用户名: 密码: 验证码:
一种球形气浮气动陀螺仪的研制及其相关技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自陀螺仪问世以来,因其具有不受制于任何外界信息而能测量出载体姿态信息的能力而被应用在航空、航天、航海等领域中。随着社会的进步,惯性技术的不断发展,以陀螺仪为核心器件的测量系统己从传统的军用市场走向广阔的民用市场。发展陀螺仪及其相关技术,一直是各国重点研究的内容之一,也成为衡量一个国家科技水平和军事实力的重要标志之一。除了不断开发新型陀螺仪以外,对已有的陀螺仪通过技术革新,提高精度、降低成本也具有重要的现实意义。虽然静电陀螺仪和液浮陀螺仪具有很高的精度,但是结构复杂,价格昂贵,应用不是广泛;而目前在研究的固体陀螺仪技术还不成熟,存在较多的技术难点要突破,要想达到更高的精度、更广泛的应用还需要投入大量的几力和财力进行探索和研究。相比较而言由于气体的粘度比液体粘度小,气体轴承具有摩擦阻力小、功耗低、转速高、无污染等优点,采用气体润滑的高速轴承能够提高仪表的可靠性、寿命和精度,气体润滑轴承的这些优点,使得它非常适合于惯性器件的制作,而且相对于已有的气浮陀螺仪来说有进一步提高精度、降低成本、简化结构、减小体积的可能。因此研制一种高精度、低成本、小型化的气浮陀螺仪具有重要的现实意义。
     本文将气体轴承技术与气动技术有机的结合起来,提出了一种新型气浮气动陀螺仪的基本结构,建立了该陀螺仪的运动学模型,分析研究了转子圆周上的气动喷嘴、供气压力等相关参数对陀螺仪稳定工作性能的影响,同时分析了转子不平衡量等参数对陀螺仪漂移误差的影响情况,为陀螺仪的设计和加工提供了理论依据。
     为进一步改善气浮气动陀螺仪的启停性能,减小陀螺转子启停过程的碰磨,延长该陀螺仪的使用寿命,提出了采用实心转子电机辅助驱动与制动的方案。通过施加电磁力矩后陀螺仪的动力学模型,分析研究了陀螺仪结构参数以及电机相关参数对气浮气动陀螺仪驱动及制动性能的影响规律,为选择和设计电机以保证气浮气动陀螺仪具有更好的启停性能奠定了基础。
     要保证气浮气动陀螺仪转子能够稳定运转,首要任务就是要对气浮轴承进行动态设计,确定气浮轴承的动态特性参数。本文针对新型结构的气浮陀螺轴承提出了一种求解具有类似结构气体轴承动态性能的方法:通过相容性条件统一了狭缝气膜和球面润滑气膜,采用三角形有限单元划分统一后的气膜,以小扰动法为基础将陀螺轴承内的气膜压力分解为静态压力和动态压力两部分,通过迦辽金加二阶微分降为一阶微分,以降低对插值函数连续性的要求,根据气体流量守恒方程和稳态压力方程求解气膜内的稳态压力,进而求得动态压力和陀螺轴承气膜的动态特性系数,并分析陀螺仪轴承结构参数对动态性能的影响规律。
     以陀螺仪轴承转子的动态性能参数为基础,根据陀螺仪转子的运动方程,得到陀螺轴承转子稳定运转时的临界稳定性方程,进而求得用临界质量来表示陀螺仪转子稳定运转的稳定性判据。根据此判据,分析陀螺仪轴承各结构参数对稳定性的影响规律,结合气体陀螺轴承的静态承载性能,对陀螺仪转子结构进行多目标优化设计,以其得到具有较高的静态承载性能和动态稳定性的结构。
     为了陀螺仪能够稳定运转,减小由不平衡量引起的机械漂移误差,必须对陀螺仪转子进行平衡。本文针对新型结构的陀螺仪转子存在球心位置难以确定,质心不在转子实体上的特点,提出了辅助件初始静平衡气浮单摆精密静平衡动平衡的思路和方法,解决了该结构类型陀螺仪转子的平衡问题。
     最后,在前面工作的基础上,对陀螺仪的加工误差以及气体陀螺轴承的各种性能进行了初步测试,初步验证了陀螺仪设计的正确性。
Gyroscope, which has the ability of measuring the attitude information of carrier without limiting to anything outside, is widely used in the aerospace and navigation field since it has come into the world. With the advancement of the society and the development of the inertia technology, the measurement system which is based on gyroscopes is going from the traditional military market to the widely civilian market. It is always an important mission for every country to develop gyroscopes and the technology, and that is an essential index for weighting the science level and military strength of a country. Besides exploiting new type gyroscopes continuously, it is very significant to modify the existing gyroscopes, improve their precision and inducing the cost. ESG and fluid floated gyroscope have high accuracy, but they are not widely used because of complicated structures and high price. The technique of solid gyroscopes being studied is needed to be proved, and there are many difficulties and problems to be solved. It will need a great deal of manpower and finance to improve the accuracy and make it further widely used. The viscosity of gas is lower than the liquid. The gas bearings have such advantage as low friction, less power consumption, high speed and less pollution, and the gas bearings with high speed can provide reliability, life and accuracy for the instrument. All these advantages of gas bearings make them not only being used in inertial device, but also has the possibility of improving accuracy, inducing cost, simplifying structure and deducing volume. So it has an important significance to development a new type gas gyroscope with low cost, high accuracy and simple structure.
