术基础[M].北京:高等教育出版社,2006.
    [42]王庭树.机器人运动学及动力学[M].西安:西安电子科技大学出版社,1990.
    [43]熊有伦.机器人技术基础[M].武汉:华中理工大学出版社,1996.
    [44]J. Aerosp. Kinematics of Excavators (Backhoes) for Transferring Surface Material[J]. Journal of Aerospace Engineering,7,1994,17-32.
    [45]姬鹏.液压挖掘机反铲装置的运动学仿真及动力学分析[D].长春:吉林大学,2005.
    [46]冀满忠.基于MATLAB的液压挖掘机反铲装置挖掘性能和程序化绘制[D].2006.
    [47]尹成龙,牛多青.基于Solidworks的挖掘机虚拟样机设计及工作装置运动仿真[J].机械制造,47(536),2009.
    [48]韩涛,邓斌,韩旭萍.挖掘机挖掘包络图的快速绘制方法[J].建筑机械化,01,2010.
    [49]黄伟.液压挖掘机工作装置在ADAMS中的运动仿真分析[J].质量技术监督研究,2009.
    [50]韩涛,邓斌,韩旭萍.一种快速得到挖掘机挖掘包络图的新方法[J].计算机应用技术,37(3),2010.
    [51]霍伟.机器人动力学与控制[M].北京:高等教育出版社,2005.
    [52]丁学恭.机器人控制研究[M].杭州:浙江大学出版社,2006.
    [53]P. K.Vaha and M. J. Skibniewski, et al. Dynamic Model of Excavator[C]. Journal of Aerospace Engineering. vol.6, No.2 April,1993,148-158.
    [54]熊有伦等.机器人学[M].北京:机械工业出版社,1993.
    [55]朱世强,王宣银.机器人技术及其应用[M].杭州:浙江大学出版社,2000.
    [56]程再玲.MATLAB符号微积分的应用[J].安庆师范学院学报(自然科学版),2004,10(3).
    [57]孙祥,徐流美等编著.MATLAB7.0基础教程[M].北京:清华大学出版社,2005.
    [58]黄忠霖,黄京编著.MATLAB符号运算及其应用[M].北京:国防工业出版社,2004.
    [59]张晋西.Solidworks及Cosmosmotion机械仿真分析[M].北京:清华大学出版社,2007.
    [60]黄永安,马路等MATLAB7.0/Simulink6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.
    [61]李颖,朱伯利等Simulink动态系统建模与仿真基础[M].西安:西安电子科技大学出版社,2004.
    [62]横润科技Simulink S-Function的编写[EB/OL]. http://wenku.baidu.com/view/f123551b 6bd97f192279e92f.html.
    [63]The Math Works, Inc. Simulink Writing S-Functions[EB/OL]. http://www.mathworks.co m,2002.
    [64]B.R.A. Janssen, M.M.J. Nievelstein. Multi-loop Linkage Dynamics via Geometric Me-thods:A Case Study on a RH200 Hydraulic Excavator[R]. University of Queensland, Br-isbane, Australia,2003.
    [65]杨建新,余跃庆等.混联支路并联机器人动力学建模方法[J].机械工程学报,2008.
    [66]王敏,项昌乐,马越.基于xPC目标环境的数据采集系统[J].测试技术学报,2004,18(3):228-231.
    [67]吉智,何凤有,窦春雨.基于Matlab/xPCTarget的实时数据采集系统设计[J].工矿自动化,2009,(5):74-77.
    [68]李兴玮,叶磊,黄柯棣.基于MATLAB/xPCTarget构建实时仿真系统[J].计算机仿真,2003,20(8):113-118.
    [69]郭元彭,芦子广.一种基于xPC Target的快速控制原型平台[J].广西大学学报(自然科学版),2008,33:120-123.
    [70]SensAble Technologies, Inc. PHANTOM Omni?ser Guide[EB/OL]. http://vi502011. go oglecode.com/svn/trunk/DocumentationBrasHaptique/Sensable/Sensable%20SDK/windows%2 03.0/Hardware%20Documentation/PHNTMOmni_UserGuide.pdf.
    [71]SensAble Technologies, Inc. Specifications for the PHANTOM? OmniTM haptic devi-ce [EB/OL]. http.//www.sensable.com/documents/documents/PHANTOM_Omni_Spec.pdf.
    [72]SensAble Technologies, Inc. Open Haptics? Toolkit version 3.0 Programmer's Guide[E B/OL]. http://www.sensable.com/documents/documents/OpenHaptics_ProgGuide.pdf.
    [73]SensAble Technologies, Inc. Open Haptics? Toolkit version 3.0 API Reference Manu-al[EB/OL]. http://robotics.research.yale.edu/uploads/Open%20Haptics%20Reference.pdf.
    [74]陈成军.基于力觉/触觉反馈的虚拟装配系统相关技术研究[D].济南:山东大学,2008.
    [75]杜海春.医疗机器人主操作臂多体动力学特性研究[D].天津:河北工业大学,2006.
    [76]马楠.心血管手术规划模型雕塑研究[D].北京:北京工业大学,2009.
    [77]郑明达.基于力反馈器的射击游戏系统研究与实现[D].成都:西南交通大学,2010.
