用户名: 密码: 验证码:
NF-κB调控microRNAs对食管鳞癌细胞的生物学作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食管癌是世界上致死率最高的恶性肿瘤之一,超过90%的食管癌都属于鳞状细胞癌。流行病学调查显示各种能引起慢性炎性刺激的因素均可能促进食管鳞状细胞癌的发生。近年来,食管癌的发病率呈逐年增加的趋势,但预后却不容乐观,5年生存率仅20-30%。因此研究其发病机理,寻找早期诊断及治疗的靶标具有非常重要的意义。
     NF-κB通路对肿瘤的发生发展有着广泛而重要的影响。研究显示NF-κB可以作用于肿瘤细胞影响其生长、凋亡及迁移侵袭等生物学过程,也可作用于肿瘤微环境中的炎性细胞,促进炎性因子的分泌,为肿瘤细胞的生长转移提供合适的环境。然而NF-κB对肿瘤的影响却不尽相同,有时扮演癌基因的角色,有时又发挥抑癌基因的作用,其中的机制至今尚不完全清楚。肿瘤的发生发展是一个多阶段、多因素参与的过程,涉及许多癌基因和抑癌基因的突变,不同类型或不同阶段的肿瘤细胞发生突变的基因也可能不同,NF-κB通路又常常与其他通路(如p53信号通路)发生交互作用来调控下游基因的表达。因此,细胞背景的不同可能会影响NF-κB对下游靶基因的调控从而引起对肿瘤发生发展效应的差异。
     研究发现食管鳞癌组织中存在NF-κB及下游靶基因的异常表达或活化。小鼠食管鳞癌发生模型中的研究显示食管上皮组织在发生恶性转化的早期已有炎性细胞因子的存在和NF-κB p65的活化,提示NF-κB很可能参与调控食管鳞癌的发生发展过程。由于食管鳞癌也常常发生p53基因的突变,而NF-κB和p53常有相互作用影响彼此对下游靶基因的调控。因此,探讨NF-κB在食管鳞癌发生发展中的作用及对不同食管鳞癌细胞的影响将有非常重要的价值。
     MicroRNA(miRNA)是近年来发现的一大类调控基因表达的非编码小RNA分子,主要通过与mRNA的3′非翻译区结合影响mRNA的稳定性和蛋白翻译过程。研究表明miRNA在炎症和肿瘤发生等多种病理生理过程中均发挥重要调控作用。目前的研究提示miRNA不仅作为基因表达的调控者调节其他基因的表达,其自身也受到经典的转录因子的调控,已发现miRNA参与多种癌基因或抑癌基因调控网络,包括p53、c-MYC及NF-κB等。然而目前有关NF-κB调控miRNA参与食管鳞癌发生发展的研究还未见报道。
     因此,本课题的研究目的旨在探讨NF-κB对食管鳞癌发生发展的影响及miRNA在其中的作用和机制。为此,本课题选用两株不同的食管鳞癌细胞—EC109和KYSE450作为实验对象(两株细胞的p53状态不同,EC109中为野生型,KYSE450中为突变型),首先研究NF-κB对不同食管鳞癌细胞生长、凋亡、增殖及周期的影响,进一步通过生物信息学方法和功能筛查的办法寻找食管鳞癌中可能参与NF-κB调控网络的miRNA分子,其中包括miR-34a和miR-330,最后探讨miR-34a和miR-330对食管鳞癌细胞生物学行为的影响及NF-κB对它们的调控和相关机制。
     本课题的主要研究内容和结果如下:
     1.NF-κB对不同食管鳞癌细胞的生物学行为影响不同。
     采用CCK8法、流式细胞术及Edu染色等方法研究NF-κB对食管鳞癌细胞生长、凋亡及增殖等生物学行为的影响。结果发现在EC109细胞中过表达NF-κB p65,可抑制细胞的生长,诱导G1、G2期细胞减少,S期细胞增多,抑制EC109细胞的增殖以及增加细胞凋亡的发生。而在KYSE450细胞中转染p65表达质粒,则有促进细胞生长的作用,对细胞周期的影响主要表现为S期细胞比例增加,对细胞的增殖有轻微的促进作用,而对细胞凋亡无明显影响。此外,采用荧光定量PCR技术还检测了过表达NF-κB p65对食管鳞癌细胞中一些周期和凋亡相关基因的表达改变。结果显示增加p65的表达水平可上调EC109细胞中多种周期素依赖的蛋白激酶抑制因子(CDKI),如p21、p27的表达,以及p53的蛋白水平。同时过表达p65还可降低EC109细胞中抗凋亡蛋白survivin的水平。而在KYSE450细胞中过表达p65除增加p21的蛋白水平,上述其他基因的表达没有明显变化。研究结果提示NF-κB对不同食管鳞癌细胞的生长、增殖和凋亡存在不同的调控,可能与细胞中p53状态的不同有关。
     2.miR-34a为NF-κB参与食管鳞癌细胞生物学行为调控的靶点。
     采用CCK8法、PI染色流式细胞检测和transwell实验等方法研究miR-34a对食管鳞癌细胞的生长、周期及迁移侵袭等生物学行为的影响。进一步采用荧光定量PCR、CHIP、EMSA和报告基因技术研究NF-κB对食管鳞癌细胞中miR-34a的表达调控及相关机制。研究发现过表达miR-34a可以诱导食管鳞癌细胞G1期阻滞,抑制细胞的生长,降低细胞的迁移和侵袭能力,提示miR-34a可能有抑制食管鳞癌发生发展的作用
     过表达NF-κB p65可以促进食管鳞癌EC109细胞中miR-34a的表达,且这一作用发生在转录调控水平—NF-κB可以与miR-34a基因启动子区的κB位点结合促进基因的转录活性。而在KYSE450细胞中或干扰EC109细胞中p53的表达,NF-κB就不能诱导miR-34a表达,这提示NF-κB对miR-34a的调控需要野生型p53的参与。进一步的研究显示野生型p53对NF-κB诱导miR-34a的转录活性是必须的,但NF-κB与miR-34a的结合并不受p53突变的影响。以上结果提示NF-κB可以在转录水平调控食管鳞癌细胞中miR-34a的表达,但这种调控作用需要野生型p53的参与——p53可能协同NF-κB促进miR-34a的转录活性,但不影响NF-κB与miR-34a的结合。此外,研究还发现NF-κB可能不影响p53对食管鳞癌细胞中miR-34a的调控。
     3.NF-κB调控miR-330影响食管鳞癌细胞的生物学行为。
     采用CCK8、PI染色流式细胞仪检测和Edu掺入法检测miR-330对食管鳞癌细胞生长、周期及增殖的影响,进一步采用荧光定量PCR、CHIP和报告基因技术研究NF-κB对食管鳞癌细胞中miR-330的表达调控及相关机制。结果显示增加miR-330的表达,食管鳞癌细胞的生长加快,S期和G2期细胞增多,细胞增殖增加,提示miR-330可能对食管鳞癌的发生发展有促进作用。过表达NF-κB p65后EC109细胞中miR-330的表达明显下调,而KYSE450细胞中的miR-330表达则显著升高。报告基因实验显示在这两种细胞中,NF-κB p65都可以通过miR-330调控区-3117位的κB位点发挥促进转录活性的作用。CHIP实验也表明两株细胞中NF-κB均可以与miR-330调控区结合。研究结果提示miR-330对食管鳞癌细胞的生长有促进的作用。NF-κB可以在转录水平调控食管鳞癌细胞中miR-330的表达,但在不同的细胞中调控效应不一致,具体机制有待进一步研究。
     综上所述,本课题的研究结果提示NF-κB对不同背景的食管鳞癌细胞的生物学特性有不同的影响,p53状态的不同可能为其中的一个影响因素。MiR-34a和miR-330为食管鳞癌中NF-κB调控网络中的两个新成员,而在不同食管鳞癌细胞中NF-κB对它们的差异调控可能是导致NF-κB对不同食管鳞癌细胞生物学特性调控不同的原因之一。细胞中p53状态的不同是导致NF-κB差异调控miR-34a的原因,而NF-κB对miR-330不同调控的机制还有待进一步的研究。本课题初步揭示了NF-κB在食管鳞癌细胞生物学行为调控中的复杂作用及通过对下游miRNA分子的差异调控产生不同的作用效应。本研究有助于深入认识食管鳞癌发生发展的机制并为食管鳞癌的诊治提供依据。
