用户名: 密码: 验证码:
HIV-1逆转录酶及其抑制剂的分子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
获得性免疫缺陷综合征(艾滋病)是由人类免疫缺陷病毒(human immunodeficiencyvirus,HIV)通过破坏人体的免疫体统而导致的一系列症状。从HIV病毒开始在人类中传播,世界上大约有25 000 000人死于艾滋病。当前,40 300 000左右的人是艾滋病毒的携带者。自然界中,艾滋病毒有两种存在类型:艾滋病毒1型(HIV-1)和艾滋病毒2型(HIV-2)。其中,以HIV -1的影响最为广泛。
     艾滋病的流行严重危害人类的安全,艾滋病药物的研究是世界的热点问题。艾滋病毒逆转录酶(reverse transcriptase,RT)在HIV的生命周期中起到至关重要的作用,它利用病毒RNA基因组作为模板合成DNA,通过人体免疫系统中扮演重要角色的T细胞来实现自身的复制,从而产生新的病毒。所以,逆转录酶已经作为一个重要的靶点应用于抗艾滋病毒药物的研发。逆转录酶抑制剂(reverse transcriptase inhibitors,RTIs )能够抑制逆转录酶的功能,阻止病毒双链DNA的合成,从而阻断HIV病毒的增殖。根据其抑制剂机理,逆转录酶抑制剂分为两种:核苷类/核苷酸类逆转录酶抑制剂(nucleoside/nucleotide reverse transcriptase inhibitors,NRTIs/ NtRTIs)和非核苷类逆转录酶抑制剂(non-nucleoside reverse transcriptase inhibitors,NNRTIs)。
     近年来,计算机辅助药物的发现和设计已经被成功的应用于很多研究项目。在抗HIV病毒药物的研究中,二维定量构效关系(2dimension-quantitative structure-activityrelationship,2D-QSAR)、三维定量构效关系(3D-QSAR)和分子对接(Molecular Docking)已经被广泛应用。分子动力学(Molecular Dynamics)模拟在HIV领域的应用主要体现在研究HIV -1蛋白质酶、逆转录酶、整合酶等酶与其抑制剂之间的关系。同时,量子化学方法也被引入这个领域。
     本论文采用定量构效关系、分子对接和分子动力学多种技术和手段,研究逆转录酶抑制剂的分子结构与其生物活性之间的关系,以及抑制剂与逆转录酶的作用机理。目的在于比较不同抑制剂与逆转录酶的不同作用模式,获得有关分子的何种结构特征能够有效地提高其抗HIV病毒的生物活性的信息,用于辅助设计和合成更高效的抗HIV病毒抑制剂。
     论文第一章,我们对艾滋病、HIV-1逆转录酶及其抑制剂做了些介绍,同时,描述了计算机辅助药物设计方法及其应用。第二章对本论文中使用的各种方法做了详细描述。
     论文第三章研究了一系列嘧啶核苷类逆转录酶抑制剂,采用多元线性回归(multiplelinear regression,MLR)、支持向量机(support vector machine,SVM)和投影寻踪回归(projection pursuit regression,PPR)方法,以几何、静电和量子化学参数建立了定量结构-生物活性关系模型。MLR产生的线性模型,其训练集的相关系数(R~2)和均方误差(mean square error,MSE)分别为0.729和0.36;其测试集的R~2和MSE分别为0.662和0.42。SVM和PPR方法用于建立非线性模型,同样的训练集,SVM和PPR得到相关系数R~2分别为0.850和0.841,MSE分别为0.22和0.21;SVM和PPR测试集的R~2分别是0.830和0.840,MSE分别为0.27和0.30。预测结果表明,SVM和PPR方法优于MLR。建立的模型也许对新的嘧啶核苷类逆转录酶抑制剂设计起到一定帮助。
     第四章中,我们采用相似的方法对一系列2-氨基-6-苯磺酰基苄腈及其类似物非核苷逆转录酶抑制剂进行研究。用拓扑描述符、几何描述符和量子化学描述符描述分子结构特征。通过比较多元线性回归(MLR)、多元自适应样条回归(multivariate adaptiveregression splines,MARS)、径向基函数神经网络(radial basis function neural networks,RBFNN)、广义回归神经网络(general regression neural networks,GRNN)、投影寻踪回归(PPR)和支持向量机方法(SVM)六种不同方法,分别对抗HIV-1活性数据集和HIV-1 RT抑制活性数据集建立不同的QSAR模型。结果表明PPR和SVM模型具有最好的预测能力。
     为了深入探讨药物与蛋白质的相互作用关系,继二维定量关系以后,我们又对这些抑制剂进行三维定量构效关系、分子对接和分子动力学的研究。首先,通过分子对接方法将抑制剂与RT的活性位点相结合,找出两者的作用模式和抑制剂最合理的构象。然后,采用比较分子力场分析(comparative molecular field analysis,CoMFA)和比较分子相似性分析(comparative molecular similarity indices analysis,CoMSIA)方法建立基于配体和受体的预测模型。CoMFA和CoMSIA模型的交互检验系数q~2分别为0.723和0.760。CoMFA和CoMSIA等势图和受体的三维结构重叠图可以帮助我们更清楚的了解RT蛋白与抑制剂的相互作用,以及抑制剂的结构特征对活性的影响。比如,2-氨基-6-苯磺酰基苄腈及其类似物的B环C-3位和C-5位如果引入较大的或者疏水性较强的基团有利于提高分子的生物活性;在化合物A环C-2位置引入氢键给体基团,且能够与RT蛋白残基Lys 101形成氢键,则有利于提高分子的生物活性。
     然后,我们对数据集中三个代表不同类结构化合物的分子进行水溶剂体系的分子动力学模拟研究。采用分子力学/泊松-波尔兹曼表面积方法(Molecular MechanicsPoisson-Boltzmann Surface Area,MM-PBSA)和分子力学/广义博恩表面积方法(MolecularMechanics Generalized Born Surface Area,MM-GBSA),用MD模拟的轨道计算体系的结合能。并且,分析了三个不同代表性分子与RT蛋白的作用模式、氢键作用,三个体系的结合自由能,以及重要氨基酸残基对结合自由能的贡献。结果表明由于抑制剂含有不同的含硫官能团,导致抑制剂与残基的相互作用不同,因为不同类抑制剂与与RT的结合模式也不同。
     第五章中,我们对一系列硫代氨基甲酸酯类非核苷类逆转录酶抑制剂进行2D-QSAR和3D-QSAR研究。在2D-QSAR研究中,我们采用MLR、RBFNN、PPR、SVM和最小二乘支持向量机(least squares support vector machines,LS-SVM)方法建立QSAR模型。启发式方法用于选择描述符。70个化合物选择56个作为训练集建模。PPR方法建立的模型具有最好结果:训练集和测试集的R~2分别为0.873和0.755。基于同样的分子构型和子集划分,又对这一系列分子进行基于配体的3D-QSAR研究。CoMFA模型的交叉检验系数q~2为0.701(5个主成分),最好的CoMSIA (SH)模型的q~2q为0.672。
     为了获取更多的抑制剂与RT受体的相互作用关系信息,我们进行了分子对接研究。对接结果显示绝大多数配体与蛋白质Lys 101形成氢键。同时,其他的作用力,如范德华力也对受体-配体的结合有重要影响。然后,对其中53个具有闭环邻苯二甲酰亚胺结构的化合物的对接构象进行基于受体的3D-QSAR研究。53个化合物分为49个化合物的训练集和10个化合物的测试集。通过训练集建立的CoMFA模型的q~2为0.488,CoMSIA模型(SHD)的q~2为0.642。经过分析,化合物的立体场、静电场、疏水场和氢键给体场的部分特征对生物活性有较大影响。
Acquired immune deficiency syndrome (AIDS) is a set of symptoms resulting from thedamage to the human immune system caused by the human immunodeficiency virus (HIV).About 25 million people worldwide have died from this infection since the start of theepidemic, and 40.3 million people around the world are currently living with HIV/AIDS.There are two types of HIV: HIV-1 and HIV-2. The predominant virus is HIV-1.
