用户名: 密码: 验证码:
气水脉冲清洗给水管道两相流过程研究及其数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
给水管网是重要的市政基础设施,是给水系统重要的组成部分。经过长年运行后的管道易产生腐蚀,沿管道内壁会逐渐形成不规则的生长环,它是给水管道内壁由沉淀物、锈蚀物、黏垢及生物膜相互结合而成的混合体。生长环不仅会造成水质的二次污染而且会使管道过水断面减小,阻力系数增加,直接影响管道的通水能力和供水压力。如何有效去除给水管道内壁上的生长环,成为困扰全国各大供水企业的一大难题,是必须要彻底解决的现实问题。气水脉冲管道清洗法是一种操作简单、适应性强、清洗效果较好、对环境无污染的生长环去除方法。但是,这种方法的应用现在还处在经验阶段,对其清洗理论和清洗规律的研究很少。本文利用试验和数值模拟两种手段,揭示了气水脉冲管道清洗过程中两相流的流动特性规律,分析了多个因素对管道壁面剪切力的影响。
     采用压力检测的方法对清洗过程中的压降进行测定,将试验结果与气液两相流均相流模型相结合,寻求气水脉冲管道清洗过程的压降变化规律。管道中的水流充入高压气体时,管道内的压降比不充气时增大了几十倍;每个清洗周期,管道内的压降具有相同的变化。通过设定不同的试验条件,揭示了供气压力、供水流量等参数对管内两相流压降变化的影响。在供水流量和脉冲频率一定的情况下,管内两相流压降与供气压力呈线性关系;在供气压力和脉冲频率一定的情况下,管内两相流压降与供水流量呈三次多项式关系。在大量试验基础上,对清洗过程中气液两相流流型及其转换进行分析,确定起主要清洗作用的流型为弹状流。
     基于对水平管内的气液两相流的理论研究,建立了气水脉冲管道清洗过程的数学模型,采用VOF (volume of fluid)方法进行CFD数值模拟,利用试验结果验证了模型的合理性,分别分析清洗过程中直管段和弯管段中流型、动压、湍流强度、壁面切应力等流动特性,为气水脉冲法清除管壁生长环的研究提供理论依据。气液两相流形成弹状流的过程中,水平管道内管道长度l>100D、弯管道内l>15D时弹单元趋于稳定。往管道水流中充入高压气体以后,管道内的动压比不充气时明显增大,并且随着充气时间的延长持续增大。管道内的湍流强度增大,水的紊动情况加剧,壁面剪切力增大,壁面剪切力沿管道长度的变化趋势与管道内气水两相流流态变化相符。
     通过数值模拟的方法计算不同管径、管道倾斜度、管内腐蚀情况、进气喷嘴尺寸和位置时管内流体与管道壁面的剪切力。条件相同的情况下,管径小于50mm时,管径的变化对流体与壁面间的剪切力值和沿管道的分布情况影响不大;当管径大于50mm时,管径对壁面剪切力的影响较大,随着管径的增大剪切力呈先增大后减小的趋势。向下倾斜管道和水平管的壁面剪切力大于向上倾斜管道的值。粗糙管的壁面剪切力大于光滑管。粗糙度较小时,随着粗糙度的增大,壁面剪切力增大。粗糙度大于0.3cm,随着粗糙度的增大剪切力变化不大。进气喷嘴位置相同时,尺寸小于0.5D(D为管径)的进气喷嘴,管道内流体与管壁的剪切力较小,进气喷嘴尺寸大于等于0.5D时,进气喷嘴尺寸的改变对壁面剪切力的影响不大。随着进气时间的增长,进气位置不同的管道内上壁面剪切力值相差不大。在大部分管段内,进气喷嘴在管道上部的管内流体与下壁面剪切力值最小。
     研究结果有助于提高气水脉冲管道清洗工程的清洗效果,有利于气水脉冲管道清洗技术的推广应用,有利于解决给水管网水质二次污染问题,降低供水能耗,为保障人民的身体健康、减少能源的消耗、减轻环境污染提供技术支持。
Water supply network is the basic infrastructures in city and the component of water supply systems. The irregular growth rings gradually formed along the pipeline inwall because of the corrosion of longtime running. The growth ring is the mixture of the sediment, corrosion, contamination and biofilm, which not only causes the secondary pollution, but also reduces the water-crossing section and increases the resistance coefficient, directly affecting the water supply capacity and pressure. How to remove the growth ring has became the trouble of water suppliers. Air-water pulse washing method is an effective for removing growth ring, being simple to operate, highly adaptable, no environmental pollution. However, the application of barometric Pulse is still in the period of experience, the mechanisms and regulations of washing need to be studied thoroughly. In this study, combined experiments and numerical simulation was used to reveal the flow characteristics of two-phase flow in air-water pulse tube, simultaneously, various elements affecting wall shear stress was analyzed.