Esophageal cancer is one of the most mortality malignancies in the world, includingtwo major histological forms-esophageal squamous cell carcinoma (ESCC) andesophageal adenocarcinoma, and more than90%of esophageal cancer are ESCC.Epidemiology studies indicate that any factor that causes chronic irritation andinflammation of the esophageal mucosa appears to increase the incidence of ESCC. Theincidence of esophageal cancer is increasing recently, however the overall5-year survivalrate is only20%-30%. It is urgent and important to investigate the mechanism for theinitiation and development of ESCC and find novel target for disease diagnosis and therapy.
     NF-κB pathway plays a key role in linking inflammation to caner development andprogression. It can be triggered by a variety of stimuli, such as pro-inflammatory cytokines,components of bacterial and virus, genotoxic stress and so on. Activated NF-κB affects notonly tumor cells but also inflammatory cells, and involves in the regulation of cell cycle,apoptosis, angiogenesis, metastasis and inflammation. NF-κB plays a complex role in thedevelopment of epithelial cancer; sometimes functions as tumor-promoter, and sometimestumor-suppressor, which may be related to different genes regulated by NF-κB in differenttissues and cells. There are numerous studies reporting overexpression or abnormalactivation of NF-κB and its target genes in ESCC tissues and their association withtherapeutic responses and prognosis of esophageal cancer, indicating NF-κB plays a role inthe development of esophageal squamous cell cancer.
     MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate geneexpression at the posttranscriptional level. Emerging evidence suggests that miRNAs playimportant roles in regulation of tumor biology and inflammation. Altered expression ofmiRNA has been reported in a variety of cancers, and their expression profiles can be usedas hallmarks for diagnosis, classification and prognosis of human malignancies. Their targetgenes involve in cell proliferation, apoptosis, differentiation, and metastasis and so on.Recent data suggests that miRNAs also play causal roles in esophageal cancer development. Microarray analyses revealed dysregulated miRNA expressions in ESCC. Several miRNAshave been found in participate with esophageal cancer development too.
     This project is aimed to investigate the role of NF-κB in ESCC development and findfunctional miRNAs involved in NF-κB network in ESCC. So, in the first section, effects ofNF-κB on ESCC cell growth, apoptosis, cell cycle and proliferation were studied. Then,according to bioinformatic analysis and functional studies of miRNAs in recent papers, wescreened two miRNAs, miR-34a and miR-330, as potential targets for NF-κB regulation inESCC. Roles of miR-34a and miR-330in ESCC cell biology and their relationship withNF-κB were investigated.
     The major results are presented below:
     1.NF-κB plays a different role in controlling different ESCC cell growth.