     The prevalence of AIDS has been a big problem and endangering human life, therefore,the study of AIDS drugs becomes a current event in the world. In the infection process, thereverse transcriptase (RT) is very important. RT converts the single-stranded HIV RNA todouble-stranded HIV DNA which contains the instructions HIV needs to use a T-cell's geneticmachinery to reproduce itself. Hence, RT is one of the major targets for the treatment ofAIDS.Reverse transcriptase inhibitors (RTIs) block reverse transcriptase's enzymatic functionand prevent completion of synthesis of the double-stranded viral DNA, thus preventing HIVfrom multiplying. There are two forms of RT inhibitors according to their inhibitorymechanism: nucleoside/nucleotide (analog) reverse transcriptase inhibitors(NRTIs/ NtRTIs)and non-nucleoside reverse transcriptase inhibitors (NNRTIs).
     Computer-aided drug discovery and design have proven successful in many recentresearch programs. 2D-QSAR and 3D-QSAR have been used in the studies of anti-HIVinhibitors, as well as Molecular docking studies. The application of Moelcular Dyanmics inthe field of HIV-1 has involved studies of HIV-1 protease, reverse transcriptase, integrase andenzymes with their inhibitors. Some studies were performed with different QuantumChemistry methods.
     The thesis uses several techniques (QSAR, Molecular Docking and Molecular dyanmics)to correlate molecular structure features to their bioactivity, and to study the interaction modebetween reverse transcriptase and their inhibitors. We aim at comparing the different actionmode between RT and their different inhitor families, obtaining more information aboutwhich molecular features are favorable to activity, and aiding to design and synthesize highlyactive ant-HIV inhibitors.
     In Chapter 1,we present a general introduction of AIDS, HIV-1 reverse trascriptase, theirinhibitors and a brief description of the methods in Computer-Aided Drug Design (CADD). InChapter 2, we present the methods that are used in this work in a detailed way.
     In Chapter 3, we study a set of pyrimidine nucleosides RT inhibitors and establishquantitative structure-activity relationships (QSAR) using a comprehensive set of geometrical,electrostatic and quantum-chemical molecular descriptors, by multiple linear regression(MLR), support vector machine (SVM) and projection pursuit regression (PPR) methods.MLR yields a linear model withadetermination coefficient (R~2) and mean square error (MSE)of 0.729 and 0.36 for the training set and of 0.662 and 0.42 for the test set, respectively. SVMand PPR methods that we used to construct non-linear prediction models, lead to a better R~2of 0.850 (SVM) and 0.841 (PPR) and MSE of 0.22 (SVM) and 0.21 (PPR) for the sametraining set, together with R~2 of 0.830 (SVM) and 0.840 (PPR) and MSE of 0.27 (SVM) and0.30 (PPR) for the same test set, respectively. The prediction results of the SVM and PPRmodels are better than those of MLR. These models might help designing new pyridinenucleosides inhibitors with enhanced activity.
     In Chapter 4, we analyze in a similar way another series of HIV-1 reverse transcriptaseinhibitors: 2-amino-6-arylsulfonylbenzonitriles and their thio and sulfinyl congeners. We usetopological and geometrical, as well as quantum mechanical energy-related and chargedistribution-related descriptors to describe the structural features. We compare six techniques:multiple linear regression (MLR), multivariate adaptive regression splines (MARS), radialbasis function neural networks (RBFNN), general regression neural networks (GRNN),projection pursuit regression (PPR) and support vector machine (SVM) to establish QSARmodels for two data sets:anti-HIV-1 activity and HIV-1 reverse transcriptase binding affinity.Our results show that PPR and SVM models provide a powerful capacity of prediction.
     This 2D-QSAR analysis is completed with two more approaches: 3D-QSAR, relying onmolecular docking, and molecular dynamics in order to examine into more detail thedrug-protein interaction. Docking simulations are employed to position the inhibitors into theRT active site to determine the most probable binding mode and most reliable conformations.Then we develop comparative molecular field analysis (CoMFA) and comparative molecularsimilarity indices analysis (CoMSIA) approaches, using a complex receptor-based and ligand-based alignment procedure and different alignment modes to obtain highly reliable andpredictive CoMFA and CoMSIA models with cross-validated q~2 value of 0.723 and 0.760,respectively. The CoMFA and CoMSIA contour maps with the 3D structure of the target (thebinding site of RT) inlaid allow us to better understand the interaction between the RT proteinand the inhibitors and the structural requirements for inhibitory activity against HIV-1.Forinstance, we show that for 2-amino-6-arylsulfonylbenzonitriles inhibitors to have appreciableinhibitory activity, bulky and hydrophobic groups in 3-and 5-position of the B ring arerequired. Moreover, H-bond donor groups in 2-position of the A ring to build up H-bondingwith the Lys101 residue of the RT protein are also favorable to activity.
     We then perform dynamics (MD) simulations in water environment on the RTcomplexes with one representative of each of 3 series of inhibitors:2-amino-6-arylsulfonylbenzonitriles, and their thio and sulfinyl congeners. MolecularMechanics Poisson-Boltzmann Surface Area (MM-PBSA) and Molecular MechanicsGeneralized Born Surface Area (MM-GBSA) are applied to calculate the binding free energybased on the obtained MD trajectories. We carry out a comparison of interaction modes,binding free energy, contributions of the residues to the binding free energy and H-bonds withthe average structures. Our results show that there exist different interaction modes betweenRT and ligands due to the different sulfur functional groups in the inhibitors and to specificinteractions with some residues.
     In Chapter 5, we study a series of O-(2-phthalimidoethyl)-N-substituted thiocarbamatesand their ring-opened congeners as non-nucleoside HIV-1 reverse transcriptase inhibitors,using 2D-QSAR and 3D-QSAR methods. In 2D-QSAR studies, we used and comparedseveral methods: MLR, RBFNN, PPR, SVM and LS-SVM to build QSAR models. Thedescriptors were selected by heuristic method. Among the 70 compounds, we selected 56 asthe training set. The best results were generated by PPR with a square correlation coefficientR~2 of 0.873 for the training set and 0.755 for the test set. Based on the same conformations ofthe compounds, we then performed ligand-based 3D-QSAR studies, with a cross-validated q~2of 0.701 (with 5 components) in CoMFA and 0.672 (with 6 components) in CoMSIA (SH).
     In order to obtain more information about the RT receptor interaction with theseinhibitors we performed further studies based on molecular docking. Our results indicate that an H-bond between Lys101 of the protein and ligands exists in most cases. Moreover, someother interactions, such as Van der Waals force, exist contributing to the binding affinitybetween receptor and ligand. The docking conformations of 59O-(2-phthalimidoethyl)-N-substituted thiocarbamates were generated to carry outreceptor-based 3D-QSAR studies. 53 compounds were divided into training set (43) and testset(10). With the training set, a q~2 of 0.488 was obtained in CoMFA, while a higher value ofq~2: 0.642 was obtained in CoMSIA with three SHD descriptors. The steric, electrostatic,hydrophobic and H donor features of the compounds make much contribution to thebioactivity of the inhibitors.
引文
[1]Weiss,R.A.."How does HIV cause AIDS?".Science 1993,260,1273-1279.
    [2]Goldman,L.;Ausiello,D.;eds.Cecil Medicine;Saunders Elsevier,2007.
    [3]Gallo,R.C."A reflection on HIV/AIDS research after 25 years".Retrovirology 2006,3:72.
    [4]http://health.nytimes.com/
    [5]UNAIDS,WHO (2007)."2007 AIDS epidemic update" (PDF).Retrieved on 2008-03-12.
    [6] http://www.aids-india.org/
    [7] http://www.thebody.com/
    [8] Jonckheere, H.; Anne, J.; Clercq, E. D. The HIV-1 Reverse Transcription (RT) Process as Target for RT Inhibitors. Med Res. Rev. 2000,20,129-154.
    [9] Sarafianos, S. G.; Das, K.; Tantillo, C.; Clark, A. D.; Jr, Ding, J.; Whitcomb, J. M.; Boyer, P. L.; Hughes, S. H.; Arnold, E. Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA, EMBOJ. 2001, 20, 1449-1461.
    [10] Kohlstaedt, L. A.; Wang, J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Structure determination of HIV-1 RT which first defines the two monomers and the positioning of the functional components. Science 1992, 256, 1783-1790.
    [11] Hsiou, Y.; Ding, J.; Das, K.; Jr, Clark, A. D.; Hughes, S. H.; Arnold, E. Structure of unliganded HIV-1 reverse transcriptase at 2.7 (?)resolution: implications of conformational changes for polymerization and inhibition mechanisms. Structure 1996, 4, 853-860.