     Combining gas bearing technique with pneumatic technology, a new type gas floated pneumatic gyroscope is proposed in this paper. The motion equation of the gyroscope is erected, the influence of the parameters such as pneumatic nozzles mounting around the gyro-rotor, supply pressure etc on the driving performance of the gyroscopes is studied, at the same time the influence of the rotor’s unbalance on the gyroscope’s drift error is analyzed. All the above study provides the theoretical preparation for designing and manufacturing the gyroscope.
     In order to improve the start-stop performance, prolong the life and deduce the disturbance, a scheme which adopt a motor with solid rotor to driving and braking the gyroscope auxiliary is put forward. According to the dynamic equation of the gyroscope with electromagnetic torque, the author study the influence of the structure parameters of the gyroscope and the motor parameters on the driving and braking performance, and this paper establish a foundation for having good start-stop performance by choosing and design motor.
     To guarantee the gas floated pneumatic gyroscope rotor running steadily, the first job is to make dynamic design and determine the dynamic coefficients of the gas gyro-bearing. In viewing of the new type gas floated pneumatic gyroscope, this paper put forward a method which can solve the dynamic characteristics of the similar structure: the slot film and spherical film are united by compatibility condition, and the united film is meshed by triangular finite elements. Based on small perturbation theory, the pressure of the united film in the gas gyro-bearing is decomposed into two parts: static pressure and dynamic pressure; the Reynolds equation can be deduced from two order to one order by Galerkin residual method, and it can decrease the requirement to the interpolation function. Based on the flow conservation function and the static pressure function, the static pressure in the film can be obtained, the dynamic pressure and dynamic coefficients of gas film can also be achieved, and the influence of different structure parameters on the dynamic coefficient is also analyzed.
     Based on the dynamic coefficients and the motional function of the gas gyro-rotor, the critical stability equation of the gyro-rotor running steadily is obtained, and the critical mass, which is used as the stability criterion to determine whether the gas gyro-rotor is stable or not, is also obtained. Based on the stability criterion, the influence of different structure parameters on the stability is studied in the paper. In order to get both higher static load capacity and dynamic stability, optimal designing the gas gyroscope is taken in the paper considering the static load capacity.
     In order to guarantee the gas gyroscope running steadily and decrease the drifting error arising from the unbalance mass, the gas gyroscope must be balanced. Because the spherical cavity’s position of the new type gyro-rotor is difficult to ascertain, and the centroid of the gyro-rotor doesn’t lie in the rotor, so the idea and method of balance, which is static balance using auxiliary workpiece firstly, then adopting the static balance method called gas floating simple pendulum, lastly dynamic balance, is adopted in the paper aiming at the above questions. Based on the mentioned method, the unbalance of the new type gas gyro-rotor is solved.
     Lastly, on the above work, the preliminary test about the maching error of the gas gyroscope and various performance of the gas gyro-bearing is made, the gas gyroscope is verified to be correct preliminary.
引文
[1]陆兀九.惯性器件[M].北京:宇航出版社,1993: 1-10 598-600.
