用户名: 密码: 验证码:
多孔质气体润滑轴承设计理论与实验方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体静压轴承由于回转精度高、运转平稳、摩擦小、使用寿命长等优点广泛应用于航空、航天领域的超精密机械、精密量仪和惯性测试设备上。由于多孔质材料的特殊性,可以提供成千上万的微孔作为轴承节流器,因而多孔质气体静压轴承具有很高的承载能力和静态刚度。本文以研制开发适用于气体润滑的多孔质静压轴承为目的,在理论分析和材料实验的基础上,建立了多孔质气体静压轴承的承载能力、静态刚度及质量流量的数学模型和理论计算公式,并利用粉末冶金工艺制备适于多孔质轴承的多孔青铜材料。论文取得了如下研究成果:
     基于粘性不可压缩流体的Reynold方程和流体在多孔质内部流动的Darcy定律,系统地论述了多孔质气体润滑轴承不同区域的流动特性,提出了流体在多孔质内部和气膜间隙的压力分布方程,并得到这两个流动区域的压力分布方程是相互耦合的这一重要结论。
     阐明涡动失稳是影响多孔质轴承动态稳定性的主要因素,利用线性扰动法对多孔质静压轴承中气体润滑的连续方程求解,得到动态下轴承稳定的临界质量,并以此为稳定性判据,为多孔质轴承设计提供了参数的优化范围。在此基础上,提出了一种新的利用不同渗透率的双层多孔质结构提高轴承的动态稳定性的方法,并通过理论分析证实了这一方法的可行性。
     分别采用解析法和数值法研究多孔质气体静压轴承的压力场分布,研究结果表明后者在求解效率和计算精度方面要远优于前者,利用FLUENT软件对止推轴承和径向轴承的压力分布情况进行的仿真研究,进一步证实这一结论。
     利用粉末冶金方法制备多孔青铜轴承材料,建立了测试多孔质材料渗透率的测试装置,给出通过实验数据,经最小二乘法拟合曲线得到多孔质材料粘性渗透系数的方法,进而得出多孔材料的粘性渗透系数与孔隙度的关系。
     上述研究成果为多孔质材料在气体润滑领域的应用提供了坚实的理论依据,同时多孔质青铜的实验研究对开发其他同类多孔质润滑材料具有重要的参考价值。
Aerostatic bearings have been applied widely on the ultra-precision machinery in the aviation, aerospace and the inertial measuring apparatus, because of its high rotational accuracy, calm operation, low friction and long life-span etc. Porous material can supply millions of micro-hole regarded as countless throttle, therefore porous aerostatic bearings have high load capacity and static stiffness. For the purpose of developing the porous aerostatic bearing that is the same with gas lubricant, on the base of theoretic analysis and material experiment, this paper has presented the mathematic model of carrying capacity, static stiffness and mass flow and theoretic formula of porous aerostatic bearing. A kind of porous bronze has been prepared. The following contributions have been made:
     The flowing characteristics of the different areas of the air lubricated porous bearing have been addressed ground on the Reynold Equation of viscidity compressed flow and of Darcy law of the flow transit through porous medium. The pressure distribution equation of the porous medium and the lubricate film are presented. It develops an important conclusion that the two equations are coupled.
     The fact that the vortex effects the dynamic stability mostly has been illustrated, the equation of continuity of flow lubrication is solve in porous aerostatic journal bearing under the dynamic stability condition with the linear iterative method, and the threshold mass considered as stability criterion is found. A new method to improve the dynamic stability of bearing by using double layer porous material with different penetrability is developed.
     The press distribution field of porous aerostatic bearing has been studied using both analytic and numerical method, compared with that of the former, it shows that the numerical method is much more effective and accurate, and FLUENT simulate is carried out to validate the conclusion.
     Powder metallurgy method is utilized to prepare a kind of porous bronze; a set of device to test the penetrability of the porous material is built. A technique that to find the penetrability through the experimental data by using the least squares method is presented,and farther the relationship between the porosity and penetrability is gained.
     The outcome of this dissertation has provided a stable basis of the application of the porous material in the field of gas lubrication. As well as the experimental investigation of porous bronze process an important reference to the development of other similar porous materials.