    [12]. Jacobo-Molina, A.; Ding, J.; Nanni, R. G..; Clark, A. D.; Jr, Ju, X.; Tantillo, C.; Williams, R. L.; Kamer, G.; Ferris, A. L.; Clark, P.; Hizi, A.; Hughes, S. H.; Arnold, E. Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 (?) resolution shows bent DNA, Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 6320-6324.
    [13] Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: Implications for drug resistance. Science 1998,282, 1669-1675.
    [14] http://www.cabm.rutgers.edu/-kalyan/RT_imgs/index.html
    [15] Majumdar, C.; Abbotts, J.; Broder, S.; Wilson, S. H. Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady-state kinetics, processivity, and polynucleotide inhibition. J. Biol. Chem. 1988, 263, 15657- 15665.
    [16] Schatz, O.; Mous, J.; Legrice, S. F. HIV-1 RT-associated ribonuclease H displays both endonuclease and 3'-5' exonuclease activity. EMBO J. 1990, 9, 1171-1176.
    [17] Furine, E. S.; Reardon, J. E. Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. J. Biol. Chem. 1991, 266, 406-412.
    [18] Kati, W. M.; Johnson, K.A.; Jerva, L.F.; Anderson, K.S. Mechanism and fidelity of HIV reverse transcriptase.J.Biol.Chem.1992,267,25988-25997.
    [19]Peliska,J.A.;Benkovic,S.J.Mechanism of DNA stand transfer reactions catalyzed by HIV-1 reverse transcriptase.Science 1992,258,1112-1118.
    [20]Hsieh,J.C.;Zinnen,S.;Modrich,P.Kinetic mechanism of the DNA-dependent DNA polymerase activity of human immunodeficiency virus reverse transcriptase.J.Biol.Chem.1993,268,24607-24613.
    [21]Rittinger,K.;Divita,G.;Goody,R.S.Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitorsProc.Natl.Acad.Sci.USA 1995,92,8046-8049.
    [22]Mitsuya H.;Weinhold K.J.;Furman P.A.;St Clair M.H.;Lehrman S.N.;Gallo R.C.;
    Bolognesi,D.;Barry,D.W.;Broder,S.3'-Azido-3'-deoxythymidine (BW A509U):an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type Ⅲ/lymphadenopathy-associated virus in vitro.Proc.Natl.Acad.Sci.USA 1985,82,7096-7100.
    [23]Dahlberg J.E.;Mitsuya H.;Blam S.B.;Broder S.;Aaronson S.A.Broad spectrum antiretroviral activity of 2',3'-dideoxynucleosides.Proc.Natl.Acad.Sci.USA 1987,84,2469-2473.
    [24]Kim C.H.;Marquez V.E.;Broder S.;Mitsuya H.;Driscoll J.S.Potential anti-AIDS drugs.2',3'-dideoxycytidine analogues.J.Med.Chem.1987,3,862-866.
    [25]Ren,J.;Esnouf,R.;Garman,E.;Somers,D.;Ross,C.;Kirby,I.;Keeling,J.;Darby,G..;Jones,Y.;Stuart,D.;Stammers,D.High resolution structures of HIV-1 RT from four RT inhibitor complexes.Nature Struct.Biol.1995,2,293-302.
    [26]Esnouf,R.;Ren,J.;Ross,C.;Jones,Y.;Stammers,D.;Stuart,D.Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors.Nature Struct.Biol.1995,2,303-308.
    [27]Ren,J.;Esnouf,R.;Hopkins,A.;Ross,C.;Jones,Y.;Stammers,D.;Stuart,D.The structure of HIV-1 reverse transcriptase complexed with 9-chloro-TIBO:lessons for inhibitor design.Structure 1995,3,915-926.
    [28]Baba,M.;Tanaka,H.;Clercq,E.D.;Pauwels,R.;Balzarini,J.;Schols,D.;Nakashima,H,;Perno,C.F.; Walker,R.T.;Miyasaka.T.Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochem. Biophys. Res. Commun. 1989,165, 1375-1381.
    [29] Miyasaka, T.; Tanaka, H.; Baba, M.; Hayakawa, H.; Walker, R. T.; Balzarini, J.; Clercq, E. D. A novel lead for specific anti-HIV-1 agents: l-[(2-hydroxyethoxy)methyl]-6-(phenylthio)thymine.J. Med. Chem. 1989, 32, 2507-2509.
    [30] Pauwels, R.; Andries, K.; Desmyter, J.; Schols, D.; Kukla, M. J.; Breslin, H. J.; Raeymaeckers, A.; Gelder, J. V., Woestenborghs, R.; Heykants, J.; Schellekens, K.; Janssen, M. A. C; Clercq, E. De; Janssen, P. A. J. Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature 1990, 343, 470-474.
    [31] Debyser, Z.; Pauwels, R.; Andries, K.; Desmyter, J.; Kukla, M.; Janssen, P. A. J.; Clercq, E. De An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,l-jk][l,4]benzodiazepin-2(lH)-one and -thione derivatives. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1451-1455.
    [32] Merluzzi, V. J.; Hargrave, K. D.; Labadia, M.; Grozinger, K.; Skoog, M.; Wu, J. C.; Shih, C. K.; Eckner, K.; Hattox, S.; Adams, J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J. L. Inhibition of HIV-1 replication by a non-nucleoside reverse transcriptase inhibitor. Science 1990,250, 1411-1413.
    [33] Koup, R. A.; Merluzzi, V. J.; Hargrave, K. D.; Adams, J.; Grozinger, K.; Eckner, R. J.; Sullivan, J. L. Inhibition of human immunodeficiency virus type 1 (HIV-1) replication by the dipyridodiazepinone BI-RC-587. J. Infect. Dis. 1991,163, 966-970.
    [34] Goldman, M. E.; Nunberg, J. H.; O'Brien, J. A.; Quintero, J. C; Schleif, W. A.; Freund, K. F.; Gaul, S. L.; Saari, W. S.; Wai, J. S.; Hoffman, J. M.;. Anderson, P. S.; Hupe, D. J.; Emini, E. A.; Stern, A. M. Pyridinone derivatives: specific human immunodeficiency virus type 1 reverse transcriptase inhibitors with antiviral activity. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 6863-6867.
    [35] Goldman, M. E.; O'Brien, J. A.; Ruffing, T. L.; Nunberg, J. H.; Schleif, W. A.; Quintero, J. C.; Siegl, P. K. S.; Hoffman, J. M.; Smith, A. M.; Emini, E. A. L-696,229 specifically inhibits human immunodeficiency virus type 1 reverse transcriptase and possesses antiviral activity in vitro. Antimicrob. Agents Chemother. 1992,36, 1019-1023.
    [36] Balzarini, J.; Perez-Perez, J. M. J.; San-Felix, A.; Schols, D.; Perno, C. F.; Vandamme, A. M.; Camarasa, M. J.; Clercq, E. De 2'-5'-Bis-O-(tert-butyldimethylsiyl)-3'-spiro-5"-(4"-amino-1",2"-oxathiole-2",2"-dioxide)pyrimidine (TSAO)nucleoside analogues:Hightly selective inhibitors of human immunodeficiency virus type 1 that are targeted at the viral reverse transcriptase.Proc.Natl.Acad.Sci.U.S.A.1992,89,4392-4396.
    [37]Balzarini,J.;Perez-Perez,M.J.;San-Felix,A.;Velazquez,S.;Camarasa,M.J.;Clercq,E.De [2',5'-Bis-O-(tert-butyldimethylsilyl)]-3'-spiro-5"-(4"-amino-1 ",2"-oxathiole-2",2"-dioxide)(TSAO)derivatives of purine and pyrimidinenucleosides as potent and selective inhibitors of human immunodeficiency virus type 1 .Antimicrob.Agents Chemother.1992,36,1073-1080.
    [38]Balzarini,J.;Perez-Perez,M.J.;San-Felix,A.;Camarasa,M.J.;Bathurst,I.C.;Barr,P.J.;Clercq,E.De Kinetics of inhibition of human immunodeficiency virus type 1 (HIV-1)reverse transcriptase by the novel HIV-1-specific nucleoside analogue [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5"-(4"-amino-1 ",2"-oxathi ole-2",2"-dioxide)thymine (TSAO-T).J.Biol.Chem.1992,267,11831-11838.