     CCK8, flow cytometry and Edu cell imaging assay were used to detect the effect ofNF-κB on ESCC cell growth, apoptosis, cell cycle and proliferation. The results showedthat overexpression of p65in EC109cells inhibited cell growth, probably through inducingS phase cell cycle arrest and inhibiting cell proliferation. Also overexpression of p65induced apoptosis of EC109cells. While transfection of p65expression vectors promotecell growth in KYSE450cells, which might be caused by enhanced cell proliferation. Andectopic expression of p65in KYSE450cells seemed to have no effect on apoptosis. Geneexpression studies showed that several CDKI expressions, such as p21and p27, wereincreased by overexpressing p65in EC109cells. p53protein levels were also enhanced byp65overexpression, while expressions of the inhibitor of apoptosis protein, survivin weredownregulated. Gene expression studies in transfected KYSE450cells showed thatincreasing p65levels had no impact on all the above gene levels except p21whose proteinlevels were upregulated. These results indicate that NF-κB might have different roles indistinct ESCC cell.
     2.MiR-34a is a novel target for NF-κB in ESCC.
     Effects of miR-34a on ESCC cell growth, apoptosis, cell cycle, migration and invasionwere studied by CCK8, flow cytometry and transwell assays. Results demonstrated thatoverexpression of miR-34a inhibited cell growth, induced G1cell cycle arrest, impairedcell motility and invasiveness. However, ectopic expression of miR-34a did not induce apoptosis. These indicated that miR-34a might function as a tumor suppressor in ESCC.
     Also the regulationship between NF-κB and miR-34a was investigated.Overexpression of NF-κB p65subunit could increase miR-34a levels in EC109which wasowing to enhanced miR-34a transcriptional activity by p65. Mutation of the κB sites locatedin miR-34a promoter impaired p65induced transcriptional activity. And chromatinimmunoprecipitation (CHIP) and electrophoretic mobility shift assays (EMSA) bothshowed that NF-κB could specifically bind to the third κB site located in miR-34a promoter.In addition, overexpression of NF-κB p65could not successfully induce miR-34aexpression in esophageal cancer cell lines with mutant p53(KYSE450) or decreased p53.Reporter assay further showed that NF-κB-induced miR-34a transcriptional activity wasreduced by p53impairment. Nevertheless, binding of NF-κB to miR-34a promoter was notaffected in cells with mutant p53. The above results demonstrated that NF-κB could inducemiR-34a expression at the transcriptional level and induction of miR-34a need wildtype p53function.
     3.NF-κB regulates miR-330contributing to ESCC cell growth regulation.
     Effects of miR-330on ESCC cell growth, cell cycle and proliferation were studied byCCK8, flow cytometry and Edu cell imaging assays. Results showed that overexpression ofmiR-330promoted cell growth. And cell cycle analysis indicated that cells withoverexpressed miR-330had increased S, G2/M phase cells. Edu cell imaging analysis alsoshowed that increasing miR-330enhanced ESCC cell growth. These data indicated thatmiR-330might have a tumor-promoting role in the development of ESCC.
     QRT-PCR, reporter assay and CHIP analysis were used to study the regulationshipbetween NF-κB and miR-330. Transfection with p65downregulated miR-330expressionsin EC109cells and upregulated miR-330levels in KYSE450cells. Reporter assay showedNF-κB p65could promote transcriptional activity in both ESCC cells. CHIP analysis alsoshowed that NF-κB could bind to the κB site in the regulatory region of miR-330gene.These results indicated that NF-κB has the ability of regulating miR-330expression at thetranscriptional levels, but has different impact on the miR-330expression in differentESCC cells.
     In conclusion, this study indicates that NF-κB plays different regulatory roles ondifferent ESCC cells. MiR-34a and miR-330are novel targets for NF-κB and contributing to ESCC carcinogenesis. Distinct regulation of these two miRNAs in different cells mightcause the divergent role of NF-κB on ESCC cell growth. And distinct regulation of miR-34aby NF-κB might owe different p53status, while the mechanism of different miR-330regulation by NF-κB needs further study. Our research is helpful for understanding thecomplex role of NF-κB and miRNAs in the carcinogenesis of esophageal squamous cellcancer and provides new evidence for screening targets for ESCC diagnosis and therapy.
引文
1. Stoner GD, Gupta A: Etiology and chemoprevention of esophageal squamous cellcarcinoma. Carcinogenesis2001,22(11):1737-1746.
    2. Enzinger PC, Mayer RJ: Esophageal cancer. N Engl J Med2003,349(23):2241-2252.
    3. Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell2008,132(3):344-362.
    4. Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell2011,144(5):646-674.
    5. Iwanaga R, Ozono E, Fujisawa J, Ikeda MA, Okamura N, Huang Y, Ohtani K:Activation of the cyclin D2and cdk6genes through NF-kappaB is critical forcell-cycle progression induced by HTLV-I Tax. Oncogene2008,27(42):5635-5642.
    6. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M: NF-kappaBfunction in growth control: regulation of cyclin D1expression andG0/G1-to-S-phase transition. Mol Cell Biol1999,19(4):2690-2698.
    7. Chen E, Li CC: Association of Cdk2/cyclin E and NF-kappa B complexes at G1/Sphase. Biochem Biophys Res Commun1998,249(3):728-734.
    8. Nehra R, Riggins RB, Shajahan AN, Zwart A, Crawford AC, Clarke R: BCL2andCASP8regulation by NF-kappaB differentially affect mitochondrial function andcell fate in antiestrogen-sensitive and-resistant breast cancer cells. FASEB J2010,24(6):2040-2055.