     The pressure drop in the process of washing was also analyzed by detecting the pressures, and the regulation of pressure drop in the process of air-water pulse tube was determined by combined the experimental results and homogeneous flow model of gas-liquid two phase flow. Compared with no air, the specific pressure drop in the pipes increased dozens of times when high pressure air was filled into flow, and the same changes of pressure drops was observed in every wash cycle. The effects of air pressure and water flow on pressure drops in the pipes was studied by setting different experimental conditions. When water flow and impulse frequency were constant, there was significant linear correction between the pressure drops and air pressure. When the air pressure and impulse frequency were constant, the relationship between pressure drops and flow can be expressed through a binary cubic polynomial. The conversion of flow pattern between air and water in the process of washing was observed by picture processing technology, and the slug flow was determined to be the main flow pattern playing the significant role in washing.
     Based on the study on the mechanisms about air-water two phase flow in the horizontal pipes, mathematical model in the washing process of water-air pulse flushing was established, CFD numerical simulation was conducted by VOF method, and the reasonability of model was verified by experimental results. The flow characteristics such as flow patterns, dynamic pressures, turbulence intensity and wall shear stress in the straight and bended pipes were respectively analyzed, which provided the theoretical basis for removing growth ring in air-water pulse method. In the formation of slug flow of air-water flow, when l>100D or l>15D in the horizontal or bended pipes, the elastic cells tended towards stability. After high pressure air was filled into flow, the dynamic pressure in the pipes was significantly increased, and continuously increased wit the extent of inflation time. It is observed that the turbulence intensity accelerated, the turbulent fluctuation aggravated, and the wall shear increased, simultaneously, the change trends of wall shear along the length of pipes was in accordance with the change of the air-water two phase flow regimes.
     The flow and wall shear stresses at different pipe diameters, inclinations, corrosion situation, inlet nozzle size and position were calculated by numerical simulation, which provided the guidance for determining the parameters in practical application. Other conditions being equal, when the pipe diameter was less than50mm, the effective of pipe diameter on flow and was small; when the pipe diameter was bigger than50mm, the wall shear stress was changed significantly and increased first and then decrease with the increase of pipe diameter. The wall shear stress in the downward upward inclined pipe and horizontal pipe was higher than that in the upward inclined pipe, and the wall shear stress in roughened tubes was bigger than that in the smooth pipe. When the roughness was lesser, the wall shear stress increased with the increase of roughness. With the roughness increased to a certain degree, the wall shear stress did not changed obviously. At the same position of nozzle of air supply, the flow and wall shear stress was smaller when the nozzle of air supply was less than0.5D (D is pipe diameter), while the wall shear stress was not affected when the nozzle of air supply was more than0.5D. With the extent of inlet time, the wall shear stress at different inlet position changed largely. In most of the section of pipe, the flow and wall shear stress values was the lowest.
     Research result can improve the cleaning effect of air-water pulse pipeline cleaning engineering, is advantageous to the application of air-water pulse pipe cleaning technology, solve the problem of network secondary pollution, reduce energy consumption of water supply, provide strong support of ensure people's health, reduce energy consumption and environmental pollution.
