用户名: 密码: 验证码:
全胸腔镜虚拟手术力觉交互信息采集与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对腔镜虚拟手术力觉交互系统的关键技术进行研究,旨在更有效的训练医生的手感,提高手术成功率。力觉交互系统通过力觉交互装置模拟真实的腔镜手术操作,通过软组织的力学模型计算得到交互力,给医生以逼真的触觉和力觉感知。
     力觉交互装置是一套有多个自由度的运动机构,由多个构件组成。在操作杆的整个运动空间里,重心不可能始终落在支承面上。操作者对力觉交互装置进行操作时,操作杆重心的移动必然会使部分的重力作用在操作者手上,影响操作者的手感,使操作者的沉浸感变差,因此对装置进行重力补偿非常重要。论文通过旋量理论对五自由度力觉交互装置进行了运动空间分析和静力学分析,并基于此计算力觉交互装置操作杆的重力矢量在运动空间中各自由度上的分力,通过驱动电机输出相应的补偿力来对消装置的重力,通过ADAMS仿真软件通过比较重力补偿前后的位移误差验证了所计算补偿力的正确性。
     力觉交互系统的通信延时会使控制器不能及时引起控制变量变化,控制不及时会导致超调量增大,人体器官各部分的异质性导致的虚拟环境模型参数的差异性和力觉交互装置装配的差异性同样会影响系统的性能。论文对包含力觉交互装置动力学模型、电机电气模型及虚拟环境模型在内的力觉交互系统性能进行了分析,使用内模控制来改善系统的鲁棒性,并消除系统时滞的影响。在内模控制的基础上设计自适应律,通过实时修正参考模型来逼近实际控制对象模型,结果证明该控制方法相比于PID控制不但可以降低超调量到4.55%,还可以将调节时间控制于0.02s以内,有效的改善了系统性能。
     为了抑制维间耦合,论文设计了滑移结构六维力传感器,该传感器具有小尺寸、低量程和高分辨力的特点,传感器的整体尺寸为52mm328mm,量程为20N,分辨力为20mN,测力精度为1%F.S.。论文通过理论分析和ABAQUS有限元软件分析了传感器解耦特性,结果表明传感器相比于浮动梁传感器,解耦更加彻底,最大维间耦合误差为0.34%,远小于浮动梁结构的解耦误差1.14%。分析了滑移间隙和滑槽不对称性对解耦的影响,给出能达到解耦要求所需要的加工公差等级须达到国标GB/T1800.3-1998。设计了标定装置对传感器进行标定,得到静态标定矩阵及标定时各维力或力矩的维间耦合误差和灵敏度。
     设计了可实现穿刺、切割、夹持和缝合操作的五自由度力觉信息采集装置,对具有粘弹性特性的软组织在手术操作时变形、破裂和破裂延伸三种形式状态的相互转换进行分析,分析交互过程中变形力、摩擦力和破裂延伸力的力学特性。对离体软组织与手术器械多自由度的交互力觉信息进行采集,建立了猪心软组织与手术器械在穿刺、切割、缝合和夹持过程中的指数力学模型和多项式力学模型,所使用的力学模型中的参数反映了软组织的粘弹性特性,其中多项式形式的力学模型可以方便通过计算机实现。
In view of the laparoscopic surgeon training, the key technology of the virtual surgeryhaptic interaction system is researched to improve surgeons‘operation feeling. The hapticinteraction system can provide the realistic haptic perception with the simulation operationusing haptic interaction device and the force model of soft tissue.
     The haptic interaction device is composed of many parts and can move in multiple DOF.The gravity center of the operation lever will not be located on the support point in themovement space all the time. When surgeons operate the haptic interaction device, the gravityforce will worsen the surgeons feel with the gravity center movement. So the gravitycompensation is required. The screw theory is used to make the spatial analysis and the staticanalysis, and based on the analysis the component force is calculated for the motors‘compensation torque. The ADAMS is used to verify the correction of the calculatedcompensation force through the displacement error comparison before and after gravitycompensation.