    [2]许国祯.惯性技术手册[M].北京:宇航出版社,1995: 35-37.
    [3]宋佳云.沱螺仪的应用及发展[J].有色金属,2002, 54(4): 108-110.
    [4]党根茂.气体润滑技术[M].南京:东南大学出版社,1990(6): 4-10.
    [5] B.H德洛芝道维奇.动压气浮轴承[M].北京:国防工业出版社,1982: 6-10.
    [6]杨培根.光电惯性技术[M].北京:兵器工业出版社,1999.9: 1-5.
    [7]丁衡高.海陆空天显神威:惯性技术纵横谈[M].南大学出版社,2000: 8-10 40-50.
    [8]刘俊,石云波,李杰.微惯性技术[M].北京:电子工业出版社,2005: 3-7
    [9] D.H.Titterton, J.L.Weston. Strapdown Inertial Navigation Technology[M]. Peter Peregrinus Ltd, 1997:12-18.
    [10]张福学,任宏超.惯性传感器的发展趋势[[J].电子科技导报,1996, 10: 6-7.
    [11]许江宁,朱涛,卞鸿巍.惯性传感技术发展与展望[J].海军工程大学学报,2007(3):1-5.
    [12]熊永明.静电陀螺误差模型辨识及测试平台的研究[D].北京:清华大学博士学位论文,1993.
    [13]杨功流,蔡玲,陈超英,高钟毓.静电陀螺监控器中静电陀螺仪的漂移误差模型[J].中国惯性技术学报,2001, 9(4): 50-54.
    [14]钟万登.液浮惯性器件[M].北京:宇航出版社,1994: 1-6 30-32 s 16-s 18.
    [15]董劲峰,和德安.液浮速率陀螺仪的研究和改进[J].传感器技术,2003, 22(7):10-11.
    [16]季明华,惯性器件在卫星上的应用现状及发展方向[J].惯性技术发展动态发展方向研讨会文集,2003.
    [17]章燕中.高精度导航系统[M].北京:中国宇航出版社,200s : 20-2s.
    [18]郭秀中,十波,陈云相.陀螺仪理论及应用[M].北京:航空工业出版社,1987: 3-60 233-23s.
    [19]岳明桥,土天泉.激光陀螺仪的分析及发展方向[J].飞航导弹,200s,12: 46-48.46-48.
    [20]周海波,刘建业,赖际舟,李荣冰.光纤陀螺仪的发展现状[J].传感器技术,2005, 6 (24): 1-3.
    [21]秦永兀.n际惯性器件发展现状和趋势叮〕.航空制造技术,2008,9: 68-69.
    [22]蔡兆云,柯冠岩. MEMS微陀螺研究与发展述评[J].国防科技,2008,29(1): 7-10.
    [23]张均红,赵君辙.惯性导航中陀螺仪的研究现状及发展趋势[J].科学论坛,2008,7下:60-61.
    [24]刘付成,夏永江.卫星用惯性技术发展动态、发展趋势.惯性技术发展动态发展方向研讨会文集[C], 2004: 22-42.
    [25]吴敏镜,易维坤,周安石.惯性器件制造技术[M].北京:宇航出版社,1989: 1-15 167-173 205-206 208-210 273-278.
    [26]玛振生,土妍.惯性仪表原理[M].北京:兵器工业出版社,1997: 232-235.
    [27]李双庆.国防科技名词大典航天[M].北京:航空工业出版社,2002: 365-368.
    [28] Raymond Noar, Bellflower. Free-rotor Gas-bearing Gyroscope Having Electromagnetic Rotor Restraint and Acceleration Output Signal[P]. United state patent, 1981.
    [29]秦冬黎-种球形气浮气动陀螺仪的设计方法及误差分析研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2009: 74-91.
    [30]庞志成.液体气体静压技术[M].哈尔滨:黑龙江人民出版社,1981.
    [31]土云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999: 1-3 213-215 20-23.
    [32]刘墩,刘育华,陈世杰.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社.1990: 51-122.
    [33]杜建军,姚英学,高栋.气体静压轴颈-止推串接型轴承涡流力矩的有限元分析[J]. al#7a}·与密封,2005 , 169 ( 3 ) : 57-59.