引文
[1] J. P. Khatait, W. Lin, W. J. Lin, Design and development of orifice-type aerostatic thrust bearing, SIMTech technical reports, 2005, 6 (1):7~12
    [2]杜金名,卢泽生,气体静压多孔质止推轴承静态特性的理论发展,润滑与密封, 2001,(4):69~71
    [3] Cheng-Ying Lo, Cheng-Chi Wang, Yu-Han Lee, Performance analysis of high-speed spindle aerostatic bearings, Tribology International, 2005, 38 (1): 5~14
    [4]侯予,熊联友等,国外多孔质静压气体轴径轴承理论分析的发展,润滑与密封, 1998:(1):62~65
    [5] Y. B. P. Kwan, J. Corbett, A simplified method for the correction of velocity slip and inertia effects in porous aerostatic thrust bearings, Tribology International, 1998, 31(12): 779~786.
    [6] T.S. Luong , W. Potze , Numerical and experimental analysis of aerostatic thrust bearings with porous restrictors, Tribology International, 2004, 37(10): 825~832
    [7]杜金名,卢泽生,孙雅洲,空气静压轴承各种节流形式的比较,航空精密制造技术, 2003, (6): 4~8
    [8] Chun Hong Park, Eung Sook Lee, Husang Lee, A review on research in ultra precision engineering at KIMM, International Journal of Machine Tools & Manufacture, 1999, 39:1793~1805
    [9] Takuji Kobayashi, Hiroshi Yabe, Numerical Analysis of a Coupled Porous Journal and Thrust Bearing System, Journal of Tribology, 2005, 127(1): 120~129
    [10] Y.B.P. Kwan, J. Corbett, Porous aerostatic bearings–an updated review. Wear, 1998, 222(2):69~73
    [11] Mohamed Fourka, Mark Bonis, Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems, Wear, 1997, 210(1): 311~317
    [12]杜金名,卢泽生,孙雅洲,气体静压小孔节流与多孔质节流的比较,润滑与密封, 2002, (4):2~5
    [13] G. Belforte, T. Raparelli, V. Viktorov, Modeling and Identification of Gas Journal Bearings: Self-Acting Gas Bearing Results, Journal of Tribology, 2002,124(4): 716~714
    [14] Kuang-Chao Fan, Chi-Chung Ho and Jong Mou, Development of a multiple-microhole aerostatic air bearing system. Journal of Micromechanics and Microengineering, 2002, (12): 636~643
    [15]王元勋,陈尔昌,师汉民,陈日耀,气体润滑轴承的研究与发展,湖北工学院学报,1994, 9(3): 155~159
    [16]杜建军,狭缝节流气体静压轴颈止推串接型轴承稳态特性的研究,哈尔滨工业大学博士论文,2002:5~13
    [17] N Saha, B C Majumdar, Study of externally-pressurized gas-lubricated two-layered porous journal bearings: a steady state analysis. Journal of Engineering Tribology, 2002, 216(3):151~158
    [18]王云飞,气体润滑理论与气体轴承设计,北京:机械工业出版社,1999,325-398
    [19] Yong Tian, Static study of the porous bearings by the simplified finite element analysis. Wear, 1998, 218 (2):203~209
    [20] Ern? Baka, Calculation of the Hydrodynamic Load Caring Capacity of porous Journal Bearings, Periodical Polytechnics, 2002, 46(1): 3~14
    [21]刘墩,刘育华,陈世杰,静压气体润滑,哈尔滨:哈尔滨工业大学出版社,1986: 51~56
    [22] E. Koc, C. J. Hooke, Considerations in the Design of Partially Hydrostatic Slipper Bearings, Tribology International, 1997, 30(11):815~823
    [23]吴起,池长青,径向空气静压轴承静态工作特性的数值分析,航空精密制造技术,1995, 32(5):7~9
    [24]李兴华,空气静压轴承的静特性计算及其实际应用,同济大学学报, 1999, 22(1):71~73
    [25] Mohamed Fourka, Yong Tian, Marc Bonis, Prediction of the Stability of Air Thrust Bearings by Numerical, Analytical and Experimental Methods, Wear, 1996, 198(1):1~6
    [26]张日华,刘广华,李尚义,刘庆和,圆锥静压轴承的数值计算,机械设计,1997, (12 ):33~34
    [27]马明建,辛世界,王辉林,房晓东,郑贵明,静压式平面空气轴承压力场的有限元分析,农业机械学报,1994, 25(4):92~97
    [28]刘墩,彭春野,葛卫平,齐乃明,费源明,小孔节流气体静压润滑的离散化和计算收敛,摩擦学学报,2001, 21(2):139~142
    [29] Jaw-Ren Lin, Chi-Chuan Hwang, Hopf bifurcation to a short porous journal-bearing system using the Brinkman model: weakly nonlinear stability. Tribology International, 2002, 35(2):75~84
    [30]李树森,曲全利,张鹏顺,静压气体轴承稳定性计算方法的分析,机械工程师,1999, (5):54~55