     Haptic interaction system delay makes the controller cannot response timely to thevariable changes and the system is difficult to adapt to the changes of the virtual environmentmodel parameters. The haptic interaction system model including haptic interaction devicedynamics model, the motor electrical model and virtual environment model is analyzed. Theinternal model control is used to improve the robustness of the system and eliminate thesystem delay and the adaptive internal model control is used to real-time correct the systemmodel parameters. Finally, the results of the simulation and experiment indicate that thecontrol strategy can not only reduce the overshoot value to4.55%but also less the controltime to0.02s, and the system performance is improved.
     To measure the tool-tissue interaction force, the sliding structure six-axis force/toque sensor is developed and the sensor features small size, low range and high resolution. Theoverall size is52mm328mm, the measurement range is20N, the resolution of the sensor is20mN and the measurement accuracy is1%F.S.. Both the theoretical analysis and finiteelement analysis are used to indicate that the sensor can decouple more thoroughly thefloating beams structure sensor. The maximum coupling error can be decreased to0.34%,which is less than1.14%of floating beams structure sensor. Considering the machining error,the influence of the sliding clearance and the asymmetric grooves on decoupling is analyzedand the required machining tolerance level GB/T1800.3-1998is given. Finally, the sensorcalibration device is designed to make the sensor calibration and the static calibration matrix,the coupling error and the sensitivity is obtained.
     The five degrees of freedom haptic information acquisition device is designed to get theinteraction information acquisition between the isolated soft tissue and the surgical toolsduring the puncture, cutting, clamping and suturing operation. The conversion state of thedeformation, cracking and fracture is analyzed and the deformation force, friction force andrupture force during the force interaction is analyzed. The exponential and polynomial forcemodel of the soft tissue during the puncture, cutting, clamping and suturing operation isestablished based on the haptic information acquisition experiments. The force model canillustrate the viscoelastic properties of soft tissue and the polynomial force model can beeasily realized by the computer.
引文
[1] Heady R, Luger G, Hofmeyr A et al. Computer Immunology[J]. Communications of theACM.1997;40(10);88-96.
    [2] R.M. Satava. Virtual reality surgical simulator: The first steps[J]. Surg. Endosc.1993,7:203-205.
    [3] R.M. Satava. Medical applications of virtual reality. Comput Biol[J]. Med.1995,25(2):229-236.
    [4] R.M. Satava. Virtual reality and telepresence for military medicine[C]. Ann Acad MedSingapore1997,26(1):18-20.
    [5] H.David.3D Sensors and Virtual Reality[J]. Journal of Oral and MaxillofacialSurgery.2009,67(9):13-21.
    [6] J.S. Levy. Virtual Reality Hysteroscopy[J]. J Am Assoc Gynecol Laparosc.1996, Aug;3(4):25-26.
    [7] Kuhn C, Kuhnapfel U, Krumm H G, et al. A virtual Reality‘Based Training System forMinimally Invasive Surgery[C]. Proc. of Computer Assisted Radiology (CAR‘96),1996:764-769.
    [8] Riedmiller M, Merke A, Meier D, et al. Karlsruhe brainstormers-a reinforcement learningapproach to robotic soccer[M] RoboCup2000: Robot Soccer World Cup IV. SpringerBerlin Heidelberg,2001:367-372.
    [9] P. R. Dahl,―Solid friction damping of mechanical vibrations,‖AIAA J., vol.14, pp.1675–1682, Dec.1976.
    [10]姜学智,李忠华.国内外虚拟现实技术的研究现状[J].辽宁工程技术大学学报,2004,23(2):238-240.
    [11]Suzuki S, Suzuki N, Hashizume M, et al. Tele-training simulation for the surgical robotsystem “da Vinci”[C] International Congress Series. Elsevier,2004,1268:86-91.
    [12]谢叻,张艳,张天宇等.虚拟手术中的力学变形和力觉感知[J].医用生物力学,2006.9(3):241~245.
    [13]V. J. Majd and M. S. Simaan,―Continuous friction model for servo systems withstiction,‖in Proc. IEEE Conf. Control Applications,1995, pp.296–301.