    [34] J. W.Lund. Calculation of Stiffness and Damping Properties of Gas Bearing [J].Journal of Lubrication Technology, Trans. ASME. 1968:793-803.
    [35] H.G.Elrod, J.T.McCabe, Chu T.Y. Determination of Gas Bearing Stability by Response to A Step Jump[J].Journal of Lubrication Technology, Trans ASME, Series F. 1967,89(4):493-498.
    [36] T.Y .Chu,J.T.McCabe, H.G.Elrod. Stability Consideration for a Gas- Tilting-Pad Journal Bearing.Part 1:Analytical Methods[J].ASME Journal of Lubrication Technology, 1986,90(1):162-172.
    [37] N.M.Sela, J.J.Blech. Performance and Stability of a Hybrid Spherical Gas Gyrobearing[J].Journal of Tribology, Transactions of the ASME,1991,113 (7):458-463.
    [38] J.W.Lund. Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings[J].ASME Journal of Lubrication Technology,.1987,109: 37-41.
    [39] Har Prashad. Evaluation of Dynamic Coefficients of a Tv}。-Lobe Journal Bearing Using an Electrical Analogy Approach[J].Journal of Tribology Transaction of ASME,1996,118(7):657-662.
    [40] P.Plessers, R.Snoeys. Dynamic Stability of Mechanical Structures Containing Externally Pressurized Gas-Lubricated Thrust Bearings[J].Journal of Tribology, Transactions of the ASME,1988,110:271-278.
    [41] V.Viktorov, G.Belforte, T.Raparelli. Modeling and Identification of Gas Journal Bearings: Externally Pressured Gas Bearing Results[J].Journal of Tribology,Transactions of the ASME,2005,127(7):548-556.
    [42] Yang Lihua, Li Huiguang, Yu Lie. Dynamic Stiffness and Damping Coefficients of Aerodynamic Tilting-Pad Journal Bearings[J].Tribology International,2007(4):1399-1410.
    [43] K.Czolczynski. How to Obtain Stiffness and Damping Coefficients of Gas Bearings. Wear,1996,(201):265-275.
    [44] R.Gorez. A Study of the Stability of Externally Pressurized Gas Bearings with Porous Wall by Liapunov's Direct Method[J].Journal of Lubrication Technology, Transactions of the ASME,1973,(4):204-206.
    [45] S.K.Guha, N.S.Rao, B.C.Majumdar. Study of Conical Whirl Instability of Self-Acting Porous Gas Journal Bearings Considering Tangential Velocity Slip[J].Journal of Tribology, Transactions of the ASME,1988,110(1):139-143.
    [46] N.S.Rao, B.C.Majundar. Analysis of Pneumatic Instability of Externally Porous Gas Journal Bearings[J].Journal of Lubrication Technology, Transactions of the ASME,1979,101(1):48-53.
    [47] Jung-Koo Park, Kyung-Woong Kim. Stability Analyses and Experiments ofSpindle System Using New Type of Slot-Restricted Gas Journal Bearings[J].Tribology International,2004,(37):451-462.
    [48] Renato Brancati, Erneato Rocca, Riccardo Russot. Non-linear StabilityAnalysis of a Rigid Rotor on Tilting Pad Journal Bearings[J].TribologyInternational,1996,29(7):571-578.
    [49] N.Kawabata, Y.Miyake. Stiffness and Damping Coefficients of Spherical SpiralGroove Bearings[J].Tribology International,1984,17(5):259-267.
    [50] Coda H.T. Pan, Daejong Kim. Stability Characteristics of A Rigid RotorSupported by a Gas-Lubricated Spiral-Groove Conical Bearing[J].Journal ofTribology, Transaction of the ASME,2007,129(4):375-383.
    [51] A.M.Shikhvatov. A Method of Determining the Stability of a SphericalGasdynamic Bearing Assembly in the Central Position of the Rotor[J].FluidDynamics. 2001,6(4):566-573.
    [51] GL Shires, CW Dee. Pressurized Bearings with Inlet Slots[C].Proceedings ofthe Southampton University Gas Bearing Symposium,Paper 7,April 1967.
    [52] CW Dee, GL Shires. The Current State of the Art of Fluid Bearings withDiscrete Slot Inlets[J].Trans ASME, Journal Lubrication Technology,1971,93(2):441-450.