引文
[1]张有华.不良地质条件下输水管道铺设的施工实践[J].安徽建筑,2001,5:34.
    [2] Edwards M. Controlling corrosion in drinking water distribution systems: agrand challenge for the21st century[J]. Water Science Technology.2004,49(2):1-8.
    [3]国家统计局.中国统计年鉴-2006[R].北京:中国统计出版社,2006:257-265.
    [4]国家建设部.全国城市供水管网改造近期规划(2006年-2007年)[S].中华人民共和国国家建设部,2006:1-10.
    [5]李亚峰,蒋白懿,赵洪宾等.灰口铸铁给水管道内壁腐蚀试验[J].沈阳建筑大学报,2010,26(3):321-325.
    [6]赵洪宾,李欣,赵明.给水管道卫生学[M].北京:中国建筑工业出版社,2008.
    [7] Appenzeller B M R, Batté M, Mathieu L, et al. Effect of adding pHospHate todrinking water on bacterial growth in slightly and highly corroded pipes[J].Water Research,2001,35(4):1100-1105.
    [8]袁一星,赵洪宾,赵明.给水管网生长环研究[J].哈尔滨建筑大学学报.1998,31(1):72-76.
    [9]陈跃,赵明,袁一星.给水管道内“生长环”的危害及去除方法研究.给水排水,2009,35(12):112-115.
    [10]林秀光.因水而死[M].内蒙古:远方出版社,2006.
    [11]赵洪宾.给水管网系统理论与分析[M].北京:建筑工业出版社,2003.
    [12] Nquette P, Servais P, Savoir R. Impacts of pipe materials on densities of fixedbacterial biomass in a drinking water distribution system[J]. Water Research,2000,34(6):1953-1956.
    [13]陈友彬.自来水二次污染的原因及对策[J].海南矿冶,2000,2:35-37.
    [14]任基成,费杰.城市供水管网系统二次污染及防治[M].北京:中国建筑工业出版社,2006:37-46.
    [15]汪光熹.城市供水行业2000年技术进步发展规划[M].北京:建筑工业出版社,1993:59
    [16] Begum S, Bari A S, Begum Z, et al. An Investigation of InorganicContaminants of Potable Water of Karachi[J]. Journal of Chemical Society ofPakistan,1998,20:38.
    [17] Coller B A, Lin J. Aluminium in a Water Supply[J]. Water,1997,24(3):18-23.
    [18]许保久,安鼎年.给水处理理论与设计[M].中国建筑工业出版社,1992:543-552.
    [19] Koch G, Brongers M, Thompson N. Corrosion Costs and Preventive Strategiesin the United States[S]. Report FHWA-RD-01-156US Department ofTransportation Federal Highway Administration,2002:80.
    [20]徐兰京.给排水管材现状及管道内壁水质分析[J].给水排水,1999,25(10):66-69.
    [21]迟海燕.城市供水管网氯的优化配置[D].天津:天津大学,2004:53-57.
    [22]赵洪宾,李欣,赵明.给水管道卫生学[M].北京:中国建筑工业出版社,2008:158-162.
    [23] Shock M R. Internal Corrosion and Deposition Control in Water Quality andTreatment. A Handbook of Community Water Supplies[M]. New York:McGraw Hill,1999:231-245.
    [24]袁一星,赵洪宾,赵明.给水管网生长环研究[J].哈尔滨建筑大学学报,1998,31(1):72-76.
    [25]徐雯雯.给水管网生长环成因试验与防治对策研究[D].哈尔滨:哈尔滨工业大学,2005:65-72.
    [26] Lin Jianping, Mark Ellaway, Robert Adrien, et al. Study of CorrosionMaterials Accumulated on the Inner Wall of Steel Water Pipe[J]. CorrosionScience,2001,43(11):2065-2081.
    [27]周韬.铁质给水管道内壁腐蚀对管网水质影响研究[D].长沙:湖南大学,2006.
    [28]方伟.城市供水系统水质化学稳定性及其控制方法研究[D].长沙:湖南大学,2007.