    [14]Roger W. Webster, Dean I. Zimmerman, Betty J. Mohler, et al.A Prototype HapticSuturing Simulator[C]. Medicine Meets virtual Reality,2001,81:567—569
    [15]张燕,谢叻,杨扬等.力反馈虚拟手术器械的设计[J].机械设计与研究,2008.2.24(1):93-95.
    [16]毛欣炜,张谦.具有力反馈的虚拟膝部手术系统计算机仿真[J],2005.5,Vol.22,No.5:162-164.
    [17]崔泽,赵杰等.一个三自由度力觉接口设备硬件系统的设计[J].机械与电子,2001.6:27~29.
    [18]岳宏,王小龙,张娟.虚拟现实在手臂外骨骼康复系统中的应用.科技通报,2006,6(1):111-114.
    [19]付玉锦,原魁,杜清秀等.基于手术刀的虚拟外科手术系统的设计[J].中国体视学与图像分析,2005.10(2):94~98.
    [20]李敏.虚拟现实多感知信息交互反馈技术研究与实现[D],上海交通大学硕士学位论文,2005.3.
    [21]G. Burdea, Force and Touch Feedbackfor Virtual Reality. New York: John Wiley&Sons,1996.
    [22]J. Yoon and J. Ryu. Design, fabrication, and evaluation of a new haptic device using aparallel mechanism. IEEE/ASME Trans. Mechatron., vol.6, pp.221-233,2001.
    [23]A. Takemoto, K. Yano, T. Miyoshi, K. Terashima. Operation assist control system ofrotary crane using proposed haptic joystick as man-machine interface. Proc. IEEE Int.Workshop on Robot and Human Interactive Communication, pp.533-538, Sep.2004.
    [24]D. Checcacci, E. Sotgiu, A. Frisoli, C. Avizzano, and M. Bergamasco. Gravitycompensation algorithms for parallel haptic interface. Proceedings of IEEEInternational Workshop on Robot and Human Interactive Communication, Berlin,Germany, pp.140-145,2002.
    [25]孙杏初.国外典型工业机器人图册[M].北京:北京航空航天大学出版社,1991.
    [26]S. K. Agrawal and A. Fattah. Theory and design of an orthotic device for full or partialgravity-balancing of a human leg during motion. IEEE Trans. Neural Syst. Rehab.Eng., vol.12, no.2, pp.157-165,2004.
    [27]刘达.微创外科机器人若干关键技术研究[D].北京:北京航空航天大学,2003.
    [28]A. Fattah and S. K. Agrawal. Gravity balancing rehabilitative robot for the human legs.Proc.26th Annu. Int. Conf. IEEE EMBS, pp.2695-2698,2004.
    [29]Minor, M.A., C.R. Hirschi, R. O. Ambrose. An automated tether management system formicrogravity extravehicular activities. in ICRA2002.2002. Washington DC.
    [30]Y. Xu, B. Brown, F. Friedman and T. Kanade. Control system of self-mobile spacemanipulator. Proc. IEEE Int. Conf. Robotics Automat.,1992.
    [31]孙汉旭,王凤翔.加拿大、美国空间机器人研究情况.航天技术与民品.1994(4):33-35
    [32]G. White and Y. Xu. An active vertical-direction gravity compensation system. IEEETrans. on Instruments and Measurement, vol.43, no.6, pp.786-792,1994.
    [33]姚燕生,梅涛,骆敏舟.悬架模块的动力学建模与仿真[J].机械工程学报.2006,42(7):30-34.
    [34]Y. Sato. Micro-G Emulation System Using Constant-Tension Suspension for a SpaceManipulator. Proc.1991Intl, Conf. on Robotics and Automation, pp.1893-1900.
    [35]C. Dickson, and R. H. Cannon. Experimental results of two free flying robots capturingand manipulating a free-floating object. Proc. of IEEE/RSJ Int. Conf. on IntelligentRobots and Systems, Pittsburgh, PA, pp.51-58,1995.