    [53] K. J. Stout, M. Tawfik. Design Data for Externally Pressurised Spherical GasBearings[J].Triobology, 1977,10(3):163-169.
    [54] W.B.Rowe, K.J.Stout. Design of Externally Pressurized Gas-Fed JournalBearings Employing Slot Restrictors[J].Tribology,1973,6(4):140-144.
    [55] D.Koshal,W.B.Rowe. Fluid Film Journal Bearings Operating in A HybridMode. Part I-Theoretical Analysis and Design[J].Trans ASME,Journal ofLubrication Technology, 1981,103 (4):558-564.
    [56] D.Koshal,W.B.Rowe. Fluid Film Journal Bearings Operating in A HybridMode. Part II-Experimental Investigation[J].Trans ASME,Journal ofLubrication Technology, 1981,103 (4):566-572.
    [57] M.Tawfik, K J Stout. Optimization of Slot Entry Hybrid Gas Bearing[J].Tribology, 1983,15 (2):31-39.
    [58] S.Yoshimoto, Y.Anno, T.Ohashi. Stability of A Rigid Rotor Supported byAerostatic Journal Bearings with Circular Slot Restrictors(On the Double-RowAdmission Bearing)[J].Journal of Tribology, Transactions of the ASME,1988,110:228-234
    [59] Satish C.Sharma, Vijay Kumar, S.C.Jain, R.Sinhasan, M. Subramanian. AStudy of Slot-Entry Hydrostatic/Hybrid Journal Bearing Using the FiniteElement Method[J].Triboloty International,1999,(3 2):185-196.
    [60]长沙工学院资料室.动压气浮自由转子陀螺仪,1974: 11-13 6-7.
    [61]李丙乐,土厚生,土晖.陀螺转子的称重静平衡实验研究[J].工程设计学报,2006,13(s):332-335.
    [62]李丙乐,土厚生,土晖.特殊结构陀螺转子的称重静平衡方法[J].工艺与检测,2006, (9): 83-87.
    [63]任凯龙,土晖,曹志强.特殊结构陀螺转子称重法测静平衡装置的研究[J]机械制造,2008, 46(522): 57-60.
    [65]张海兵.新型双自由度球形气浮陀螺仪关键技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2006.
    [66]朱学毅,谷云彪,颜明.静电陀螺转子气浮法静平衡检测的气膜分析[J].中国惯性技术学报,2001, 9(4): 54-59.
    [67]贺晓霞.球形转子不平衡量的-种自动测量方法[J].机械工程学报,2004,40(2):50-54.
    [68]陶继忠气悬浮立式转子动平衡技术研究[D].成都:四川大学博士学位论文,2004.
    [69]苏德洋.陀螺仪浮子静平衡分析[J].东南大学学报,1991, 21(6): 111-114.
    [70]祝永刚,徐正扬.惯性测量系统的理论与应用[M].北京:测绘出版社,1989:54-55.
    [71]张海兵,姚英学.新型密槽正弦绕组异步电机的谐波磁势分析[J].机械制造,2006,12
    [72] Abe Feldman, Derby, Conn. Gas Driven Gyroscope[P].United States Patent,4271709,Jun.9,1981.
    [73]王大.现代仪器仪表技术与设计[M].北京:科学出版社,2002: 2870-2880.
    [74]兵器工业科学技术辞典编辑员会.兵器工业科学技术辞典[M].北京:国防工业出版社.1991: 112115.
    [75] Per Aberg. Gas Driven Gyroscope[P].United States Patent:4280366,Ju1.28,1981
    [76]土祖温,郭梁斌,包钢.单节流孔静压球面气体轴承动态特性的有限兀分析CJ].摩擦学学报,2003, 23(5): 416-420.
    [77]戚社苗,耿海鹏,虞烈.动压气体轴承的动态刚度和动态阻尼系数[J].机械工程学报,2007, 43(5): 91-98.
    [78]刘立强,陈纯正.低温供气条件下新型切向小孔气体轴承动特性的实验研究[J].低温与特气,2002, 20(1): 7-16.
    [79]陈汝刚,侯子,袁秀玲.低温透平制冷机的静压气体润滑轴承研究[J].西安交通大学学报,2007 , 41(7) : 792-796.