    [29]牛璋彬,王洋,张晓健等.给水管网中管内壁腐蚀管垢特征分析[J].环境科学,2006,27(6):1105-1154.
    [30] Sarin P, Snoeyink V L, Bebeeb J, et al. Physico-Chemical Characteristics ofCorrosion Scales in Old Iron Pipes[J]. Water Research,2001,35(12):2961-2969.
    [31] Park S R, Mackay W G, Reid D C. Helicobacter SP. Recovered from DrinkingWater Biofilm Sampled from a Water Distribution System[J]. WaterResearch,2001,35(6):1624-1626.
    [32] Markku J L, et al. Microbiology, Chemistry and Biofilm Development in aPilot Drinking Water Distribution System with Copper and Plastic Pipes[J].Water Research.2004,38:3769-3779.
    [33] Teng F, Guan Y T, Zhu W P. Effect of biofilm on cast iron pipe corrosion indrinking water distribution system: Corrosion scales characterization andmicrobial community structure investigation[J]. Corrosion Science,2008,50(10):2816-2823.
    [34]姜文超,蒋晖,吴津津等.腐蚀铸铁管中饮用水水质变化规律试验研究[J].华中科技大学学报:自然科学版2013,6:117-121.
    [35] Wenfang L, Zhisheng Y, Xi C, et al. Molecular Characterization of NaturalBiofilms from Household Taps with Different Materials: PVC, Stainless Steel,and Cast Iron in Drinking Water Distribution System[J]. AppliedMicrobiology and Biotechnology,2013,97(18):8393-8401.
    [36] Lu C, Rui B J, Li L. Bacterial Community of Iron Tubercles from a DrinkingWater Distribution System and Its Occurrence in Stagnant Tap Water[J].Environmental Science: Processes&Impacts,2013,15:1332-1340.
    [37] Makris K C, Andra S S, Botsaris G. Pipe Scales and Biofilms in Drinking-Water Distribution Systems:Undermining Finished Water Quality[J]. CriticalReviews in Environmental Science and Technology,2013,22(8):1251-1260.
    [38]刘庭成.高压水射流技术及其在清洗中的应用[J].洗净技术,2003,1:29-32.
    [39]刘根新,沈晓翔,周拾庆等.小口径管道清洗修复技术在江苏油田的应用[J].腐蚀与防护,2003,24(7):303-309.
    [40]李兴龙.管道的化学清洗[J].科技风,2011,3:44.
    [41] Campbell S A, Fairfield C A. An Overview of The Various Techniques Used inRoutine Cleaning and Maintenance of Clay, Concrete and Plastic Drains[J].Construction and Building Materials,2008,22(1):50-60.
    [42] Oberoi K. Distribution Flushing Program: The Benefits and Results[C],Proceeding of American Water Works Association Conference,1994:1128-1135.
    [43] Vreeburg J H G, Boxall J B. Discolouration in Potable Water DistributionSystems: A Review[J]. Water Research,2007,41(5):519-529.
    [44] Edward N A, John E D, David J H. Unidirectional Flushing: A PowerfulTool[J]. American Water Works Association,l999,91(7):62-71.
    [45] Friedman M, Martedtl K, Hill A. Establishing Site-specific FlushingVelocities[C], Proceeding of American Water Works Association,2002:132-140.
    [46] Ackers J, Brandt M, Powel J. Hydraulic Characteristics of Deposits andReview of Sediment Modelling[C]. Project Drinking Water Quality andHealth-Distribution systems-DW/03’ UK Water Industry Research,London,UK,2001:139-146.
    [47]姜湘山,张晓明.市政工程管道工试用技术[M].北京:机械工业出版社,2005:285.
    [48]焦文海.关于水质维护的管网冲洗研究[D].天津:天津大学,2005:50-59.
    [49] Mirko P, Mitja K, Miso K. Evaluation of a Rinsing-Based Cleaning Processfor Pipes[J]. Journal of Pharmaceutical and Biomedical Analysis,2005,(38):508–513.