    [36]Agrawal, S. K. and Shelly, M. Dynamic simulation and choice of generalized coordinatesfor a free-floating closed-chain planar manipulator. Mechanism and Machine Theory28,1993,615–624.
    [37]景岗,杨清好,王元勋等.一种新型的高刚度气浮轴承[J].制造技术与机车.1994.5
    [38]Y. Xu, B. Brown, F. Friedman and T. Kanade. Control system of self-mobile spacemanipulator. Proc. IEEE Int. Conf. Robotics Automat.,1992.
    [39]柳长安.多自由度飞行空间机器人协调控制研究[D].哈尔滨工业大学博士论文.2001.4
    [40]Nechyba, M. C. and Xu, Y. Human-Robot Cooperation in Space: SM2for New SpaceStation Structure. IEEE Robotics and Automation Magazine, Vol.2, No.4, pp.4–11,1995.
    [41]李延斌,包钢,王祖温等.三自由度气浮台自动平衡系统动力学建模[J].中国惯性技术学报.Vol.13, No.5.2005.10.
    [42]李思桥,张玉茹,曹永刚等.力觉交互设备的重力补偿实验研究[J].机械设计与研究.2007,23(1):95-97.
    [43]唐新星,侯敬巍,倪涛等.在线重力补偿下工程机器人自主作业轨迹跟踪性能分析[J].农业工程学报.2013,3:007.
    [44]魏秀权,吴林,高洪明等.遥控焊接工具装配力控制的重力补偿算法[J].焊接学报.2009,30(4):110-111.
    [45]罗杨宇,李金泉,王健美等.人机合作机器人重力平衡设计[J].机器人.2006,28(5):540-543.
    [46]谢光辉,张进春.一种仿人机器人臂的重力补偿研究[J].机械传动.2010,34(007):26-28.
    [47]谢光辉,金敉娜,张进春等.利用BP-NN算法的机器人臂重力补偿研究[J].自动化仪表.2012,33(2):22-24.
    [48]杨玉贵,彭光正,王涛等.具有固定重力补偿的模糊免疫PD控制在气动人工肌肉驱动机械手位置控制中的应用[J].机器人.2008,30(3):259-263.
    [49]阮治明,曹小军.反坦克导弹控制系统重力补偿和速度补偿的设计[J].兵工学报:弹箭分册.1990(4):46-53.
    [50]古明坤,孙增圻.一种带重力补偿的机械手混合模型跟随自适应控制方法[J].机器人.1989,4:001.
    [51]Hogan N. Impedance control: An approach to manipulation[C]. American ControlConference,1984. IEEE,1984:304-313.
    [52]陈峰,费燕琼,赵锡芳.机器人的阻抗控制[J].组合机床与自动化加工技术.2005,12:46-48.
    [53]姜力,蔡鹤皋,刘宏.基于滑模位置控制的机器人灵巧手模糊自适应阻抗控制[J].控制与决策.2001,16(5):612-616.
    [54]徐国政,宋爱国,李会军.基于模糊逻辑的上肢康复机器人阻抗控制实验研究[J].机器人.2010,32(006):792-798.
    [55]张立勋,杨勇,张今瑜等.手臂康复机器人阻抗控制实验研究[J].哈尔滨工程大学学报.2008,29(1):69-72.
    [56]李二超,李炜.在未知环境下面向位控机器人的力/位混合控制[J].煤炭学报.2007,32(6):657-661.
    [57]Hayati S. Hybrid position/force control of multi-arm cooperating robots[C]. Robotics andAutomation. Proceedings.1986IEEE International Conference on. IEEE,1986,3:82-89.
    [58]Yoshikawa T. Dynamic hybrid position/force control of robot manipulators--descriptionof hand constraints and calculation of joint driving force[J]. Robotics and Automation,IEEE Journal of,1987,3(5):386-392.
    [59]Yoshikawa T, Zheng X Z. Coordinated dynamic hybrid position/force control for multiplerobot manipulators handling one constrained object[J]. The International Journal ofRobotics Research,1993,12(3):219-230.