    [80]陶浩,岑少起,杨金锋.浮环动静压轴承的稳定性研究[J].河南科学,2002,20(4):342-345.
    [81]郭良斌,土祖温,刘墩.环面节流静压气体球轴承的相似准则[J].摩擦学学报,2006, 26(3): 257-263.
    [82]彭万欢,赵午云,戚社苗.基十PDE的气体润滑轴承特性的数值分析[J].润滑与密封,2007,32(7):42-47.
    [83]边新孝,李谋渭,李威.加工误差对气体静压径向轴承的影响[J].北京科技大学学报,2005, 27(5): 331-333.
    [84]张瑞乾,张锡圣.径向气体/液体轴承动力特性系数的统-求法[J].北京航空航天大学学报,1994, 20(4): 474-481.
    [85]郭良斌,包钢.静压气体球轴承动态特性的实验研究[J].润滑与密封.2006,(5):60-63.
    [86]郭良斌,土祖温.静压气体轴承静刚度的动态测试新方法[J].机械工程学报,2007, 43(4): 21-26.
    [87]卢泽生,十雪梅,孙雅洲.局部多孔质气体静压轴向轴承静态特性的数值求解[[J].摩擦学学报,2007, 27(1): 68-72.
    [88]史小文,刘育华.球面气体轴承在任意位移下的性能研究[J].哈尔滨工业大学学报,1986
    [89]李树森,孟庆鑫,刘墩.小孔节流静压气体轴颈轴承主轴系统的动态特性分析[J].润滑与密封,2006, 5: 68-70.
    [90]Quan Zhou, Yu Hou, ChunZheng Chen. Dynamic Stability Experiments ofCopliant Foil Thrust Bearing with Viscoelastic Support[J].TribologyInternational,2009,(42):662-665.
    [91]Luis San Andres, Tae Ho Kim. Forced Nonlinear Response of Gas Foil Bearing Supported Rotors[J].Tribology International,2008,41(8):704-715.
    [92] Keith A.Hurley. Experimental Determination of the Rotor Dynamic Coefficients of a Gas Lubricated Foil Journal Bearing[D]. Doctoral dissertation of The Pennsylvania State University, 1998.
    [93] K.J.Stout, W.B.Rowe. Analysis of Externally-Pressurized Spherical Gas Bearings Employing Slot Restrictors[J] .Tribology,l972,5(3):121-127.
    [94]高钟毓.静电陀螺仪技术[M].北京:清华大学出版社,2004 : 121-130 125-126.
    [95]刘延柱静电陀螺仪动力学[M].北京:国防工业出版社,1979: 22-23 199-201.
    [96]万德钧.陀螺仪器结构与设计[M].北京:国防工业出版社,1981: 90-93.
    [97]刘延柱.1沱螺力学[M].北京:科学出版社,1986: 222-223 218-219 223-225.
    [98]周怀梧.医用生物数学[M].北京:人民卫生出版社,1990: 38-40.
    [99]田自耕.陀螺仪漂移测试基础[M].北京:国防工业出版社,1988: 42-50.
    [100]陈学东,何学明,叶鼓玺.超精密气浮定位工作台技术:气浮系统动力性与抓;制[M].武汉:华中科技大学出版社,2008: 70-72.
    [101]王雪梅.局部多孔质气体静压轴承关键技术的研究[D].哈尔滨:哈尔滨工业大学博士学位论文.2007: 59-65 69-71.
    [102]黄海.微型轴承-转子系统动力特性的研究[D].上海:上海交通大学博士学位论文,2007: 41-42 78-80.
    [103] Mohamed Gad-el-Hak. The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture[J].Journal of Fluid Engineering,1999,121(3):5-33.
    [104]张文明,孟光,陈迪.微转子系统径向气体轴承特性[[J].机械工程学报,2008,44(5):25-33.
    [105] Hanzhong Zhao. The Numerical Solution of Gaseous Slip Flows in Microtubes [J].Heat Mass Transfer,2001,28:585-594.
    [106] G.L.Morini, M.Spiga. Slip Flow in Rectangular Microtubes. Mixroscale[J]. Thermophysical Engineering,1998,2:273-282.