    [39]Pauwels,R.;Andries,K.;Debyser,Z.;Daele,P.Van;Schols,D.;Stoffels,P.;Vreese,K.De;Woestenborghs,R.;Vandamme,A.M.;Janssen,C.G.M.;Anne,J.;Cauwenbergh,G.;Desmyter,J.;Heykants,J.;Janssen,M.A.C.;Clercq,E.De;Janssen,P.A.J.Potent and highly selective human immunodeficiency virus type 1 (HIV-1)inhibition by a series of alpha-anilinophenylacetamide derivatives targeted at HIV-1 reverse transcriptase.Proc.Natl.Acad.Sci.U.S.A.1993,90,1711-1715.
    [40]Ahgren,C.;Backro,K.;Bell,F.W.;Cantrell,A.S.;Clemens,M.;Colacino,J.M.; Deeter,J.B.;Engelhardt,J.A.;Hgberg,M.;Jaskunas,S.R.;Johansson,N.G.;Jordan,C.L.;Kasher,J.S.;Kinnick,M.D.;Lind,P.;Lopez,C.;Morin Jr;J.M..;Muesing,M.A.; Noreen,R.;Berg,B.; Paget,C.J.;Palkowitz,J.A.;Parrish,C.A.;Pranc,P.;Rippy,M.K.;Rydergard,C.;Sahlberg,C.;Swanson,S.;Ternansky,R.J.;Unge,T.;Vasileff,R.T.;Vrang,L.;West,S.J.;Zhang,H.;Zhou,X.X.The PETT series,a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase.Antimicrob.Agents Chemother.1995,39,1329-1335.
    [41]Baba,M.;Shigeta,S.;Yuasa,S.;Takashima,H.;Sekiya,K.;Ubasawa,M.;Tanaka,H.;Miyasaka,T.;Walker,R.T.;Clercq,E.De Preclinical evaluation of MKC-442,a highly potent and specific inhibitor of human immunodeficiency virus type 1 in vitro. Antimicrob. Agents Chemother. 1994, 38, 688-692.
    [42] Pauwels, R.; Andries, K.; Debyser, Z.; Kukla, M. J.; Schols, D.; Breslin, H. J.;Woestenborghs, R.; Desmyter, J.; Janssen, M. A. C.; Clercq, E. De; Janssen, P. A. J. New tetrahydroimidazo[4,5,l-jk][l,4]-benzodiazepin-2(lH)-one and -thione derivatives are potent inhibitors of human immunodeficiency virus type 1 replication and are synergistic with 2',3'-dideoxynucleoside analogs. Antimicrob. Agents Chemother. 1994, 38, 2863-2870.
    [43] FDA Approves HIV Drug Etravirine. Associated Press, 2008.
    [44] Paul S. Practical Application of Computer-Aided Drug Design; Marcel Dekker, Inc.: New York, 1997.
    [45] Brenk R.; Naerum L.; Gradler U.; Gerber H. D.; Garcia G. A.; Reuter K.; Stubbs M. T.; Klebe G. Virtual screening for submicromolar leads of tRNA-guanine transglycosylase based on a new unexpected binding mode detected by crystal structure analysis. J. Med. Chem. 2003, 46, 1133-1143.
    [46] Gruneberg, S.; Stubbs, M. T.; Klebe, G. Successful Virtual Screening for Novel Inhibitors of Human Carbonic Anhydrase: Strategy and Experimental Confirmation. J. Med. Chem. 2002, 45, 3588-3602.
    [47] Truhlar, D.G.; Howe, W. J.; Hopfinger, A. J.; Blaney, J.; Dammkoehler, R. E. Rational Drug Design; Springer,1999.
    [48] http://en.wikipedia.org/wiki/Zanamivir
    [49] Itzstein, M. von; Wu, W.Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Phan, T. Van; Smythe, M. L.; White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J. N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham, V. J.; Cameron J. M.; Penn C. R. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 1993, 363, 418-423.
    [50] Pensak, D. A. Molecular Modelling: Scientific and Tech- nological Boundaries. Pure Appl. Chem. 1989, 61, 601-603.
    [51] Hopfmger, A. J.; Wang, S.; Tokarski, J. S.; Jin, B.; Albuquerque, M.; Madhav, P. J.; Duraiswami, C.; Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism. J. Am. Chem. Soc. 1997,119, 10509-10524.
    [52] Aoyama, T.; Suzuki, Y.; Ichikawa. H. Neural networks applied to structure-activity relationships.J Med.Chem.1990,33,905-908.
    [53]Aoyama,T.;Suzuki,Y.;Ichikawa.H.Neural networks applied to pharmaceutical problems.Ⅲ.Neural networks applied to quantitative structure-activity relationship (QSAR)analysis.J.Med.Chem.1990,33,2583-2590.
    [54]Liu,H.X.;Zhang,R.S.;Yao,X.J.;Liu,M.C.;Hu,Z.D.;Fan,B.T.A QSAR Study of Ethyl 2-[(3-Methyl-2, 5-dioxo(3-pyrrol inyl))amino]-4-(trifluoro-methyl)pyrimidine-5-carboxylate:An Inhibitor of AP-1 and NF-B Mediated Gene Expression Based on Support Vector Machines.J.Chem.Inf.Comput.Sci.2003,43,1288-1296.
    [55]Liu,H.X.;Hu,R.J.;Zhang,R.S.;Yao,X.J.;Liu,M.C.;Hu,Z.D.;Fan,B.T.The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine.J.Comput.Aided Mol.Des.2005,19,33-46.
    [56]Mahmoudian,M.QSARs of pyrimidine nucleotides as HIV-1 antiviral agents.Pharmac.Res.1991,8,43-46.
    [57]Garg,R.;Gupta,S.P.;Gao,H.;Babu,M.S.;Debnath,A.K;Hansch,C.Comparative Quantitative Structure-Activity Relationship Studies on Anti-HIV Drugs.Chem.Rev.1999,99,3525-3602.
    [58]Fern(?)ndez,M.;Caballero,J.Modeling of activity of cyclic urea HIV-1 protease inhibitors using regularized-artificial neural networks.Bioorg.Med.Chem.2006,14,280-294.
    [59]Lawtrakul L.;Prakasvudhisarn,C.Correlation studies of HEPT derivatives using swarm intelligence and support vector machines.Mona.Fur Chem.2005,136,1681-1691.
    [60]Avram,S.;Svab,I.;Bologa,C.;Flonta,M.L. Correlation between the predicted and the observed biological activity of the symmetric and nonsymmetric cyclic urea derivatives used as HIV-1 protease inhibitors.A 3D-QSAR-CoMFA method for new antiviral drug design.J.Cell.Mol.Med.2003,7,287-296.
    [61]Pungpo,P.;Hannongbua,S.Three-dimensional quantitative structure-activity relationships study on HIV-1 reverse transcriptase inhibitors in the class of dipyridodiazepinone derivatives,using comparative molecular field analysis.J.Mol.Graph.Model.2000,18,581-590.
    [62]Kireev,D.B.;Chretien,J.R.;Grierson,D.S.Monneret,C.A 3D QSAR study of a series of HEPT analogues:The influence of conformational mobility on HIV-1 reverse transcriptase inhibition.J.Med.Chem.1997,40,4257-4264.
    [63] Senese, C. L.; Hopfinger, A. J. Receptor-independent 4D-QSAR analysis of a set of norstatine derived inhibitors of HIV-1 protease. J. Chem. Inf. Comput. Sci. 2003, 43, 1297-1307.
    [64] Senese, C. L.; Hopfinger, A. J. Receptor-independent 4D-QSAR analysis of a set of norstatine derived inhibitors of HIV-1 protease. J. Chem. Inf. Comput. Sci. 2003, 43, 1297-1307.
    [65] da Cunha, E. F. F.; Albuquerque, M. G.; Antunes, O. A. C.; de Alencastro, R. B. 4D-QSAR models of HOE/BAY-793 analogues as HIV-1 protease inhihitors. QSAR Comb. Sci. 2005, 24, 240-253.
    [66] Brooijmans, N.; Kuntz, I. D. Molecular recognition and docking algorithms. Annu. Rev. Biophys. Biomol Struct. 2003, 32, 335-373.