    9. Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G, Lamy T,Fest T, Tarte K, Guillaudeux T: CD40ligand protects from TRAIL-induced apoptosisin follicular lymphomas through NF-kappaB activation and up-regulation ofc-FLIP and Bcl-xL. J Immunol2008,181(2):1001-1011.
    10. Tran NL, McDonough WS, Savitch BA, Sawyer TF, Winkles JA, Berens ME: Thetumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growthfactor-inducible14(Fn14) signaling system regulates glioma cell survival viaNFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem2005,280(5):3483-3492.
    11. Toruner M, Fernandez-Zapico M, Sha JJ, Pham L, Urrutia R, Egan LJ: Antianoikiseffect of nuclear factor-kappaB through up-regulated expression of osteoprotegerin,BCL-2, and IAP-1. J Biol Chem2006,281(13):8686-8696.
    12. Martin D, Galisteo R, Gutkind JS: CXCL8/IL8stimulates vascular endothelialgrowth factor (VEGF) expression and the autocrine activation of VEGFR2inendothelial cells by activating NFkappaB through the CBM (Carma3/Bcl10/Malt1)complex. J Biol Chem2009,284(10):6038-6042.
    13. Prakash M, Kale S, Ghosh I, Kundu GC, Datta K: Hyaluronan-binding protein1(HABP1/p32/gC1qR) induces melanoma cell migration and tumor growth byNF-kappa B dependent MMP-2activation through integrin alpha(v)beta(3)interaction. Cell Signal2011,23(10):1563-1577.
    14. Wisniewski P, Ellert-Miklaszewska A, Kwiatkowska A, Kaminska B: Non-apoptoticFas signaling regulates invasiveness of glioma cells and modulates MMP-2activityvia NFkappaB-TIMP-2pathway. Cell Signal2010,22(2):212-220.
    15. Schetter AJ, Heegaard NH, Harris CC: Inflammation and cancer: interweavingmicroRNA, free radical, cytokine and p53pathways. Carcinogenesis2010,31(1):37-49.
    16. Mantovani A, Allavena P, Sica A, Balkwill F: Cancer-related inflammation. Nature2008,454(7203):436-444.
    17. Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancerdevelopment and progression. Nat Rev Immunol2005,5(10):749-759.
    18. Kang MR, Kim MS, Kim SS, Ahn CH, Yoo NJ, Lee SH: NF-kappaB signallingproteins p50/p105, p52/p100, RelA, and IKKepsilon are over-expressed inoesophageal squamous cell carcinomas. Pathology2009,41(7):622-625.
    19. Izzo JG, Correa AM, Wu TT, Malhotra U, Chao CK, Luthra R, Ensor J, Dekovich A,Liao Z, Hittelman WN et al: Pretherapy nuclear factor-kappaB status,chemoradiation resistance, and metastatic progression in esophageal carcinoma.Mol Cancer Ther2006,5(11):2844-2850.
    20. Izzo JG, Malhotra U, Wu TT, Ensor J, Luthra R, Lee JH, Swisher SG, Liao Z, Chao KS,Hittelman WN et al: Association of activated transcription factor nuclear factorkappab with chemoradiation resistance and poor outcome in esophageal carcinoma.J Clin Oncol2006,24(5):748-754.
    21. Yu HP, Xu SQ, Liu L, Shi LY, Cai XK, Lu WH, Lu B, Su YH, Li YY: Cyclooxygenase-2expression in squamous dysplasia and squamous cell carcinoma of the esophagus.Cancer Lett2003,198(2):193-201.
    22. Yang GZ, Li L, Ding HY, Zhou JS: Cyclooxygenase-2is over-expressed in Chineseesophageal squamous cell carcinoma, and correlated with NF-kappaB: animmunohistochemical study. Exp Mol Pathol2005,79(3):214-218.
    23. Tetreault MP, Wang ML, Yang Y, Travis J, Yu QC, Klein-Szanto AJ, Katz JP: Klf4overexpression activates epithelial cytokines and inflammation-mediatedesophageal squamous cell cancer in mice. Gastroenterology2010,139(6):2124-2134e2129.
    24. Karin M: Nuclear factor-kappaB in cancer development and progression. Nature2006,441(7092):431-436.
    25. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M:IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell2004,118(3):285-296.
    26. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E,Urieli-Shoval S, Galun E, Ben-Neriah Y: NF-kappaB functions as a tumour promoterin inflammation-associated cancer. Nature2004,431(7007):461-466.
    27. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S,Lin Q, Kubo Y et al: NF-kappaB blockade and oncogenic Ras trigger invasivehuman epidermal neoplasia. Nature2003,421(6923):639-643.
    28. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R: Squamous cellcarcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res1999,59(14):3299-3303.
    29. Maeda S, Kamata H, Luo JL, Leffert H, Karin M: IKKbeta couples hepatocyte deathto cytokine-driven compensatory proliferation that promotes chemicalhepatocarcinogenesis. Cell2005,121(7):977-990.
    30. Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S: Enhanced G2-M arrestby nuclear factor-{kappa}B-dependent p21waf1/cip1induction. Mol Cancer Res2005,3(6):345-353.
    31. Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yarema N, Harding G, Paul JT, GibsonSB: Transcription factor NF-kappaB differentially regulates death receptor5expression involving histone deacetylase1. Mol Cell Biol2005,25(13):5404-5416.
    32. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP, Yu J, Zhang L: PUMA isdirectly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis.Cell Death Differ2009,16(9):1192-1202.