    [50] Vreeburg J H G,Schaap P G,Bergmans B, et al. How Effective is Flushingof Cast Iron Pipes[C]. Proceedings of the10th Annual Water DistributionSystems Analysis Conference WDSA2008,Kruger National Park,SouthAfrica,2008:559-570.
    [51] David Y P Jr, Colleen M S, Michael A D, et al. Effect of pH Adjustments onFlushing in a Drinking Water Distribution system[J/OL].2010.http://sugdendevelopment.com/pdf/Effectofph.pdf.
    [52]刘庭成,丁宇.高压水射流清洗技术[J].化学清洗,1999,15(4):37-42.
    [53]曾艳丽,王裕国.高压水射流清洗技术[J].中国油脂,2000,25(5):43-47.
    [54]董星,段雄.高压水射流喷丸强化技术[J].表面技术,2005,34(l):48-49.
    [55] Klausner J F, Mei R, Near S, et al. Two-phase Jet Impingement for Non-volatile Residue Removal[J]. Proceedings of the Institution of MechanicalEngineers,1998:212.
    [56]杨国来,周文会,刘肥.基于FLUENT的高压水射流喷嘴的流场仿真[J].兰州理工大学学报,2008,32(2):49-52.
    [57]周文会.高压水射流喷嘴内外部流场的数值模拟研究[D].兰州:兰州理工大学,2008:80-86.
    [58]朱华清,王永强,严欣茹等.高压水射流技术在自来水管道内壁清洗中的应用[J].清洗世界,2008,24(7):19-22.
    [59]宋安坤.大庆供水管网气水脉冲技术研究[D].哈尔滨:哈尔滨工业大学,2007:48-53.
    [60]李运长.管道清洗新技术-气脉冲清洗法在供水供热管网中的应用[J].黑龙江水利科技,2006,34(4):227.
    [61]丁玉海,宋安坤,尚教庆等.气水脉冲冲洗技术在大口径管线中的应用[J].哈尔滨商业大学学报(自然科学版),2007,23(4):424-426,434.
    [62]刘从胜.基于水锤和气压脉冲的管道冲洗试验研究[D].哈尔滨:哈尔滨工业大学.2009:28-31.
    [63]刘海星.给水管道气压脉冲法清洗试验与数值模拟[D].西安:长安大学,2010:46-52.
    [64]王彤,张玉杰,赵明等.气水脉冲在大口径管道清洗中的应用[J].城镇供水(增刊),2011:93-96.
    [65]韩晓曦.给水管道多相流冲洗技术的研究及应用[D].哈尔滨:哈尔滨工业大学,2012:32-36.
    [66]张玉杰.给水管道填料气水脉冲清洗试验研究[D].西安:长安大学,2012:46-51.
    [67]李海青.两相流参数检测及应用[M].杭州:浙江大学出版社,1991:89.
    [68] Hewitt G F. Measurement of Two-phase Flow Parameters[M]. London:Academic Press,1980:113-120.
    [69] Baker O. Simulation flow of oil and gas[J]. Oil and Gas Journal,1954,53(3):185-190.
    [70] Mandhane J M,Gregoy G A,Ariz K. Flow Pattern Map for Gas-LiquidFlow in Horizontal Pipes[J]. International Journal of Multiphase Flow,1974,(3):537-553.
    [71] Wesiman J. Effects of Fluid Properties and Pipe Diameter on Two-Phase FlowPatterns in Horizontal Lines[J]. International Journal of Multiphase Flow,1979,(5):437-462.
    [72] Taitel Y, Dukler A E. A Model for Predicting Flow Regime Transitions inHorizontal and Near Horizontal Gas Liquid Flow[J]. AIChE Journal,1976,22:27-45.
    [73]劳力云,郑之初,吴应湘等.关于气液两相流流型及其判别的若干问题[J].力学进展,2002,32(2):235-249.
    [74]白博峰,郭烈锦,赵亮.汽(气)液两相流流型在线识别的研究进展[J].力学进展,2001,31(3):437-446.