    [67] Cummings, M. D.; Des Jarlais, R. L.; Gibbs, A. C.; Mohan, V.; Jaeger, E. P. Comparison of automated docking programs as virtual screening tools. J. Med. Chem. 2005, 48, 962-976.
    [68] Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002, 47, 409-443.
    [69] Kitchen, D. B.; Decornez, H.; Furr, J. R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935-949.
    [70] Shoichet, B. K.; McGovern, S. L.; Wei, B.; Irwin, J. J. Lead discovery using molecular docking. Curr. Opin. Chem. Biol. 2002, 6, 439-446.
    [71] Taylor, R. D.; Jewsbury, P. J.; Essex, J. W. A review of protein-small molecule docking methods. J. Comput.Aided Mol. Des. 2002,16, 151-166.
    [72] Ewing, T. J. A.; Kuntz, I. D. Critical evaluation of search algorithms for automated molecular docking and database screening. J. Comput. Chem. 1997,18, 1175-1189.
    [73] Kuntz, I. D.; Blaney, J. M.; Oatley, S. J.; Langridge, R.; Ferrin, T. E. A geometric approach to macromolecule-ligand interactions. J. Mol. Biol. 1982,161, 269-288.
    [74] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson,A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function../. Comput. Chem. 1998,19, 1639-1662.
    [75] Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996, 261, 470-489.
    [76] Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol .1997, 267, 727-748.
    [77] Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M; Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739-1749.
    [78] Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. Glide:A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem. 2004, 47, 1750-1759.
    [79] Medina-Franco, J. L.; Rodriguez-Morales, S.; Juarez-Gordiano, C; Hernandez-Campos, A.; Castillo, R. Docking-based CoMFA and CoMSIA studies of non-nucleoside reverse transcriptase inhibitors of the pyridinone derivative type. J. Comput.Aided Mol. Des. 2004,18, 345-360.
    [80] Zhang, Z. S.; Zheng, M. Y.; Du, L.; Shen, J.; Luo, X.; Zhu, W.; Jiang, H. Towards discovering dual functional inhibitors against both wild type and K103N mutant HIV-1 reverse transcriptases: molecular docking and QSAR studies on 4,1-benzoxazepinone analogues. J. Comput.Aided Mol. Des. 2006, 20, 281-293.
    [81] Melnick, M.; Reich, S. H.; Lewis, K. K.; Mitchell, J. L. J.; Nguyen, D.; Trippe, A. J.; Dawson,H.; Davies Ⅱ, J. F.; Appelt, K.; Wu, B. W.; Musick, L.; Gehlhaar, D. K.; Webber, Shetty, S. B.; Kosa, M.; Kahil, D.; Andrada, D. Bis Tertiary Amide Inhibitors of the HIV-1 Protease Generated via Protein Structure-Based Iterative Design. J. Med. Chem. 1996, 39 2795-2811.
    [82] Skulnick, H. I.; Johnson, P. D.; Aristoff, P. A.; Morris, J. K.; Lovasz, K. D.; Howe, W. J.; Watenpaugh, K. D.; Janakiraman, M. N.; Anderson, D. J.; Reischer, R. J.; Schwartz, T. M.; Banitt, L. S.; Tomich, P. K.; Lynn, J. C.; Horng, M. M.; Chong, K. T.; Hinshaw, R. R.; Dolak, L. A.; Seest, E. P.; Schwende, F. J.; Rush, B. D.; Howard, G. M.; Toth, L. N.; Wilkinson, K. R.; Kakuk, T. J.; Johnson, C. W.; Cole, S. L.; Zaya, R. M.; Zipp, G L.; Possert, P. L.; Dalga, R. J.; Zhong, W. Z.; Williams, M. G.; Romines, K. R. Structure-Based Design of Nonpeptidic HIV Protease Inhibitors: The Sulfonamide-Substituted Cyclooctylpyranones. J. Med. Chem. 1997,40, 1149-1164.
    [83] DesJarlais, R. L.; Seibel, G. L.; Kuntz, I. D.; Furth, P. S.; Alvarez, J. C.; Ortiz de Montellano,P. R.; DeCamp, D. L.; Bab(?), L. M.; Craik, C. S. Structure-based design of nonpeptide inhibitors specific for the human immunodeficiency virus 1 protease. Proc. Natl .Acad .Sci. U.S.A. 1990, 87, 6644-6648.
    [84] Lam, P. Y.; Jadhav, P. K.; Eyermann, C. J.; Hodge, C. N.; Ru, Y.; Bacheler, L. T.; Meek, J. L.; Otto, M. J.; Rayner, M. M.; Wong, Y. N.; Chang, C. H.; Weber, P. C.; Jackson, D. A.; Sharpe, T. R.; Erickson-Viitanen, S. Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 1994, 263, 380-384.
    [85] Alder, B. J.; Wainwright, T. E. Phase transitions for a hard sphere system. J. Chem. Phys.1957,27,1208-1209.
    [86] Harte, W. E.; Swaminathan, S.; Beveridge, D. L. Molecular dynamics of HIV-1 protease. Proteins 1992,13, 175-194.
    [87] Harte, W. E.; Beveridge, D. L. Prediction of the protonation state of the active site aspartyl residues in HIV-1 protease-inhibitor complexes via molecular dynamics simulation. J. Am. Chem. Soc. 1993,115, 3883-3886.
    [88] Madrid, M.; Lukin, J. A.; Madura, J. D. Ding, J.; Arnold, E. Molecular dynamics of HIV-1 reverse transcriptase indicates increased flexibility upon DNA binding. Proteins 2001, 45, 176-182.
    [89] Barreca, M. L.; Lee, K. W.; Chimirri, A.; Briggs, J. M. Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: Mechanism for inhibition and drug resistance. Biophys. J. 2003, 84, 1450-1463.
    [90] Shen, L. L.; Shen, J. H.; Luo, X. M.; Cheng, F.; Xu, Y. C.; Chen, K. X.; Arnold, E.; Ding, J. P.; Jiang, H. L. Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Biophys. J. 2003, 84, 3547-3563.
    [91] Sherwood, P. Methods and algorithms of quantum chemistry; John von Neumann Institute for Computing: Juelich, 2000.
    [92] Svensson, M.; Humbel, S.; Froese, R. D. J.; Matsubara, T.; Sieber, S.; Morokuma, K. ONIOM: A Multilayered Integrated MO + MM Method for Geometry Optimizations and Single Point Energy Predictions. A Test for Diels-Alder Reactions and Pt(P(t-Bu)_3)_2 + H_2 Oxidative Addition. J. Phys. Chem. 1996,100, 19357-19363.
    [93]Matsubara,T.;Sieber,S.;Morokuma,K.A test of the new integrated MO+MM (IMOMM)method for the conformational energy of ethane and n-butane.Int.J Quantum.Chem.1996,60,1101-1109.
    [94]Vreven,T.;Morokuma,K.;Farkas,O.;Schlegel,H.B.;Frisch,M.J.Geometry optimization with QM/MM,ONIOM,and other combined methods.I.Microiterations and constraints.J.Comput.Chem.2003,24,760-769.
    [95]Tschumper,G.S.;Morokuma,K.Gauging the applicability of ONIOM (MO/MO)methods to weak chemical interactions in large systems:hydrogen bonding in alcohol dimers.J.Mol.Structure (Theochem)2002,592,137-147.
    [96]Dapprich,S.;Komaromi,I.;Byun,K.S.;Morokuma,K.;Frisch,M.J.A new ONIOM implementation in Gaussian98.Part Ⅰ.The calculation of energies,gradients,vibrational frequencies and electric field derivatives.J.Mol.Structure (Theochem)1999,461,1-21.
    [97]Morokuma, K.New challenges in quantum chemistry:quests for accurate calculations for large molecular systems.Phil.Trans.R.Soc.Lond.A 2002,360,1149-1164.
    [98]Vreven,T.;Morokuma,K.On the application of the IMOMO (integrated molecular orbital+molecular orbital)method.J.Comput.Chem.2000,21,1419-1432.
    [99]Lin,H.;Truhlar,D.G.QM/MM:What Have We Learned,Where are We,and Where Do We Go from Here? Theor.Chem.Acc.2007,117,185-199.