    33. Rocha S, Martin AM, Meek DW, Perkins ND: p53represses cyclin D1transcriptionthrough down regulation of Bcl-3and inducing increased association of the p52NF-kappaB subunit with histone deacetylase1. Mol Cell Biol2003,23(13):4713-4727.
    34. Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Van Waes C, Chen Z: A signalnetwork involving coactivated NF-kappaB and STAT3and altered p53modulatesBAX/BCL-XL expression and promotes cell survival of head and neck squamouscell carcinomas. Int J Cancer2008,122(9):1987-1998.
    35. Grivennikov SI, Karin M: Dangerous liaisons: STAT3and NF-kappaB collaborationand crosstalk in cancer. Cytokine Growth Factor Rev2010,21(1):11-19.
    36. Lee H, Deng J, Xin H, Liu Y, Pardoll D, Yu H: A requirement of STAT3DNA bindingprecludes Th-1immunostimulatory gene expression by NF-kappaB in tumors.Cancer Res2011,71(11):3772-3780.
    37. Yoon S, Woo SU, Kang JH, Kim K, Shin HJ, Gwak HS, Park S, Chwae YJ: NF-kappaBand STAT3cooperatively induce IL6in starved cancer cells. Oncogene2011.
    38. Yang X, Xiong G, Chen X, Xu X, Wang K, Fu Y, Yang K, Bai Y: Survivin expressionin esophageal cancer: correlation with p53mutations and promoter polymorphism.Dis Esophagus2009,22(3):223-230.
    39. Shimada Y, Imamura M, Wagata T, Yamaguchi N, Tobe T: Characterization of21newly established esophageal cancer cell lines. Cancer1992,69(2):277-284.
    40. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN: MicroRNA genes aretranscribed by RNA polymerase II. EMBO J2004,23(20):4051-4060.
    41. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell2004,116(2):281-297.
    42. Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs areconserved targets of microRNAs. Genome Res2009,19(1):92-105.
    43. Esquela-Kerscher A, Slack FJ: Oncomirs-microRNAs with a role in cancer. Nat RevCancer2006,6(4):259-269.
    44. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, EbertBL, Mak RH, Ferrando AA et al: MicroRNA expression profiles classify humancancers. Nature2005,435(7043):834-838.
    45. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K: Modulation ofmicroRNA processing by p53. Nature2009,460(7254):529-533.
    46. Rouhi A, Mager DL, Humphries RK, Kuchenbauer F: MiRNAs, epigenetics, andcancer. Mamm Genome2008,19(7-8):517-525.
    47. Hermeking H: p53enters the microRNA world. Cancer Cell2007,12(5):414-418.
    48. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV,Thomas-Tikhonenko A, Mendell JT: Widespread microRNA repression by Myccontributes to tumorigenesis. Nat Genet2008,40(1):43-50.
    49. Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent inductionof microRNA miR-146, an inhibitor targeted to signaling proteins of innateimmune responses. Proc Natl Acad Sci U S A2006,103(33):12481-12486.
    50. Zhang X, Liu S, Hu T, He Y, Sun S: Up-regulated microRNA-143transcribed bynuclear factor kappa B enhances hepatocarcinoma metastasis by repressingfibronectin expression. Hepatology2009,50(2):490-499.
    51. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N,Mantovani A, Cassatella MA, Locati M: Induction and regulatory function of miR-9in human monocytes and neutrophils exposed to proinflammatory signals. ProcNatl Acad Sci U S A2009,106(13):5282-5287.
    52.Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE, Zhai Y, Giordano TJ,Qin ZS, Moore BB et al: p53-mediated activation of miRNA34candidatetumor-suppressor genes. Curr Biol2007,17(15):1298-1307.
    53. Chang TC, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH,Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ et al: Transactivation ofmiR-34a by p53broadly influences gene expression and promotes apoptosis. MolCell2007,26(5):745-752.
    54. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J,Ridzon D et al: A microRNA component of the p53tumour suppressor network.Nature2007,447(7148):1130-1134.
    55. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, BentwichZ, Oren M: Transcriptional activation of miR-34a contributes to p53-mediatedapoptosis. Mol Cell2007,26(5):731-743.
    56. Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, Meister G,Hermeking H: Differential regulation of microRNAs by p53revealed by massivelyparallel sequencing: miR-34a is a p53target that induces apoptosis and G1-arrest.Cell Cycle2007,6(13):1586-1593.
    57. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, Comoglio PM,Giordano S: MicroRNAs impair MET-mediated invasive growth. Cancer Res2008,68(24):10128-10136.
    58. Li N, Fu H, Tie Y, Hu Z, Kong W, Wu Y, Zheng X: miR-34a inhibits migration andinvasion by down-regulation of c-Met expression in human hepatocellularcarcinoma cells. Cancer Lett2009,275(1):44-53.
    59. Lee KH, Chen YL, Yeh SD, Hsiao M, Lin JT, Goan YG, Lu PJ: MicroRNA-330acts astumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene2009,28(38):3360-3370.
    60. Jeyapalan Z, Deng Z, Shatseva T, Fang L, He C, Yang BB: Expression of CD443'-untranslated region regulates endogenous microRNA functions in tumorigenesisand angiogenesis. Nucleic Acids Res2011,39(8):3026-3041.
    61. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C: Current insights into the regulation ofprogrammed cell death by NF-kappaB. Oncogene2006,25(51):6800-6816.
    62. Chen F, Castranova V, Shi X: New insights into the role of nuclear factor-kappaB incell growth regulation. Am J Pathol2001,159(2):387-397.
    63. Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA: Nuclear factor kappaB subunitsinduce epithelial cell growth arrest. Cancer Res2000,60(15):4085-4092.