    [60]Yoshikawa T, Sugie T, Tanaka M. Dynamic hybrid position/force control of robotmanipulators-controller design and experiment[J]. Robotics and Automation, IEEEJournal of,1988,4(6):699-705.
    [61]Chung J C H, Leininger G G. Task-level adaptive hybrid manipulator control[J]. TheInternational Journal of Robotics Research,1990,9(3):63-73.
    [62]Park B H, Kuc T Y, Lee J S. Adaptive learning control of uncertain robotic systems[J].International Journal of Control,1996,65(5):725-744.
    [63]Nicoletti G M. On the stability of hybrid adaptive controllers for robotic manipulators[C].Systems, Man, and Cybernetics,1991.Decision Aiding for Complex Systems,Conference Proceedings.,1991IEEE International Conference on. IEEE,1991:967-971.
    [64]Connolly T H, Pfeiffer F. Neural network hybrid position/force control[C]. IntelligentRobots and Systems'93, IROS'93. Proceedings of the1993IEEE/RSJ InternationalConference on. IEEE,1993,1:240-244.
    [65]Fukuda T, Kurihara T, Shibata T, et al. Application of neural network-based servocontroller to position, force and stabbing control by robotic manipulator[J]. JSMEinternational journal. Ser.3, Vibration, control engineering, engineering for industry,1991,34(2):303-309.
    [66]Yin Y H, Zhu J Y, Wei Z X. Intelligent strategy of force&position parallel control for arobot[J]. CIRP Annals-Manufacturing Technology,1997,46(1):279-282.
    [67]Adams R J, Hannaford B. Control law design for haptic interfaces to virtual reality[J].Control Systems Technology, IEEE Transactions on,2002,10(1):3-13.
    [68]Fraisse P, Pierrot F, Dauchez P. Virtual environment for robot force control[C]. Roboticsand Automation,1993. Proceedings.,1993IEEE International Conference on. IEEE,1993:219-224.
    [69]Christopher D. Lee, Dale A. Lawrence, Lucy Y. Pao. Isotropic force control for hapticinterfaces. Control Engineering Practice, vol.12, pp.1423–1436,2004.
    [70]Eom, K. S., Suh, I. H.,&Yi, B.-J.(2000). A design method of haptic interface controllerconsidering transparency and robust stability. Proceedings of the IEEE/RSJ conferenceon intelligent robots and systems, Takamatsu, Japan (pp.961–966).
    [71]付玉锦,原魁,杜清秀.基于手术刀的虚拟外科手术系统仿真器[J].计算机工程与应用,2005年19期.
    [72]Romiti A, Sorli M. Force and moment measurement on a robotic assembly hand[J].Sensors and Actuators A: Physical,1992,32(1):531-538.
    [73]Sorli M, Pastorelli S. Six-axis reticulated structure force/torque sensor with adaptableperformances[J]. Mechatronics,1995,5(6):585-601.
    [74]Sorli M, Zhmud N. Investigation of force and moment measurement system for a roboticassembly hand[J]. Sensors and Actuators A: Physical,1993,37:651-657.
    [75]Kang C G. Closed-form force sensing of a6-axis force transducer based on the Stewartplatform[J]. Sensors and Actuators A: Physical,2001,90(1):31-37.
    [76]Nguyen C C, Antrazi S S, Zhou Z L. Analysis and implementation of a6DOF Stewardplatform-based force sensor for passive compliant robotic assembly[C] Southeastcon'91.,IEEE Proceedings of. IEEE,1991:880-884.
    [77]HongRui W, Feng G, Zhen H. Design of6-axis force/torque sensor based on stewardplatform related to isotropy[J]. Chinese Journal of Mechanical Engineering,1998,3.
    [78]B. Shimano. On Force Sensing Information and Manipulators. Proc. of the8th Int.Symposium on Its Use in Controlling Industrial Robots,1979.
    [79]Song A G, Wu J, Qin G, et al. A novel self-decoupled four degree-of-freedom wristforce/torque sensor. Measurement: Journal of the International MeasurementConfederation, November/December,2007,40(9-10):883-891.