    [75] Fourar M,Bories S. Experimental Study of Air-Water Two-Phase FlowThrough a Fracture (Narrow Channal)[J]. International Journal of MultiphaseFlow,1995,21(4):621-637.
    [76]施丽莲.基于数字图像识别技术的气液两相流参数检测的研究[D].杭州:浙江大学,2004:100-102.
    [77]施丽莲,蔡晋辉,周泽魁.基于图像处理的气液两相流流型识别[J].浙江大学学报,2005,39(8):1128-1131.
    [78]周云龙,李洪伟,袁俊文.一种识别气液两相流流型的新方法[J].热能动力工程,2009,24(1):68-72.
    [79]周云龙,李洪伟,陈飞.基于图像轮廓特征和粒子群优化神经网络的气液两相流流型识别[J].吉林大学学报(工学版),2009,39(3):673-678.
    [80] Li H, Zhou Y, Sun B. Multi-scale Chaotic Analysis of the Characteristics ofGas-Liquid Two-phase Flow Patterns[J]. Chinese Journal of ChemicalEngineering,2010,18(5):880-888.
    [81] Hubbard M D, Ducker A E. The Characteriazation of Flow Regime forHorizontal Two-Phase:1. Statistical Analysis of Wall Pressure Fluctuation[C],Proceedings of the1966Heat Transfer and Fluid Mechanics Institute,StafordUniversity Press, Stanford,1966:1002-1009.
    [82] Tutu, Narinder K. Pressure Fluctuations and Pattern Recognition in VerticalTwo-Phase Gas-Liquid Flows[J]. International Journal of Multiphase Flow,1982,8(1):443-447.
    [83] Wambsganss M W,Jandrzejczyk J A,France D M. Determination andCharacteristics of the Transition to Two-Phase Slug Flow in Small HorizontalChannels [J]. ASME Journal of Fluid Engineering,1994,116:140-146.
    [84]白博峰,郭烈锦,赵亮.垂直上升管汽液两相流型的压差波动特征识别[J].化工学报,1999,50(6):799-805.
    [85]白博峰,郭烈锦,陈学俊.空气-水两相流压差波动研究[J].中国电机工程学报,2002,22(3):23-26.
    [86]白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析[J].工程热物理学报,2001,22(3):359-362.
    [87]孙斌,周云龙.基于小波包能量特征的气液两相流流型识别方法[J].化学工程,2006,34(2):33-361.
    [88]王强,周云龙.基于小波能量特征的气液两相流流型识别方法[J].水利电力机械,2006,28(10):66-701.
    [89]王强,周云龙,孙斌等. EMD与神经网络在气液两相流流型识别中的应用[J].工程热物理学报,2007,28(3):442-444.
    [90] Choi C W, Yu D I, Kim M H. Adiabatic Two-Phase Flow in RectangularMicrochannels with Different Aspect Ratios: Part I–Flow pattern, PressureDrop and Void Fraction[J]. International Journal of Heat and Mass Transfer,2011,54(1-3):616-624.
    [91] Dukler A E,Hubbard M G. A Model for Gas-Liquid Slug Flow in Horizontaland Near Horizontal Tubes[J]. Industrial and Engineering Chemistry ResearchFundamentals,1975,14:337-347.
    [92] Felizola H,Shoham O. Aunified Model for Slug Flow in Upward InclinedPipes[J]. ASME Journal of Energy Resources Technology,1977,117:7-12.
    [93] Gregory G A,Nicholson M K,Aziz K. Correlation of the Liquid VolumeFraction in the Slug for Horizontal Gas-Liquid Slug Flow[J]. InternationalJournal of Multiphase Flow,1978,(4):33-39.
    [94] Nicholson M K, Aziz K, Gregory G A. Intermittent Two-Phase in HorizontalPipes: Predictive Models[J]. The Canadian Journal of ChemicalEngineering,1978,56(6):653-663.
    [95] Andreussi P,Minervini A,Paglianti A. A Mechanistic Model of Slug Flowin Near Horizontal Pipes[J]. AIChE Journal,1986,39:1281-1291.