    64. Seitz CS, Lin Q, Deng H, Khavari PA: Alterations in NF-kappaB function intransgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB.Proc Natl Acad Sci U S A1998,95(5):2307-2312.
    65. Xiao CW, Yan X, Li Y, Reddy SA, Tsang BK: Resistance of human ovarian cancercells to tumor necrosis factor alpha is a consequence of nuclear factor kappaB-mediated induction of Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitory protein. Endocrinology2003,144(2):623-630.
    66. Li B, Li YY, Tsao SW, Cheung AL: Targeting NF-kappaB signaling pathwaysuppresses tumor growth, angiogenesis, and metastasis of human esophagealcancer. Mol Cancer Ther2009,8(9):2635-2644.
    67. Bash J, Zong WX, Gelinas C: c-Rel arrests the proliferation of HeLa cells andaffects critical regulators of the G1/S-phase transition. Mol Cell Biol1997,17(11):6526-6536.
    68. Hoffman WH, Biade S, Zilfou JT, Chen J, Murphy M: Transcriptional repression ofthe anti-apoptotic survivin gene by wild type p53. J Biol Chem2002,277(5):3247-3257.
    69. Mirza A, McGuirk M, Hockenberry TN, Wu Q, Ashar H, Black S, Wen SF, Wang L,Kirschmeier P, Bishop WR et al: Human survivin is negatively regulated bywild-type p53and participates in p53-dependent apoptotic pathway. Oncogene2002,21(17):2613-2622.
    70. Kenneth NS, Mudie S, Rocha S: IKK and NF-kappaB-mediated regulation ofClaspin impacts on ATR checkpoint function. EMBO J2010,29(17):2966-2978.
    71. Shapiro GI: Cyclin-dependent kinase pathways as targets for cancer treatment. JClin Oncol2006,24(11):1770-1783.
    72. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H: Tumor-suppressive miR-34ainduces senescence-like growth arrest through modulation of the E2F pathway inhuman colon cancer cells. Proc Natl Acad Sci U S A2007,104(39):15472-15477.
    73. Yamakuchi M, Ferlito M, Lowenstein CJ: miR-34a repression of SIRT1regulatesapoptosis. Proc Natl Acad Sci U S A2008,105(36):13421-13426.
    74. Brooks CL, Gu W: How does SIRT1affect metabolism, senescence and cancer? NatRev Cancer2009,9(2):123-128.
    75. Yan D, Zhou X, Chen X, Hu DN, Dong XD, Wang J, Lu F, Tu L, Qu J: MicroRNA-34ainhibits uveal melanoma cell proliferation and migration through downregulationof c-Met. Invest Ophthalmol Vis Sci2009,50(4):1559-1565.
    76. Feinberg-Gorenshtein G, Avigad S, Jeison M, Halevy-Berco G, Mardoukh J, Luria D,Ash S, Steinberg R, Weizman A, Yaniv I: Reduced levels of miR-34a inneuroblastoma are not caused by mutations in the TP53binding site. GenesChromosomes Cancer2009,48(7):539-543.
    77. Gallardo E, Navarro A, Vinolas N, Marrades RM, Diaz T, Gel B, Quera A, Bandres E,Garcia-Foncillas J, Ramirez J et al: miR-34a as a prognostic marker of relapse insurgically resected non-small-cell lung cancer. Carcinogenesis2009,30(11):1903-1909.
    78. Chen X, Hu H, Guan X, Xiong G, Wang Y, Wang K, Li J, Xu X, Yang K, Bai Y: CpGisland methylation status of miRNAs in esophageal squamous cell carcinoma. Int JCancer2011.
    79. Antonini D, Russo MT, De Rosa L, Gorrese M, Del Vecchio L, Missero C:Transcriptional repression of miR-34family contributes to p63-mediated cell cycleprogression in epidermal cells. J Invest Dermatol2010,130(5):1249-1257.
    80. Christoffersen NR, Shalgi R, Frankel LB, Leucci E, Lees M, Klausen M, Pilpel Y,Nielsen FC, Oren M, Lund AH: p53-independent upregulation of miR-34a duringoncogene-induced senescence represses MYC. Cell Death Differ2009.
    81. Pulikkan JA, Peramangalam PS, Dengler V, Ho PA, Preudhomme C, Meshinchi S,Christopeit M, Nibourel O, Muller-Tidow C, Bohlander SK et al: C/EBPalpharegulated microRNA-34a targets E2F3during granulopoiesis and isdown-regulated in AML with CEBPA mutations. Blood2010,116(25):5638-5649.
    82. Benoit V, de Moraes E, Dar NA, Taranchon E, Bours V, Hautefeuille A, Taniere P,Chariot A, Scoazec JY, de Moura Gallo CV et al: Transcriptional activation ofcyclooxygenase-2by tumor suppressor p53requires nuclear factor-kappaB.Oncogene2006,25(42):5708-5718.
    83. Schumm K, Rocha S, Caamano J, Perkins ND: Regulation of p53tumour suppressortarget gene expression by the p52NF-kappaB subunit. EMBO J2006,25(20):4820-4832.
    84. Morrison DK: The14-3-3proteins: integrators of diverse signaling cues that impactcell fate and cancer development. Trends Cell Biol2009,19(1):16-23.
    85. Jackson MW, Agarwal MK, Yang J, Bruss P, Uchiumi T, Agarwal ML, Stark GR, TaylorWR: p130/p107/p105Rb-dependent transcriptional repression during DNA-damage-induced cell-cycle exit at G2. J Cell Sci2005,118(Pt9):1821-1832.