    [80]陈乐,宋爱国.三维力传感器的设计[J].2008年江苏省计量测试学术论文集,2008.
    [81]秦岗,曹效英,宋爱国等.新型四维腕力传感器弹性体的有限元分析[J].传感技术学报,2003,16(3):238-241.
    [82]Pham Huy Hoang, Vo Doan Tat Thang, Design and simulation of flexure-based planarforce/torque sensor. In: Proceedings of2010IEEE Conference on Digital ObjectIdentifier, Singapore, June28-302010, pp.194-198.
    [83]Gao J,Feng H, et al. Design of new six-axis foot force sensor on a quadruped robot.Modular machining tool&automatic manufacturing technique,2010(02):21-24.
    [84]Kerdok A. E, Soft Tissue Characterization: Mechanical Property Determination fromBiopsies to Whole Organs. Whitaker Foundation Biomedical Research Conference,2001.
    [85]Y C Fung. Biomechanics: mechanical properties of living tissues[M].Springer,2ndedition,1993, New York.
    [86]Stephane Cotin, Herve Delingette, Nicholas Ayache. A hybrid elastic model allowingreal-time cutting, deformations and force-feedback for surgery training and simulation[J]. Visual Computer,2000,16(8):437-452.
    [87]Valdastri P, Tognarelli S, Menciassi A, et al. A scalable platform for biomechanicalstudies of tissue cutting forces[J]. Measurement Science and Technology,2009,20(4):045801.
    [88]Mahvash M, Hayward V. Haptic rendering of cutting: A fracture mechanics approach[J].Haptics-e,2001,2(3):1-12.
    [89]Brouwer I, Ustin J, Bentiey L, et al. Measuring in vivo animal soft tissue properties forhaptic modeling in surgical[C]//Medicine meets virtual reality.2001,81:69.
    [90]Abolhassani N, Patel R, Moallem M. Needle insertion into soft tissue: A survey[J].Medical engineering&physics,2007,29(4):413-431.
    [91]Misra S, Reed K B, Douglas A S, et al. Needle-tissue interaction forces for bevel-tipsteerable needles[C] Biomedical Robotics and Biomechatronics,2008. BioRob2008.2nd IEEE RAS&EMBS International Conference on. IEEE,2008:224-231.
    [92]Kataoka H, Washio T, Chinzei K, et al. Measurement of the tip and friction force actingon a needle during penetration[M]//Medical Image Computing and Computer-AssistedIntervention—MICCAI2002. Springer Berlin Heidelberg,2002:216-223.
    [93]Stephanie G V H, Vanessa C A O, Thomas S. Measurement, analysis, and display ofhaptic signals during surgical cutting[J]. Presence,2002,11(6):626–651.
    [94]A M Okamura, R J Webster III, J T Nolin, et al. The haptic scissors: Cutting in virtualenvironments[C]. IEEE International Conference on Robotics and Automation. Taipei,2003.828-833.
    [95]T Chanthasopeephan, J P Desai, A C W Lau. Measuring forces in liver cutting forreality-based haptic display [C]. Proceedings of the2003IEEU/RSJ Inti. Conference onIntelligent Robots and Systems (IROS2003). Las Vegas: Nevada,2003,4:3083-3088.
    [96]臧爱云,原魁.基于真实切割的虚拟手术中力觉模型建模方法研究[J].中国体视学与图像分析.2004,9(2):114-119.
    [97]宋卫国,原魁.用于触觉建模的生物组织切割特征多参量采集[J].系统仿真学报,2006,18(1):204-206.
    [98]T.B Frick, D.D Marucci, J.A Cartmill,et al. Resistance forces acting on suture needles[J].Journal of Biomechanics,2001,34(10):1335-1340.
    [99]G. Picod, A. C. Jambon, D. Vinatier, et al. What can the operator actually feel whenperforming a laparoscopy? Surg Endosc.2005,19(1):95-100.
    [100] Allison M. Okamura, Christina Simone, Mark D. O‘Leary. Force modeling for needleinsertion into soft tissue [J]. IEEE Trans on BioMed Eng,2004,51(10):1707-1716.