    [31]徐建民,陈明,边界元方法在研究气体静压轴承特性中的应用,润滑与密封,1997, (3):27~30
    [32]路长厚,张锡霞,艾兴,圆锥型滑动轴承有限元分析,机械设计,1995, (9):8~ 10
    [33] T .Nakamura, S. Yoshimoto, Static Tilt Characteristics of Aerostatic Rectangular Double-pad Thrust Bearings with Compound Restrictors, Tribology International, 1996, 29 (2):145~152
    [34] S. Yoshimoto, J. Tamura, T. Nakamura, Dynamic Tilt Characteristics of Aerostatic Rectangular Double-pad Thrust Bearings with Compound Restrictors, Tribology International.1999, 32 (12):731-738
    [35] Jaw-Ren Lin. Static and Dynamic Characteristics of Externally Pressurized Circular Step Thrust Bearings Lubricated with Couple Stress Fluids. Tribology Intenratinal.1999, 32(4):207~216
    [36] T.A. Osman, M. Dorid, Z. S. Safar, Experimental Assessment of Hydrostatic Thrust Bearing Performance, Tribology International, 1996, 29(3):233~239
    [37] Toshiharu Kazama, Atsushi Yamaguchi, Application of a Mixed Lubrication Model for Hydrostatic Thrust Bearings of Hydraulic Equipment, Transaction of the ASME, Journal of Tribology, 1993, 115(4):689~691
    [38] M. J. Braun, M. B. Dzodzo, Three-dimensional Flow and Pressure Patterns In a Hydrostatic Journal Bearing Pocket, Transaction of the ASME, Journal of Tribology, 1997, 119(4):711~719
    [39] S. Yoshimoto, K. Kikuchi, Step Response Characteristics of Hydrostatic Journal Bearings with Self-controlled Restrictors Employing a Floating Disk, Transaction of the ASME, Journal of Tribology, 1999, 121(2):315~320
    [40]杨福兴,高刚度、高精度空气静压轴承静、动态特性的研究,哈尔滨工业大学博士论文,1995:88~96
    [41]何予鹏,圆锥动静压轴承有限元直接解法,河南农业大学学报,1995, 29(4):354~357
    [42]李玲,液体球面静压轴承设计计算研究,武汉汽车工业大学学报,1998,20(1):13~15
    [43]苏智剑,夏恒青,液体圆锥滑动轴承性能分析中的有限元法,郑州工学院学报,1996, 17(l):29~33
    [44]王淮柱,李秀明,锥形液静压轴承的分析与试验研究,水利电力机械,1996, (1):23~28
    [45]侯予,熊联友,林明峰,陈纯正,多数供气孔静压环形止推气体轴承的研究,机械设计,1999, (3):38~40
    [46]刘墩,杜建军,姚英学,狭缝节流气体静压润滑方程式的离散化和相容性条件,机械工程学报,2002, 38(10):144~148
    [47]华绍杰,付少民,郭红,内置毛细管节流的动静压滑动轴承有限元--优化综合分析,郑州工业大学学报,1996, 17(4):3~8
    [48]王元勋,景岗,陈尔昌,新型表面节流气体润滑轴承的有限元分析,机床与液压,1995(1):16~19
    [49] L. Q. Liu, C. Z. Chen, Mathematical Model for Gas Bearing with Holes of Tangential Supply, Transaction of the ASME, Journal of Tribology, 1999, 121(2):301~305
    [50] Dee C. W, Shires G L, The Current State of the Art of Fluid Bearing with Discrete Slot Inlets, Trans. ASME, J. Lubr. Technol, 1971, 93(2): 441~450
    [51] Satish C. Sharma, Vijay Kumar, A Study of Slot-entry Hydrostatic/hybrid Journal Bearing Using the Finite Element Method, Tribology International, 1999, 32(4):185-196
    [52] Satish C. Sharma, S. C. Jain, Influence of Recess Shape On the Performance of A Capillary Compensated Circular Thrust Pad Hydrostatic Bearing, Tribology International, 2002, 35(6):347~356
    [53] Stout K. J, Aerostatic Bearings in Slocum A. H. Precision Machine Design, 1st Edition, Prentice-Hall, 1992
    [54] Kanai M, Ishihara S, Air bear in lead screw and nut using porous material, Bulletin of JSPE, 1990, 56 (12):2201~2207
    [55] S .K. Kakoty, B .C .Majumdar, Effect of Fluid Inertial on Stability of Oil Journal Bearings, Transaction of the ASME, Journal of Tribology, 2000, 122(4):741~745
    [56] A. K. Tieu, Hydrodynamic Thrust Bearings: Theory and Experiment, Transaction of the ASME, Journal of Tribology, 1991, 113(3):633~638