    86. Lehmann BD, Brooks AM, Paine MS, Chappell WH, McCubrey JA, Terrian DM:Distinct roles for p107and p130in Rb-independent cellular senescence. Cell Cycle2008,7(9):1262-1268.
    87. Phillips AC, Vousden KH: E2F-1induced apoptosis. Apoptosis2001,6(3):173-182.
    88. Iliopoulos D, Hirsch HA, Struhl K: An epigenetic switch involving NF-kappaB,Lin28, Let-7MicroRNA, and IL6links inflammation to cell transformation. Cell2009,139(4):693-706.
    89. Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, Xiao W: E2F1Inducestumor cell survival via nuclear factor-kappaB-dependent induction of EGR1transcription in prostate cancer cells. Cancer Res2009,69(6):2324-2331.
    90. Schlee M, Holzel M, Bernard S, Mailhammer R, Schuhmacher M, Reschke J, Eick D,Marinkovic D, Wirth T, Rosenwald A et al: C-myc activation impairs the NF-kappaBand the interferon response: implications for the pathogenesis of Burkitt'slymphoma. Int J Cancer2007,120(7):1387-1395.
    1. Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell2008,132(3):344-362.
    2. Pasparakis M: Regulation of tissue homeostasis by NF-kappaB signalling:implications for inflammatory diseases. Nat Rev Immunol2009,9(11):778-788.
    3. Karin M, Greten FR: NF-kappaB: linking inflammation and immunity to cancerdevelopment and progression. Nat Rev Immunol2005,5(10):749-759.
    4. Karin M: Nuclear factor-kappaB in cancer development and progression. Nature2006,441(7092):431-436.
    5. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M:IKKbeta links inflammation and tumorigenesis in a mouse model ofcolitis-associated cancer. Cell2004,118(3):285-296.
    6. Pikarsky E, Porat RM, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E,Urieli-Shoval S, Galun E, Ben-Neriah Y: NF-kappaB functions as a tumourpromoter in inflammation-associated cancer. Nature2004,431(7007):461-466.
    7. Dajee M, Lazarov M, Zhang JY, Cai T, Green CL, Russell AJ, Marinkovich MP, Tao S,Lin Q, Kubo Y et al: NF-kappaB blockade and oncogenic Ras trigger invasivehuman epidermal neoplasia. Nature2003,421(6923):639-643.
    8. van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R: Squamous cellcarcinomas and increased apoptosis in skin with inhibited Rel/nuclearfactor-kappaB signaling. Cancer Res1999,59(14):3299-3303.
    9. Maeda S, Kamata H, Luo JL, Leffert H, Karin M: IKKbeta couples hepatocyte deathto cytokine-driven compensatory proliferation that promotes chemicalhepatocarcinogenesis. Cell2005,121(7):977-990.
    10. Wang P, Qiu W, Dudgeon C, Liu H, Huang C, Zambetti GP, Yu J, Zhang L: PUMA isdirectly activated by NF-kappaB and contributes to TNF-alpha-induced apoptosis.Cell Death Differ2009,16(9):1192-1202.
    11. Shetty S, Graham BA, Brown JG, Hu X, Vegh-Yarema N, Harding G, Paul JT, GibsonSB: Transcription factor NF-kappaB differentially regulates death receptor5expression involving histone deacetylase1. Mol Cell Biol2005,25(13):5404-5416.
    12. Dutta J, Fan Y, Gupta N, Fan G, Gelinas C: Current insights into the regulation ofprogrammed cell death by NF-kappaB. Oncogene2006,25(51):6800-6816.
    13. Fujioka S, Schmidt C, Sclabas GM, Li Z, Pelicano H, Peng B, Yao A, Niu J, Zhang W,Evans DB et al: Stabilization of p53is a novel mechanism for proapoptoticfunction of NF-kappaB. J Biol Chem2004,279(26):27549-27559.
    14. Chen F, Castranova V, Shi X: New insights into the role of nuclear factor-kappaB incell growth regulation. Am J Pathol2001,159(2):387-397.
    15. Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS, Jr.: NF-kappaBcontrols cell growth and differentiation through transcriptional regulation ofcyclin D1. Mol Cell Biol1999,19(8):5785-5799.
    16. Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C, Strauss M: NF-kappaBfunction in growth control: regulation of cyclin D1expression andG0/G1-to-S-phase transition. Mol Cell Biol1999,19(4):2690-2698.
    17. Seitz CS, Deng H, Hinata K, Lin Q, Khavari PA: Nuclear factor kappaB subunitsinduce epithelial cell growth arrest. Cancer Res2000,60(15):4085-4092.
    18. van Hogerlinden M, Auer G, Toftgard R: Inhibition of Rel/Nuclear Factor-kappaBsignaling in skin results in defective DNA damage-induced cell cycle arrest andHa-ras-and p53-independent tumor development. Oncogene2002,21(32):4969-4977.
    19. Araki K, Kawauchi K, Tanaka N: IKK/NF-kappaB signaling pathway inhibitscell-cycle progression by a novel Rb-independent suppression system for E2Ftranscription factors. Oncogene2008,27(43):5696-5705.
    20. Chen F, Zhang Z, Leonard SS, Shi X: Contrasting roles of NF-kappaB and JNK inarsenite-induced p53-independent expression of GADD45alpha. Oncogene2001,20(27):3585-3589.
    21. Cude K, Wang Y, Choi HJ, Hsuan SL, Zhang H, Wang CY, Xia Z: Regulation of theG2-M cell cycle progression by the ERK5-NFkappaB signaling pathway. J CellBiol2007,177(2):253-264.