    [100]Re,S.;Morokuma,K.Own N-layered integrated molecular orbital and molecular mechanics study of the reaction of OH-with polychlorinated hydrocarbons CH_((4-n))Cl_n (n=2-4)Theor.Chem.Acc.2004,112,5 9-67.
    [101]Li,A.;Maurel,F.Delamar,M.;Wang,B.ONIOM study of the nonbonding interaction of the 2PU inhibitor with the CDK2 and CDK4 cyclin-dependant kinases.Int.J.Quantum Chem.2009,109,1148-1157.
    [102]Nivesanond,K.;Peeter,A.;Lamoen,D.;Van Alsenoy,C.Ab initio calculation of the interaction energy in the P2 binding pocket of HIV-1 proteas.Int.J.Quantum Chem.2005,105,292-299.
    [103]Hensen,C.;Hermann,J.C.;Nam,K.;Ma,S.;Gao,J.;Holtje,H.D.A combined QM/MM approach to protein-ligand interactions:polarization effects of the HIV -1 protease on selected high affinity inhibitors.J.Med.Chem.2004,47,6673-6680.
    [104] Zhang, D. W.; Zhang, J. Z. H. Full quantum mechanical study of binding of HIV-1 protease drugs. Int. J. Quantum Chem. 2005,103, 246-257.
    [105] Bernardi, F.; Bottoni, A.; De Vivo, M.; Garavelli, M.; Keseru, G.; Naray-Szabo, G. A hypothetical mechanism for HIV-1 integrase catalytic action: DFT modelling of a bio-mimetic environment. Chem. Phys. Lett. 2002, 362, 1-7.
    [106] Kuno, M.; Palangsuntikul, R.; Hannongbua, S. Investigation on an orientation and interaction energy of the water molecule in the HIV-1 reverse transcriptase active site by quantum chemical calculations. J. Chem. Inf. Comput. Sci. 2003, 43, 1584-1590.
    [107] He, X.; Mei, Y.; Xiang, Y.; Zhang da, W.; Zhang, J. Z. Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations. Proteins 2005, 61, 423-432.
    [108] Mei, Y.; He, X.; Xiang, Y; Zhang da, W.; Zhang, J. Z. Quantum study of mutational effect in binding of efavirenz to HIV-1 RT. Proteins 2005,59,489-495.
    [1]Hansch,C.A Quantitative Approach to Biochemical Structure-Activity Relationships.Acc.Chem.l Res.1969,2,232-239.
    [2]Hansch,C.;Fujita,T.p-σ-π analysis.A method for the correlation of biological activity and chemical structure.J.Am.Chem.Soc.1964,86,1616-1626.
    [3]Kubinyi H.,QSAR:Hansch Analysis and Related Approaches;VCH:Weinheim,1993.
    [4]Hansch C.;Leo A.Exploring QSAR;American Chemical Society:Washington DC,1995.
    [5]Free,S.M.;Wilson,J.W.A mathematical contribution to structure-activity studies.J.Med.Chem.1964,7,395-399.
    [6]Randic,M.On the characterization of molecular branching.J.Am.Chem.Soc.1975,97,6609-6615.
    [7]Kier,L.B.;Hall,L.H.Molecular Connectivity in Structure-Activity Analysis Research.Letchworth:England,1986.
    [8]Crippen,G.M.Distance geometry approach to rationalizing binding data.J.Med.Chem.1979,22,988-997.
    [9]Cramer,R.D.;Patterson,D.E.;Bunce,J.D.Effect of Shape on Binding of Steroids to Carrier Proteins.JAm.Chem.Soc.1988,110,5959-5967.
    [10]Klebe,G.;Abraham U.;Mietzner,T.Molecular similarity indices in a comparative analysis (CoMSIA)of drug molecules to correlate and predict their biological activity.J.Med.Chem.1994,37.4130-4146.
    [11]Rogers,D.;Hopfinger,A.J.Application of Genetic Function Approximation to Quantitative Structure-Activity Relationships and Quantitative Structure-Property Relationships.J.Chem.Inf.Comput.Sci.1994,34,854-866.
    [12] Aoyama, T.; Suzuki, Y.; Ichikawa, H. Neural networks applied to structure-activity relationships. J. Med. Chem. 1990,33, 905-908.
    [13] Aoyama, T.; Suzuki, Y.; Ichikawa, H. Neural networks applied to quantitative structure-activity relationships. J. Med. Chem. 1990, 33, 2583-2590.
    [14] Yao, X. J.; Panaye, A.; Doucet, J. P.; Zhang, R. S.; Chen, H. F.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Comparative study of QSAR/QSPR correlations using support vector machines, radial basis function neural networks, and multiple linear regression. J. Chem. Inf. Comput. Sci. 2004, 44,1257-1266.
    [15] Szczurek, A.; Maciejewska, M. Recognition of benzene, toluene and xylene using TGS array integrated with linear and non-linear classifier. Talanta 2004, 64, 609-617.
    [16] Niwa, T. Using General Regression and Probabilistic Neural Networks To Predict Human Intestinal Absorption with Topological Descriptors Derived from Two-Dimensional Chemical Structures. J. Chem. Inf. Comput. Sci. 2003, 43, 113-119.
    [17] Mosier, P. D.; Jurs, P. C. QSAR/QSPR studies using probabilistic neural networks and generalized regression neural networks. J. Chem. Inf. Comput. Sci. 2002, 42, 1460-1470.
    [18] De Veaux, R. D.; Psichogios, D. C.; Ungar, L. H. A comparison of two nonparametric estimation schemes: MARS and Neural Networks. Comp. Chem. Eng. 1993,17, 819-837.
    [19] Xu, Q. S.; Daszykowski, M.; Walczak, B.; Daeyaert, F.; De Jonge, M. R. ; Heeres, J.;Koymans, L. M. H.; Lewi, P. J.; Vinkers, H. M.; Janssen, P. A.; Massart, D. L. Multivariate adaptive regression splines-studies of HIV reverse transcriptase inhibitors. Chemometr. Intell. Lab. Syst. 2004, 72, 27-34.
    [20] Nguyen-Cong, V.; Rode, B. M. Quantitative electronic structure-activity relationships of pyridinium cephalosporins using nonparametric regression methods. Eur. J. Med. Chem. 1996, 31, 479-484.
    [21] Liu, H. X.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. QSAR study of ethyl 2-[3- methyl-2,5-dioxo (3-pyrrolinyl) amino]-4-(trifluoromethyl) pyrimidine-5- carboxylate : an inhibitor of AP-1 and NF-kB mediated gene expression based on support vector machines. J. Chem. Inf. Comput. Sci. 2003, 43, 1288-1296.
    [22] Liu, H. X.; Hu, R. J.; Zhang, R. S. ; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. The prediction of human oral absorption for diffusion rate-limited drugs based on heuristic method and support vector machine. J. Comput. Aided Mol. Des. 2005,19, 33-46.
    [23] Cortes, C.; Vapnik, V. Machine Learning. Support- Vector Networks 1995, 20, 273-297.
    [24] Vapnik, V.; Golowich, S.; Smola, A. Advances in Neural Information Processing Systems. MIT Press: Cambridge, MA, 1997.
    [25] Vapnik, V. Statistical Learning Theory.Wiley: New York, 1998.
    [26] Scholkopf, B.; Burges, C.; Smola, A. Advances in Kernel Methods-Support Vector Learning. MIT Press: Cambridge, MA, 1999.
    [27] Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines. Cambridge University Press: Cambridge, UK, 2000.
    [28] Gunn, S. R.; Brown, M.; Bossley, K. M. Network Performance Assessment for Neurofuzzy Data Modelling. Intel. Data Anal. 1997,1208, 313-323.
    [29] Burges, C. J. C. A tutorial on support vector machines for pattern recognition. Data Min. Know. Disc. 1998,2,1-47.
    [30] Vapnik, V. Estimation of Dependences Based on Empirical Data. Springer: Berlin, 1982.
    [31] Burbidge, R.; Trotter, M.; Buxton B.; Holden, S. Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem, 2001, 26, 5-14.
    [32] Liu, H. X.; Xue, C. X.; Zhang, R. S.; Yao, X. J.; Liu, M. C.; Hu, Z. D.; Fan, B. T. Quantitative prediction of log k of peptides in high-performance liquid chromatography based on molecular descriptors by using the heuristic method and support vector machine. J. Chem. Inf. Comput. Sct, 2004, 44, 1979-1986.