    [57] Satoru Kaneko, Yasuhiro Ohkawa, Yuji Hashmoto, A Study of The Mechanism of The Lubrication in Porous Journal Bearings Effects of Dimensionless Oil-feedPressure On Static Characteristic under Hydrodynamic Lubrication Conditions, Transactions of the ASME, Journal of Tribology, 1994, 116(3):606~611
    [58] Satoru Kaneko, Yuji Hashimoto, A Study of The Mechanism of Lubrication In Porous Journal Bearings: Effects of Dimensionless Oil-feed Pressure On Frictional Characteristics, Transaction of the ASME, Journal of Tribology, 1995, 117(2):291~296
    [59] Shigeru Ohtsuka, Motozo Hayakawa, Experimental Study On the Mechanism of Lubrication in Hydrodynamic Porous Thrust Bearings With A Wavy Surface, Transactions of the ASME, Journal of Tirbology, 1999, 121(3):538~545
    [60] Satoru Kaneko, Yuji Hashimoto, Hirokil, Analysis of Oil-film Pressure Distribution In Porous Journal Bearings Under Hydrodynamic Lubrication Conditions Using An Improved Boundary Condition, Transaction of the ASME, Journal of Tribology, 1997, 119(1):171~177
    [61] J. Corbett, R .J. Almond, D. J. Stephenson, Porous ceramic water bearings for improved for accuracy performance, Annals of the CIRP 1998, 47(1):467~470
    [62] Changzhi Cui, Kyosuke Ono, Theoretical and Experimental Investigation of An Externally Pressurized Porous Annular Thrust Gas Bearing and Its Optimal Design, Transaction of the ASEM, Journal of Tribology, 1997, 119(3):487~492
    [64]安旭,徐本仁,沈钊,气体润滑静压丝杠的实验研究与理论分析,第四届全国气体润滑技术交流会论文,杭州,1988:1 ~5
    [65]吴起,精密主轴气体静压轴承静、动态特性的研究,工学博士学位,哈尔滨工业大学博士论文,1995:85~99
    [66] Krzysztof Cieslicki, Investigations of the Effect of Inertia on Flow of Air through Porous Bearing Sleeves, Wear, 1994, 172(1):73 ~78
    [67] U .M .S. Costaa, J. S. Andrade Jrac, H. A. Makseb, The Role of Inertia on Fluid Flow through Disordered Porous Media. Physica, 1999, 266(1):420 ~ 424
    [68] Antonio F. Miguel, Contribution to Flow Characterization through Porous Media, International Journal of Heat and Mass Transfer, 2000, 43(13):2267 ~2272
    [69] Anjani Kumar, Conical Whirl Instability of Turbulent Flow Hybrid Porous Journal Bea rings, Tribology Intenrational.1998, 31(5):235 ~243
    [70] Jaw-Ren Lin, Optimal Design of One-dimensional Porous Slider Bearings Using the Brinkman Model, Tribology International. 2001, 34(1):57 ~ 64
    [71] J.R.Lin, C. C. Hwang, Lubrication of Short Porous Journal Bearings-Use of the Brinkman-extended Darcy Model, Wear, 1993, 161(1):93 ~104
    [72] Abdallah A. Elsharkawy, Lotfi H.Guedouar, Hydrodynamic Lubrication of Porous Jounral Bearings Using A Modified Brinkman-extended Darcy Model, Tribology International, 2001, 34(11):767 ~777
    [73] Jaw-Ren Lin, Squeeze Film Behaviors in A Hemispherical Porous Bearing Using the Brinkman Model, Tribology Transactions, Journal of Tribology, 1996, 39 (4):769 ~778
    [74] Y.B.P. Kwan, J. Corbett, A Simplified Method for the Correction of Velocity Slip and Inertial Effects In Porous Aerostatic Thrust Bearings, Tribology International, 1998, 31(12):779 ~786
    [75] S .P. Liaw, D.G Lin, Sliding Effect of Gas-lubricated Porous Rectangular Thrust Bearings, Wear.1991, 141(2):235 ~248
    [76] A. A. Elslarkawy, S. Z. Kassab, Lubrication Analysis of Externally Pressurized Circular Porous Bearings, Applied Math Modelling, 1996, 20(12):870 ~876
    [77] J. L.Gupta, G. M. Deheri, Effect of Roughness on the Behavior of Squeeze Film in a Spherical Bearing, Tribology Transactions, 1996, 39 (1): 99 ~102