    [101] Okamura A M, Simone C, O'Leary M D. Force modeling for needle insertion into softtissue[J]. Biomedical Engineering, IEEE Transactions on,2004,51(10):1707-1716.
    [102] Tie Hu, Gregory Tholey, Jaydev P. Desai, and Andres E. Castellanos,―Evaluation of aLaparoscopic Grasper with Force Feedback‖, Surgical Endoscopy,2004,18(5):863-867.
    [103] Jeffrey Berkley, George Turkiyyah, Daniel Berg, et al. Real-time finite elementmodeling for surgery simulation: an application to virtual suturing[J]. IEEE Trans onVisual and Computer Graphics,2004,10(3):314-325.
    [104] L.W.Tsai,J.J.Lee,Kinematic analysis of tendon driven robotic mechanisms using graphtheory.ASME J Mech Transm Autom Des,1989,111(1):59-65.
    [105] J.J.Lee,Y.H.Lee.Dynamic Analysis of Tendon Driven Robotic Mechanisms. Journal ofRobotic Systems,2003,20:229-238.
    [106] L.W.Tsai.Robot analysis-the mechanics of serial and parallel manipulators. Wiley,NewYork,1999.
    [107] R.M.Murray,Z.Li,S.S.Sastry.A Mathematical Introduction to RoboticManipulation.CRC Press,Inc.,1994.
    [108] Cotin S, Delingette H, Ayache N. A hybrid elastic model allowing real-time cutting,deformations and force-feedback for surgery training and simulation[J], VisualComuputer J,2000,16(8):70-76.
    [109] Bro-Nielsen C. Modeling Elasticity in Solids using Active Cubes-Application toSimulated Operations [C]. Proc. Computer Vision Virtual Reality and Robotics inMedicine (CVRMed‘95), Nice. France,1995,535-541.
    [110]谭珂,杨鑫,郭光友,王勇军,熊岳山.实时力反馈技术在手术仿真中的实现与应用[J].计算机工程与应用,2003年36期.
    [111] Morari, M., Zafiriou, E. Robust Process Control; Prentice Hall: Englewood Cliffs, NJ,1989.
    [112] Mahvash M. and Hayward V. Haptic Rendering of Cutting: A Fracture MechanicsApproach, Haptics-e, The Electronic Journal of Haptics Research, vol.2,2001.
    [113] L. H. Van Vlack, Elements of Materials Science and Engineering (New York:Addison-Wesley)1989.
    [114] Park J B and Lakes R S Biomaterials: An Introduction2nd edn (New York: Plenum)1992.
    [115] Thomas H C2000Mechanical Behavior of Materials2nd edn (Boston, MA:McGraw-Hill).
    [116] Brydson J A1989Plastic Materials5th edn (Butterworth: Oxford).
    [117] Liu Bingkun. Viscoelastic stress and radial bulge analyses of intervertebral disc under aconstant compression. Journal of Medical Biomechanics,1996,11(1):20-25.
    [118] S. Di Bona, L. Lutzemberger, and O. Salvetti,―A Simulation Model for Analyzing BrainStructures Deformations,‖Phys. Med. Biol.48,4001(2003).
    [119] C. Richard, M. R. Cutkosky, and K. MacLean,―Friction identification for hapticdisplay,‖in Proc. Amer. Soc. Mechanical Engineers, Dynamic Systems and ControlDivision, vol.67,1999, pp.327–334.
    [120] B. Armstrong-Helouvry, P. Dupont, and C. Canudas De Wit,―Survey of models,analysis tools and compensation methods for the control of machines with friction,‖Automatica, vol.30, pp.1083–1138, July1994.
    [121] D. Karnopp,―Computer simulation of stick-slip friction in dynamical systems,‖J.Dynamic Syst., Meas, Contr., vol.107, pp.100–103, Mar.1985.
    [122] Van Dongen K W, Tournoij E, Van der Zee D C, et al. Construct validity of the LapSim:can the LapSim virtual reality simulator distinguish between novices and experts?[J].Surgical endoscopy,2007,21(8):1413-1417.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700