    [78]杜广龙,杨立颖,张平.基于力反馈器的模块化机器人控制建模与仿真[J/OL].中国科技论文在线.http://www.paper.edu.cn.
    [79]陈雄,周文胜,陈鹤鸣. Windows下的进程间通信[J].南京邮电学院学报(自然科学版),2000,20(2).
    [80]孙叶萌.单机内进程间三种通信方法效率的比较[J].长春理工大学学报,2003,26(3).
    [81]梁庚,白焰.Windows下进程间通信方式探讨[J].微型电脑应用,2006,22(12).
    [82]傅平,郑秉文.基于File Mapping的进程间通信中共享内存技术的实现方法[J].微计算机应用,2007,28(7).
    [83]王怀兴,吴柯,刘皓春.LabVIEW中DDE不同通信方式的比较分析[J].微机发展,2004,14(11).
    [84]余水平.进程间通信及内存映射文件方法分析[J].硅谷,2011,(11).
    [85]Patrick Thomas Miller. Output Synchronization for Teleoperation of Robot Manipulat-ors[D]. State University of New York at Buffalo,2008.
    [86]Marc T. Alise. Expansion and Implementation of the Wave Variable Method in Mult-iple Degree-of-Freedom Systems[D]. Florida State University,2007.
    [87]Marc Alise, Rodney G.Roberts., Daniel W. Repperger. Implementation of the Wave Variable Method on a PHANTOM Omni Haptic Device[J]. Florida Conference on Recent Advances in Robotics(FCRAR),2006.
    [88]B.Taylor Streng. Mechanical Linkage Design for Haptic Rehabilitation and Develop-ment of Fine Motor Skills[D]. Oregon State University,2008.
    [89]Anand P Naik. Role of Vehicle Dynamic Modeling Fidelity with Haptic Collaboration in Steer by Wire Systems[D]. State University of New York at Buffalo,2007.
    [90]Adam Brandt. Haptic Collision Avoidance for a Remotely Operated Quadrotor UAV in Indoor Environments[D]. Brigham Young University,2009.
    [91]Adam M.Brandt, Mark B. Colton. Haptic Collision Avoidance for a Remotely Opera-ted Quadrotor UAV in Indoor Environments[C].2010 IEEE International Conference on Systems Man and Cybernetics (SMC),2010,2724-2731.
    [92]王广伟,李维钊,曲铭海.Windows Sockets网络编程[J].计算机应用研究,2000,(8).
    [93]周小松,朱雄军.基于UDP协议的Socket网络编程模式的实现[J].工程技术,2007,6(1).
    [94]向林.Windows Sockets通信应用程序的开发[J].现代通信技术,2001,(3).
    [95]倪涛,赵丁选,巩明德.遥操作工程机器人遥控端软件设计[J].微机应用与智能化,2003,(2).
    [96]姜艳华.主从机器人无线遥操作系统及其应用研究[D].合肥:中国科学技术大学,2008.
    [97]卡尔弗特,多纳霍著,周恒民译.Java TCP/IP Socket编程[M].北京:机械工业出版社, 2009.
    [98]罗军舟,黎波涛等编著.TCP/IP协议及网络编程技术[M].北京:清华大学出版社,2004.
    [99]陈魁.VC++中UDP通信的实现[J].微机发展,2003,13(9).
    [100]孔鹏等编著.Visual C++6.0完全自学手册[M].北京:机械工业出版社,2006.
    [101]姚海军.吉林省第四届科学技术学术年会[C].长春,2006,209-211.
    [102]The MathWorks, Inc. xPC Target UDP I/O Support[EB/OL]. http://www.mathworks.c n/help/toolbox/xpc/io_ref/f10-6068.html.
    [103]张勇.基于Simulink的机器人虚拟现实仿真研究[D].哈尔滨:哈尔滨工程大学,2007.
    [104]张桂香.计算机控制技术[M].长沙:湖南大学出版社,2007.
    [105]杨俭.电液比例位置系统复合控制及相关研究[D].杭州:浙江大学,2005.
    [106]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社,2002.
    [107]许振保,赵春娥,许振珊.电液比例阀中位死区的线性化补偿方法[J].湖南科技学院学报,2010,31(8):19-21.
    [108]王庆丰,顾临怡等.电液比例高精度定位的变死区自学习补偿研究[J].机床与液压,1994,(5):249-251.
    [109]舒进,陈思忠,杨林.电液比例位置控制系统的死区模糊补偿控制研究[J].液压与气动,2005,(1):20-23.
    [110]何清华,张大庆,郝鹏,朱建新.液压挖掘机工作装置模型及控制的试验研究[J].中南大学学报(自然科学版),2006,37(3):542-546.
    [111]马晓宏.电液比例阀控缸位置控制系统的研究与应用[D].上海:东华大学,2008.
    [112]鲜麟波.阀控缸电液位置伺服系统研究[D].武汉:华中科技大学,2007.
    [113]田丰,孙新亚,慕春棣.列车控制监视系统的Simulink实时仿真[J].微计算机信息(测控自动化),2010,26(8-1):124-126.
    [114]朱圣兵.液压挖掘机器人轨迹跟踪综合控制策略方案研究[D].杭州:浙江大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700