    [78] J. L.Gupta, G. M. Deheri, Effect of Roughness on the Behavior of Squeeze Film in a Spherical Bearing, Tribology Transactions, 1996, 39 (1):99 ~102
    [79] Ram Turaga, A .S. Sekhar, B .C. Majumdar. The Effect of Roughness Parameter On the Performance of Hydrodynamic Journal Bearings With Rough Surfaces Tribology Intenrational.1999, 32:231 ~236
    [80] K. Tender, Dynamics of Rough Slider Bearings: Effects of One-sided Roughness/waviness, Tribology International, 1996, 29 (2):117 ~122
    [81] Jaw-Ren Lin, Surface Roughness Effect On the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings, International Journal of Machine Tools& Manufacture, 2000, 40(11):1671-1689
    [82] N .M .Bujurke, H .P. Patil, The Effects of Variable Permeability and Roughness of Porous Bearings, Int. J. Mech. Sci,1992, 34 (5):355-362
    [83] J. Prakash, K. Gururajan, Effect of Velocity Slip In An Infinitely Long Rough Porous Jounral Bearing, Tribology Transactions, 1999, 42(3):661-667
    [84] K .Gunrrajan, J. Prakash. Effect of Surface Roughness In a Narrow Porous Journal Bearing, Transaction of the ASME, Journal of Tribology, 2000, 22(2): 472-475
    [85] S .Yoshimoto, K. Kohno, Static and Dynamic Characteristics of Aerostatic Circular Porous Thrust Bearings (Effect of the Shape of the Air Supply Area),Transaction of the ASME, Journal of Tribology, 2001, 123(3):501-508
    [86] N. M. Bujurke, H. P. Patil, The Effect of Variable Permeability and Rotation on the Performance Characteristics of Porous Bearings, Wear, 1992, 155(1):7-14
    [87] Rao N.S, Analysis of Aerostatic Porous Rectangular Thrust Bearings With offset Loads, Wear, 1980, 59(3):333-344
    [88] S. K. Kakoty, B. C. Majumdar, Effect of Fluid Inertia On Stability of Oil Journal Bearings, Transaction of the ASME, Journal of Tribology, 2000, 122(4):741 ~745
    [89] A. Kumar, N. S. Rao, Steady State Performance of Finite Hydrodynamic Porous Journal Bearings In Turbulent Regimes, Wear, 1993, 167(2):121 ~126
    [90] Ram Turaga, A. S. Sekhar, B. C. Majumdar, The Effect of Roughness Parameter on the Performance of Hydrodynamic Journal Bearings With Rough Surfaces, Tribology International, 1999, 32(5):231 ~236
    [91] Satoru Kaneko, Static and Dynamic Characteristics of Porous Journal Bearings with Anisotropic Permeability, JSME International Jounral, 1989, 32(1):91 ~99
    [92] S. Kaneko, H. Kamei, Y. Yanagisawa, H. Kawahara, Experimental Study on Static and Dynamic Characteristics of Annular Plain Seals with Porous Materials, Transaction of the ASME, Journal of Tribology. 1998, 120(2):165-172
    [93] Mohamed Fourka, Marc Bonis, Comparison between Externally Pressurized Gas Thrust Bearings with Different Orifice and Porous Feeding Systems, Wear, 1997, 210(1):311-317
    [94] K. Cheng, W. B. Rowe, A Selection Strategy for the Design of Externally Pressurized Journal Bearings, Tribology Intenrational,1995, 28 (7):465-474
    [95]李忠全,周桂芬,陈木兰,多孔材料气体渗透性的测定粉末冶金技术,1996,14(1):52~57
    [96] K. Cieslicki, Static and dynamic evaluation of permeability of porous bearing sleeves, Wear, 1993, 167(1): 69-72
    [97]孙惠贤,杜声同,朱文婕,廖钮陶瓷多孔体渗透率的实验研究,推进技术,1995(4):77~81
    [98]杜金名,多孔质节流体静压轴承润滑技术的研究,哈尔滨工业大学博士论文2003:87~92
    [99]贺奉嘉,烧结含油轴承多孔特性的统计分析,润滑与密封,1996, (4):17~20
    [100]中华人民共和国国家标准,可渗透性烧结金属材料--流体渗透性的测定, GB5250-85:205~213
    [101]孙纪国,王建.烧结多孔结构的渗透和流阻特性研究,航空动力学报,2008, (3): 130~133
    [102]周照耀,吴铮强.烧结金属多孔材料孔隙的研究,粉末冶金工业,2005, (4): 6~10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700