    [33] Suykens, J. A. K. Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293-300.
    [34] Milton, R.; Nelder J. Statistical computation; Academic press: New York , 1969.
    [35] Merrian, D. F. Geostatistics. Plenum Press: New York, 1970.
    [36] Friedman, J. H.; Tukey, J. A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Trans. Comp. 1974, 9, 881-889.
    [37] Friedman, J. H.; Stuetzle, W. Projection Pursuit Regression. J. Am. Sta. Ass. 1981, 76, 817-823.
    [38] Friedman, J. H. Classification and multiple regression through projection pursuit; Stanford University, Laboratory for Computational Statistics, Stanford, CA, 1985.
    [39] http://www.r-project.org
    [40] Friedman, J. H. Multiple adaptive regression splines. Ann. Stat. 1991,19, 1-67.
    [41] Devillers, J. Neural networks in QSAR and drug design; Academic Press: London, 1996.
    [42] Walczak, B.; Massart, D. L. Local modelling with radial basis function networks. Chemom. Intell. Lab. Syst. 2000, 50, 179-198.
    [43] Walczak, B.; Massart, D. L. The Radial Basis Functions - Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta, 1996, 331, 177-185.
    [44] Walczak, B.; Massart, D. L. Application of Radial Basis Functions - Partial Least Squares to non-linear pattern recognition problems: diagnosis of process faults. Anal. Chim. Acta. 1996,331, 187-193.
    [45] Tetteh, J.; Howells, S.; Metcalfe, E.; Suzuki T. Optimisation of radial basis function neural networks using biharmonic spline interpolation. Chemom. Intell. Lab. Sys., 1998, 41, 17-29.
    [46] Orr, M. J. L. Introduction to Radial basis function networks; centre for cognitive science: Edinburgh University, 1996.
    [47] Orr, M. J. L. MATLAB routines for subset selection and ridge regression in linear neural networks; Centre for cognitive science: Edinburgh University, 1996.
    [48] Pulido, A.; Ruisnchez. I.; Rius, F. X. Radial basis functions applied to the classification of UV-visible spectra. Anal. Chim. Acta. 1999, 388, 273-281.
    [49] Stubbings, T.; Hutter, H. Classification of analytical images with radial basis function networks and forward selection Chemom. Intell. Lab. Syst. 1999, 49, 163-172.
    [50] Loukas, Y. L. Radial basis function networks in host-guest interactions: instant and accurate formation constant calculations Anal. Chim. Acta. 2000, 417,221-229.
    [51] Evans, P.; Persaud, K. C.; McNeish, A. S.; Sneath, R.; W.; Hobson, N.; Magan, N. Evaluation of a radial basis function neural network for the determination of wheat quality from electronic nose data. Sen. Actu. B 2000, 69, 348-358.
    [52] Specht, D. F. A general regression neural network. IEEE T. Neural Network 1991, 2, 568-576.
    [53] Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962,33, 1065-1076.
    [54] Golbraikh, A.; Tropsha, A. Beware of q~2! J. Mol. Graph. Model. 2002, 20, 269-276
    [55] Roy, P. P.; Roy, K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci. 2008, 2, 302-313.
    [56] http://www.codessa-pro.com/
    [57] Kier, L. B.; Hall, L. H. Molecular connectivity in chemistry and drug research; Academic Press: New York, 1976.
    [58] Kier, L. B.; Hall, L. H. The nature of structure-activity relationships and their relation to molecular connectivity. Eur. J. Med. Chem. 1977,12, 307-312.
    [59] Leach, A. R. Molecular Modelling, Principles and Applications. Prentice Hall, 2001.
    [60] Rohrbaugh, R. H.; Jurs P. C. Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal. Chim. Acta, 1987, 7.99, 99-109.
    [61] Karelson, M. Molecular Descriptors in QSAR/QSPR; J. Wiley & Sons: New York, 2000.
    [62] Katritzky, A. R.; Lobanov, V. S.; Karelson, M. Comprehensive descriptors for structural and statistical analysis, Reference Manual, Version 2.0,1994.
    [63] Pearson, R.G., Absolute electronegativity and hardness: applications to organic chemistry, J.Org. Chem. 1989, 54, 1423-1429.
    [64] HyperChem, Release 7.0 for windows, Hypercube, Inc. 2002.
    [65] Stewart, J. P. P. MOPAC 6.0, Quantum Chemistry Program Exchange, QCPE, No. 455, Indiana University, Bloomington, IN. 1989.
    [66] Katritzky, A. R.; Lobanov, VS.; Karelson M. CODESSA: Training Manual; University of Florida: Gainesville, FL, 1995.
    [67] Katritzky, A. R.; Petrukhin, R.; Jain, R.; Karelson, M. QSPR analysis of flash points. J. Chem. Inf. Comput. Sci., 2001, 41, 1521-1530.
    [68] Cheng, Y.; Prusoff, W. H. Relationship between the inhibition constant (Kl) and the concentration of inhibitor which causes 50 per cent inhibition (150) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.
    [69] Schleyer, P. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer, H. F Ⅲ.;Schreiner, P. R. John Wiley & Sons Ltd, 1998.
    [70] Calder, J. A.; Wyatt, J. A.; Frenkel, D. A.; Casida, J. E. CoMFA validation of the superposition of six classes of compounds which block GABA receptors non-competitively. J. Comput.Aided Mol.Des.1993,7,45-60.
    [71]DePriest,S.A.;Mayer,D.;Naylor,C.B.;Marshall,G.R.3D-QSAR of angiotensin-converting enzyme and thermolysin inhibitors;a comparison of CoMFA models based on deduced and experimentally determined active site geometries.J.Am.Chem.Soc.1993,115,5372-5384.
    [72]Horwitz,J.P.;Massova,I.;Wiese,T.E.;Wozniak,A.J.;Corbett,T.H.;Sebolt-Leopold,J.S.;Capps,D.B.;Leopold,W.R.Comparative molecular field analysis of in vitro growth inhibition of L1210 and HCT-8 cells by some pyrazoloacridines.J.Med.Chem.1993,36,3511-3516
    [73]Klebe,G.;Abraham,U.On the prediction of binding properties of drug molecules by comparative molecular field analysis.J.Med.Chem.,1993,36,70-80.
    [74]Myers,A.M.;Charifson,P.S.;Owens,C.E.;Kula, N.S.; McPhail, A.T.;Baldessarini,R.J.;Booth,R.G.;Wyrick,S.D.Conformational analysis,pharmacophore identification,and comparative molecular field analysis of ligands for the neuromodulatory σ_3 receptor.J.Med.Chem.1994,3 7,4109-4117.
    [75]Raichurkar,A.V.;Kulkarni,V.M.Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA,J.Med.Chem.2003,46,4419-4427.
    [76]Klebe,G.;Abraham,U.Comparative Molecular Similarity Index Analysis (CoMSIA)to study hydrogen-bonding properties and to score combinatorial libraries.J.Comput.Aided Mol.Design,1999,13,1-10.
    [77]http://graphics.med.yale.edu:5080/TriposBookshelf/sybyl/qsar/qsar_comsia2.html
    [78]Kubinyi,H.3D QSAR in Drug Design;Leiden:ESCOM,1993.
    [79]Wehrens,R.;van der Linden,W.E.Bootstrapping principal-component regression models,J.Chemom.1997,11,157-171.
    [80]Cramer,R.D.Ⅲ.;Bunce,J.D.;Patterson,D.E.;Frank,I.E.Crossvalidation,bootstrapping,and partial least squares compared with multiple regression in conventional QSAR studies.QSAR Comb.Sci.1988,7,18-25.
    [81]Norinder,U.Recent progress in CoMFA methodology and related techniques.Perspect.Drug Disc.Des.1998,12-14,25-39.
    [82]B(o|¨)hm,M.; St(u|¨)rzebecher,J.; Klebe,G.Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J. Med. Chem. 1999, 42, 458-477.
    [83] Attig, N.; Binder, K.; Grubmuller H.; Kremer K. Computational soft matter: from synthetic polymers to proteins; John von Neumann Institute for Computing: J(?)lich, NIC Series, 2004.