    [96] Kakac S, Lu H T. Two-Phase Dynamic Instabilities in Boiling Systems[C].Proceedings of the2nd International Symposium on Multiphase Flow andHeat Transfer,American Institution of Physics,1991:356-367.
    [97] Taitel Y,Barnea D. Two-phase Slug Flow[J]. Advances in Heat Transfer,1990,20:83-132.
    [98] Nydal O J,Pintus S,Andreussi P. Statistical Characterization of Slug Flowin Horizontal Pipes[J]. International Journal of Multiphase Flow,1992,18(3):439-453.
    [99] Fan Z,Ruder Z,Hanratty T J. Pressure Profiles for Slugs in HorizontalPipelines[J]. International Journal of Multiphase Flow,1993,19(3):421-437.
    [100] Stapelberg H H, Mewes D. The Pressure Loss and Slug Frequency of Liquid-Liquid-Gas Slug Flow in Horizontal Pipes[J]. International Journal ofMultiphase Flow,1994,20(2):285-303.
    [101] Buell J R, Soliman H M, Sims G E. Two-Phase Pressure Drop and PhaseDistribution at a Horizontal Tee Junction[J]. International Journal ofMultiphase Flow,1994,20(5):819-836.
    [102] Awwad A. Measurement and Correlation of the Pressure Drop in Air-WaterTwo-Phase Flow in Horizontal Helicodal Pipes[J]. International Journal ofMultiphase Flow,1995,21(4):604-619.
    [103] Cook M,Behnia M. Pressure Drop Calculation and Modeling of InclinedIntermittent Gas-Liquid Flow[J]. Chemical Engineering Science,2000,55:4699-4708.
    [104] Aluf O. Experimental Validation of A Simple Model for Gas-Liquid SlugFlow in Horizontal Pipes[J]. Chemical Engineering Science,2005:1371-1381.
    [105]刘磊,周芳德.水跃对水平管弹状流压力降的影响[J].水动力学研究与进展,1998,13(2):181-188.
    [106]苏新军,张修刚,王栋等.水平管路中多相弹状流压力降计算[J],油气储运,2004,23(10):8-12.
    [107] Zhang W, Hibikib T, Mishima K. Correlations of Two-Phase FrictionalPressure Drop and Void Fraction in Mini-Channel[J]. International Journal ofHeat and Mass Transfer,2010,53(1-3):453-465.
    [108] Sira S, Somchai W. The Effects of Channel Diameter on Flow Pattern, VoidFraction and Pressure Drop of Two-Phase Air–Water Flow in Circular Micro-Channels[J]. Experimental Thermal and Fluid Science,2010,34(4):454-462.
    [109] Wu J, Koettiga T, Frankeb C, et al. Investigation of Heat Transfer andPressure Drop of CO2Two-Phase Flow in a Horizontal Minichannel[J].International Journal of Heat and Mass Transfer,2011,54(9-10):2154-2162.
    [110] Issa R I, Oliveira. Numerical Prediction of Phase Separation in Two-PhaseFlow Through T-Junctions[J]. Computers Fluids,1994,23(2):347-372.
    [111] Wu J C, Minemura K. Numerical Prediction of Turbulent Bubbly Two-PhaseFlow in a Rotating Complicated Duct[J]. International Journal for NumericalMethods in Fluids,1999,29:811-826.
    [112]王宁,赵晓路,秦立森.管线中气-液两相流动数值模拟[J].工程热物理学报,2001,(22):41-43.
    [113]赵铎.水平管内气液两相流流型数值模拟与试验研究[D].东营:中国石油大学(华东)硕士学位论文,2008:56-62.
    [114]童亮,余罡,彭政等.基于VOF模型与动网格技术的两相流耦合模拟[J].武汉理工大学学报(信息与管理工程版),2008,30(4):525-528.
    [115]贺潇,车德福.垂直及倾斜上升管内气液两相弹状流壁面切应力的模拟[J].化工学报,2008,59(6):1390-1395.