    22. Wuerzberger-Davis SM, Chang PY, Berchtold C, Miyamoto S: Enhanced G2-Marrest by nuclear factor-{kappa}B-dependent p21waf1/cip1induction. Mol CancerRes2005,3(6):345-353.
    23. Kenneth NS, Mudie S, Rocha S: IKK and NF-kappaB-mediated regulation ofClaspin impacts on ATR checkpoint function. EMBO J2010,29(17):2966-2978.
    24. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB: NF-kappaBaddiction and its role in cancer:'one size does not fit all'. Oncogene2011,30(14):1615-1630.
    25. Rocha S, Martin AM, Meek DW, Perkins ND: p53represses cyclin D1transcriptionthrough down regulation of Bcl-3and inducing increased association of the p52NF-kappaB subunit with histone deacetylase1. Mol Cell Biol2003,23(13):4713-4727.
    26. Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT, Van Waes C, Chen Z: A signalnetwork involving coactivated NF-kappaB and STAT3and altered p53modulatesBAX/BCL-XL expression and promotes cell survival of head and neck squamouscell carcinomas. Int J Cancer2008,122(9):1987-1998.
    27. Yang CR, Wilson-Van Patten C, Planchon SM, Wuerzberger-Davis SM, Davis TW,Cuthill S, Miyamoto S, Boothman DA: Coordinate modulation of Sp1, NF-kappa B,and p53in confluent human malignant melanoma cells after ionizing radiation.FASEB J2000,14(2):379-390.
    28. Grivennikov SI, Karin M: Dangerous liaisons: STAT3and NF-kappaBcollaboration and crosstalk in cancer. Cytokine Growth Factor Rev2010,21(1):11-19.
    29. Lee H, Deng J, Xin H, Liu Y, Pardoll D, Yu H: A requirement of STAT3DNAbinding precludes Th-1immunostimulatory gene expression by NF-kappaB intumors. Cancer Res2011,71(11):3772-3780.
    30. Yoon S, Woo SU, Kang JH, Kim K, Shin HJ, Gwak HS, Park S, Chwae YJ:NF-kappaB and STAT3cooperatively induce IL6in starved cancer cells. Oncogene
    2011.
    31. Burkhart BA, Hebbar PB, Trotter KW, Archer TK: Chromatin-dependent E1Aactivity modulates NF-kappaB RelA-mediated repression of glucocorticoidreceptor-dependent transcription. J Biol Chem2005,280(8):6349-6358.
    32. Webster GA, Perkins ND: Transcriptional cross talk between NF-kappaB and p53.Mol Cell Biol1999,19(5):3485-3495.
    33. Ryan KM, Ernst MK, Rice NR, Vousden KH: Role of NF-kappaB in p53-mediatedprogrammed cell death. Nature2000,404(6780):892-897.
    34. Benoit V, de Moraes E, Dar NA, Taranchon E, Bours V, Hautefeuille A, Taniere P,Chariot A, Scoazec JY, de Moura Gallo CV et al: Transcriptional activation ofcyclooxygenase-2by tumor suppressor p53requires nuclear factor-kappaB.Oncogene2006,25(42):5708-5718.
    35. Schumm K, Rocha S, Caamano J, Perkins ND: Regulation of p53tumour suppressortarget gene expression by the p52NF-kappaB subunit. EMBO J2006,25(20):4820-4832.
    36. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell2004,116(2):281-297.
    37. Esquela-Kerscher A, Slack FJ: Oncomirs-microRNAs with a role in cancer. NatRev Cancer2006,6(4):259-269.
    38. Taganov KD, Boldin MP, Chang KJ, Baltimore D: NF-kappaB-dependent inductionof microRNA miR-146, an inhibitor targeted to signaling proteins of innateimmune responses. Proc Natl Acad Sci U S A2006,103(33):12481-12486.
    39. Bazzoni F, Rossato M, Fabbri M, Gaudiosi D, Mirolo M, Mori L, Tamassia N,Mantovani A, Cassatella MA, Locati M: Induction and regulatory function of miR-9in human monocytes and neutrophils exposed to proinflammatory signals. ProcNatl Acad Sci U S A2009,106(13):5282-5287.
    40. Gatto G, Rossi A, Rossi D, Kroening S, Bonatti S, Mallardo M: Epstein-Barr viruslatent membrane protein1trans-activates miR-155transcription through theNF-kappaB pathway. Nucleic Acids Res2008,36(20):6608-6619.
    41. Iliopoulos D, Hirsch HA, Struhl K: An epigenetic switch involving NF-kappaB,Lin28, Let-7MicroRNA, and IL6links inflammation to cell transformation. Cell2009,139(4):693-706.
    42. Zhang X, Liu S, Hu T, He Y, Sun S: Up-regulated microRNA-143transcribed bynuclear factor kappa B enhances hepatocarcinoma metastasis by repressingfibronectin expression. Hepatology2009,50(2):490-499.
    43. Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, Wang WJ, Chen Q, Tang F, LiuXP et al: Involvement of NF-kappaB/miR-448regulatory feedback loop inchemotherapy-induced epithelial-mesenchymal transition of breast cancer cells.Cell Death Differ2011,18(1):16-25.
    44. Shin VY, Jin H, Ng EK, Cheng AS, Chong WW, Wong CY, Leung WK, Sung JJ, ChuKM: NF-kappaB targets miR-16and miR-21in gastric cancer: involvement ofprostaglandin E receptors. Carcinogenesis2011,32(2):240-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700