    [107] A.Beskok. Vslidation of a New Velocity-slip Model for Separated Gas Microflows [J].Numerical Heat Transfer,Part B:Fundamentals,2001,,40(6); 451-471.
    [108] EB Arkilic, KS Breuer, MA Schmidt. Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels[J].Journal of Fluid Mechanics.,2001,437:29-43.
    [109]孟光,赵二星.滑移边界对微型气浮轴承稳态性能的影响[J].机械工程学报,2006, 42: 21-25.
    [110]孙建威,刘明侯,张根炬.滑移边界条件对二维微喷管数值模拟结果的影响[J].宇航学报,2005, 26(6): 707-711.
    [111] Gad-el-Hak M. Flow Phusics in MEMS[J].Mecanique and Industries. 2001,2:313-341.
    [112] JC Harley, YF Huang, HH Bau,et al. Gas Flow in Micro Channels[J].Journal if Fluid Mechanics,1995,284:257-274.
    [113]周恒,刘延柱.qi体动压轴承的原理与计算[M].北京:国防工业出版社,1981:40-45.
    [114] WB Rowe, SX Xu, FS Chong, W Weston, Hybrid Journal Bearings-with Particular Reference to Hole-entry Configurations[J].Tribology International,1982,15 (6):339-348.
    [115] V.Castelli, H.G.Elrod. Solution of the Stability Problem for the 360 Degree Gas-Lubricated Journal Bearings[J].Journal of Basic Engineering, Trans. ASME,Series D,1965,87(1):199-212.
    [116]杨福兴.高刚度、高精度空气静压轴承静、动态特性的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,1995, 12.
    [117]池长青.流体力学润滑[M].北京:国防工业出版社,1998: 403-405.
    [118]郭素云.陀螺仪原理及应用[M].哈尔滨:哈尔滨工业大学出版社,1985: 29-32.
    [119]蔡学熙.现代机械设计方法实用手册[M].北京:化学工业出版社.2004: 305-310.
    [120]李方方,赵英凯.基十神经网络与粒子群优化算法的82B钢工艺条件的优化研究[J].冶金自动化,2008, 32(6): 13-16.
    [121]李爱国,覃征,鲍复民.粒子群优化算法[[J].计算机工程与应用,2002, 21: 1~3.
    [122]郑金兴.粒子群优化人工神经网络在高速铣削力建模中的应用[[J].计算机集成制造系统,2008, 14(9): loll-1716.
    [123] B Sternlicht. Elastic and Damping Properties of Cylindrical Journal Bearings [J].ASME Journal of Basic Engineering,1959,81:101-108.
    [124] V. Viktorov, G. Belforte, T. Raparelli. Modeling and Identification of Gas Journal Bearings: Externally Pressurized Gas Bearing Results[J].Jo urnal of Tribology, 2005,127:548-562.
    [125] G.Belforte, T.Raparelli, V.Viktorov. Modeling and Identification of Gas Journal Bearings: Self-Acting Gas Bearing Results[J]. ASME Journal of Tribology, 2002, 124:716-724.
    [126]陈小庆,侯中喜,刘建霞.高超声速滑翔式飞行器再入轨迹多目标多约束优化[[J].国防科技大学学报,2009 } 31(6) : 77-83 .
    [127]黄炜,侯莉娜,姚谦峰.密肋符合墙体多目标优化设计方法研究[J].西安建筑科技大学学报,2007,39(5): 641-645.
    [128]王风稳,张卫红,孙士平.多相材料传热微结构的多目标优化设计[[J].力学学报,2007 39(5): 708-714.
    [129]舒服华,王志辉.基十蚁群神经网络的电阻点焊工艺参数优化[[J].试验研究焊接,2007 2: 39-42.
    [130]唐普洪,宋仁国,柴国钟.基十人工神经网络-粒子群算法激光烧蚀制备PDPhSM基纳米复合薄膜的工艺优化[J].材料科学与工艺,2009,17(1): 122-125.
    [131]叶树亮,李东升.应用有限体积法研究空气静压导轨力学特性[J].光学精密工程,2008, 16(5): 809-814.
    [132]黄海,孟光,赵二星.二阶滑移边界对微型气浮轴承稳态性能的影响[J].力学学报,2006, 38(5): 668-673.