    [116]高忠信,邓杰,葛新峰.圆形弯管气液两相流数值模拟[J].水利学报,2009,40(6):696-702.
    [117]袁文麒,刘遂庆.管道充水工况下气液两相流瞬态数值模拟[J].同济大学学报(自然科学版),2010,38(05):709-715.
    [118]王琳琳,李国君,田辉等. T型微通道内气液两相流数值模拟[J].西安交通大学学报,2011,9:65-69.
    [119]李清,夏珉,何慧灵等.水平管内气液两相流中气泡滑移速度的数值模拟[J].石油化工,2011,10:1078-1082.
    [120] Talimia V, Muzychkaa Y S, Kocabiyikb S. Numerical Simulation of thePressure Drop and Heat Transfer of Two Phase Slug Flows in MicrotubesUsing Moving Frame of Reference Technique[J]. International Journal of Heatand Mass Transfer,2012,55(23-24):6463-6472.
    [121]史博会,宫敬,郑丽君等.大管径高压力气液两相管流流型转变数值模拟[J].油气储运,2013,32(7):698-703.
    [122]姜俊泽,张伟明,李正阳.管道充气排液工况下气液两相流数值模拟研究[J].系统仿真学报,2013,25(2):383-388.
    [123]阎昌琪.气液两相流[M].哈尔滨:哈尔滨工程大学出版社,2010:66-67
    [124]许萍,周卫东,李罗鹏等.基于LabVIEW的高压水射流采集与分析系统[J].数字石油和化工,2007.6:44-46.
    [127]王立洋.水平管油气水三相流动的压降及流动特性分析[D].东营:中国石油大学(华东)学位论文,2005:97.
    [128] Yehuda T, Dvora B. A Consistent Approach for Calculating Pressure Drop inInclined Slug Flow[J]. Chemical Engineering Science.1990,45(5):1199-1206.
    [129]西南交通大学水力学教研室.水力学[M].北京:高等教育出版社,1993:101,105,192.
    [130]车德福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007:141.
    [131]曹健.水平管道气水两相流摩擦压降特性研究[D].北京:北京建筑工程学院,2006:6.
    [132]周云龙,孙斌,陈飞.气液两相流型智能识别理论及方法[M].北京:科学出版社,2007:225.
    [133]王经.气液两相流动态特性的研究[M].上海:上海交通大学出版社,2012:77-90.
    [134]周雪漪.计算水力学[M].北京:清华大学出版社,1995:89.
    [135]陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001:152.
    [136]郭鸿志.传输过程数值模拟[M].北京:冶金工业出版社,1998:96.
    [137]韩占忠,王敬,兰小平. Fluent流体工程仿真计算实例与分析[M].北京:北京理工大学出版社,2004:308.
    [138]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社,2004:215.
    [139]周俊杰. FLUENT工程技术与实例分析[M].北京:中国水利水电出版社,2010:494.
    [140]吴光中. FLUENT基础入门与案例精通[M].北京:电子工业出版社,2012:58.
    [141]周俊波. FLUENT6.3流场分析从入门到精通[M].北京:机械工业出版社,2012:203-205.
    [142]宋薇.水平管气水两相弹状流流动特性仿真研究[D].天津:天津大学学位论文,2010:49.
    [143] Nicholson M K, Aziz K, Gregory G A. Intermittent Two Phase Flow inHorizontal Pipes: Predictive Models[J]. Canadian Journal of ChemicalEngineering,1978,56:653-663.
    [144] Kokal S L, Stanislav J F. An Experimental Study of Two-Phase Flow inSlightly Inclined Pipes--II. Liquid Holdup and Pressure Drop[J]. ChemicalEngineering Science,1989,44:681-693.
    [145] Taitel Y, Barnea D A. Consistent Approach for Calculating Pressure Drop inInclined Slug Flow[J]. Chemical Engineering Science,1990,45:1199-1206.
    [146] Scott S L, Shoham O, Brill J P. Prediction of Slug Length in Horizontal,Large-Diameter Pipes[J]. SPE Production and Engineering,1989:335-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700