    [133] A Burgdorfer. The Influence of the Molecular Mean Free Path on the Performance of Hydrodynamic Gas Lubricated Bearings[J].ASME Journal of Basic Engineering,1959,81:94-100.
    [134] Nicoleta M.Ene,Florin Dimofte,Theo G.Keith Jr. A Stability Analysis for a Hydrodynamic Three-waves Journal Bearing[J].Tribology International,2008,(4): 434-442.
    [135] Sha Lu, Yong Hu,Matthew O'Hara et al. Air Bearing Design, Optimization, Stability Anasysis and Verification for Sub-25mm Flying[J].IEEE Transactions on Magnetics,1996,32(1):103-109
    [136] Cheng-Chi Wang, Her-Terng Yau. Application of Hybrid Numerical Method tothe Bifurcation Analysis of a Rigid Rotor Supported by a Spherical Gas Journal Bearing System[J].Nonlinear Dynamics,2008,51:515-528.
    [137] Cheng-Chi Wang. Bifurcation Analysis of an Aerodynamic Journal Bearing System Considering the Effect of Stationary Herringbone Grooves[J].Chao s solions and Fractals,2007,33:1532-1545.
    [138] Cai-Wan,Chang-Jian, Chao-Kuang Chen. Bifurcation and Chaos Analysis of a Flexible Rotor Supported by Turbulent Long Journal Bearings[J].Chao s solitons and fractals,2007,34:1160-1179.
    [139] Deborah A. Osborne,Luis San Andres. Comparison of Rotordynamic Anslysis Predictions with the Test Response of Simple Gas Hybrid Bearings for Oil Free Turbomachinery[J].Journal of Engineering for gas Turbines and Power,2006,128(7):634-643.
    [140] Quan Zhou, Yu Hou, Chunzheng Chen. Dynamic Stability Experimets of Compliant Foil Thrust Bearing with Viscoelastic Support[J].Tribology International,2009,42:662-665.
    [141]Young T H,Shiau T N,Kuo Z H. Dynamic Stability of Rotor-bearing System Subjected to Random Axial Forces[J].Journal of Sound and Vibration,2007,305:467-480.
    [142] Sharma S C,J ain S C,Sah P L. Effect of Non-Newtonian Behaviour of Lubricant and Bearing Flexibility on the Performance of Slot-entry Journal Bearing[J].Tribology International,2000,33:507-517.
    [143] Osborne Deborah A,Andres L S.Experimental Response of Simple Gas Hybrid Bearings for Oil-free Turbomachinery[J].Journal of Engineering for Gas Turbines and Power,2006,128(7):626-633.
    [144] Andres L S,Kim T H. Forced Nonlinear Response of Gas Foil Bearing Supported Rotors[J].Tribology International,2008,10:1-12.
    [145] Andres L S.Hybrid Flexure Pivot-Tiliting Pad Gas Bearings:Analysis and Experimental Validation[J].Journal of Tribology,2006,128(7):551-558.
    [146] Yang Ding-wen,Chen Cheng-Hsien,Kang Yuan et al. Influence of Orifices on Stability of Rotor-aerostatic Bearing System[J].Tribology International,2009,42:1206-1219.
    [147] Guo Zenglin, Kirk R G. Instability Boundary for Rotor-Hydrodynamic Bearing Systems, Part 2:Rotro with External Flexible Damped Support[J].Journal of Vibration and Acoustics,2003,125(10):423-426.
    [148] Wang C C. Nonlinear Dynamic Behavior and Bifurcation Analysis of a Rigid Rotor Supported by a Relatively Shor Externally Pressurized Porous Gas Journal Bearing System[J].Acta Mechanica,2006,183:41-60.
    [149] Yang Lihua,Qi Shemiao,Yu Lie. Numerical Analysis on Dynamic Coefficients of Self-Acting Gas-Lubricated Tilting-pad Journal Bearings[J].Journal of Tribology, 2008,130(1):1-11.
    [150] Yang P,ZhuKQ,Wang X L. On the Non-linear Stability of Self-acting Gas Journal Bearings[J].Tribology International,2009,42(1):71-76.
    [151]Belforte G,Raparelli T,Viktorov V. Permeability and Inertial Coefficients of Porous Media for Air Bearing Feeding Systems[J].Journal of Tribology, 2007,129(10):705-711

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700