    [84] Case, D. A.; Darden, T. A.; Cheatham, T. E. Ⅲ; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G; Beroza, P.; Mathews, D. H; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9; University of California: San Francisco, 2006.
    [85] Amber 10 Users' Manual
    [86] Ponder, J. W.; Case, D. A. Force Fields for Protein Simulation. Adv. Prot. Chem. 2003, 66,27-85.
    [87] Cheatham, T. E. Ⅲ; Young, M. A. Molecular dynamics simulations of nucleic acids:Successes, limitations and promise.Biopolymers Nuc. Acid Sci. 2001, 56, 232-256.
    [88] Hornak, V.; Abel, R.; Okur, A.; Strockbine, B.; Roitberg, A.; Simmerling, C. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 2006,55,712-725.
    [89] Rappe, A. K.; Casewi, C. J.; Colwell, K. S.; Goddard, W. A. Ⅲ; Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 1992,114, 10024-10035.
    [90] Gasteiger, J.; Marsili M. Iterative partial equalization of orbital electronegativity - a rapid access to atomic charges. Tetrahedron 1980, 36, 3219-3288.
    [91] Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. A well-behaved electrostatic potential based method using charge restraints for determining atom-centered charges: the RESP model. J. Phys. Chem., 1993, 97, 10269-10280.
    [92] Cornell, W. D.; Cieplak, P.; Bayly, C. I..; Kollman, P. A. Application of the RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J. Am. Chem. Soc. 1993, 115, 9620-9631.
    [93] Reynolds, C. A.; Essex, J. W.; Richards, W. G. Atomic charges for variable molecular conformations. J. Am. Chem. Soc. 1992,114, 9075-9079.
    [94] Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I.. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I.Method. J. Comp. Chem. 2000, 21,132-146 .
    [95] Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model : Ⅱ. Parameterization and Validation. J. Comp. Chem. 2002,23, 1623-1641.
    [96] B(?)hm, H. J. The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure. J. Comp. Aided Mol.Des. 1994,8,243-256.
    [97] Head, R. D.; Smythe, M. L.; Oprea, T. I.; Waller, C. L.; Green, S. M. ; Marshall, G. R. VALIDATE: A new method for the receptor-based prediction of binding affinities of novel ligands, J. Am. Chem. Soc. 1996,118, 3959-3969.
    [98] B(?)hm, H. J. Prediction of binding constants of protein ligands: a fast method for the prioritization of hits obtained from de novo design or 3D database search programs, J. Comput. Aided Mol. Des. 1998,12, 309-323.
    [99] Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Empirical scoring functions: Ⅰ. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J. Comp. Aided Mol. Des. 1997,11, 425-445.
    [100] Chanfson, P. S.; Corkery, J. J.; Murcko, M. A.; Walters, W. P. Consensus Scoring: A Method for Obtaining Improved Hit Rates from Docking Databases of Three-Dimensional Structures into Proteins. J. Med. Chem. 1999, 42, 5100-5109.
    [101] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey R.; Hart, W. E.; Belew, R. K.; Olson, A., Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J. Comp. Chem. 1998,19, 1639-1662.
    [102] http://autodock.scripps.edu/
    [103] Verlet, L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 1967,159, 98-103.
    [104] Gear, C. W. Numerical Initial Value Problems in Ordinary Differential Equations;Prentice-Hall, Inc. Englewood Cliffs: New Jersey, 1971.
    [1]Katz,R.A.;Skalka,A.M.The retroviral enzymes.Annu.Rev.Biochem.1994,63,133-173.
    [2]Vaishnav,Y.N.;Wong-Staal,F.The biochemistry of AIDS.Annu.Rev.Biochem.1991,60,577-630.
    [3]Schinazi,R.F.Competitive inhibitors of human immunodeficiency virus reverse transcriptase.Perspect.Drug Discovery Des.1993,1,151-180.
    [4]De Clercq,E.Toward improved anti-HIV chemotherapy:thera-peutic strategies for intervention with HIV infections.J.Med.Chem.1995,38,2491-2517.
    [5]Lin,T.S.;Guo,J.Y.;Schinazi,R.F.;Chu,C.K.;Xiang J.N.;Prusoff,W.H.Synthesis and antiviral activity of various 3'-azido analogues of pyrimidine deoxyribonucleosides against human immunodeficiency virus (HIV-1,HTLV-Ⅲ/LAV).J.Med.Chem.1988,31,336-340.
    [6]Chu,C.K.;Schinazi,R.F.;Ahn,M.K.;Ullas,G..V.;Gu,Z.P.Structure-activity relationships of pyrimidine nucleosides as antiviral agents for human immunodeficiency virus type I in peripheral mononuclear cells. J. Med. Chem. 1989, 32, 612-617.
    [7] Mahmoudian, M. Quantitative structure-activity relationships (QSAR) of pyrimidine nucleosides as HIV-1 antiviral agents. Pharm. Res. 1991, 8,43-46.
    [8] HyperChem, Release 4.0 for Windows, Hypercube, Inc. (1994).
    [9] Camerman, A.; Mastropaolo, D.; Camerman, N. Azidothymidine: crystal structure and possible functional role of the azido group. Proc. Natl. Acad. Sci. 1987, 84, 8239-8242.
    [10] Saran, A.; Ojha , R. P. Conformation of azidothymidine: an anti-AIDS drug. J. Biosci. 1991,16, 29-42.
    [11] Galisteo, D.; Lopez Sastre, J. A.; Martinez Garcia, H.; Nufiez Miguel, R. Conformational comparative analysis of 2',3'-dideoxythymidine analogues by molecular mechanics calculations and by semiempirical methods (AM1). J. Mol. Struct. 1995, 350, 147-160.
    [12] Galisteo, D.; Lopez Sastre, J. A.; Martinez Garcia, H. Conformational comparative analysis of pyrimidine nucleoside derivatives by molecular mechanics calculations and by semiempirical methods (AM1). J. Mol. Struct. 1996, 384, 25-33.
    [13] Katritzky, A. R.; Lobanov, V. S.; Karelson, M. CODESSA : Training Manual. University of Florida, Gainesville, FL, 1995.
    [14] Katritzky, A. R.; Petrukhin, R.; Jain, R.; Karelson, M. QSPR analysis of flash points. J. Chem.Inf. Comput. Sci. 2001, 41, 1521-1530.
    [15] Dimitriadou, E.; Hornik, K.; Leisch, F.; Meyer, D.; Weingessel, A. el071: Misc Functions of the Department of Statistics (el 071). R package version 1.5-11; 2005.
    [16] Katritzky, A. R.; Kuanar, M.; Dobchev, D. A.; Vanhoecke, B. W. A.; Karelson, M. Parmar,V. S.; Stevense, C. V. Brackef, M. E. QSAR modeling of anti-invasive activity of organic compounds using structural descriptors. Bioorg. Med. Chem. 2006,14, 6933-6939.
    [17] http://www.codessa-pro.com
    [1]Esnouf,R.;Ren,J.;Ross,C.;Jones,Y.;Stammers,D.;Stuart,D.Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors.Nat.Struct.Biol.1995,2,303-308.
    [2]De Clercq,E.The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs)in the therapy of HIV-1 infection.Antiviral Res.1998,38,153-179.
    [3]Chan,J.H.;Hong,J.S.;Hunter Ⅲ,R.N.;Orr,G.F.;Cowan,J.R.;Sherman,D.B.;Sparks,S.M.;Reitter,B.E.;Andrews Ⅲ,C.W.;Hazen,R.J.;Clair,M.St.;Boone,L.R.;Ferris,R.G.;Creech,K.L.;Roberts,G.B.;Short,S.A.;Weaver,K.;Ott,R.J.;Ren,J.;Stuart,A.H.D.;Stammers, D. K. 2-Amino-6-arylsulfonylbenzonitriles as Non-nucleoside Reverse Transcriptase Inhibitors of HIV-1.J.Med.Chem.2001,44,1866-1882.
    [4]Roy,K.;Leonard,J.T.QSAR modeling of HIV-1 reverse transcriptase inhibitor 2-amino-6-arylsulfonylbenzonitriles and congeners using molecular connectivity and E-state parameters.Bioorg.Med.Chem.2004,12,745-754.
    [5]Leonard,J.T.;Roy,K.Classical QSAR Modeling of HIV -1 Reverse Transcriptase Inhibitor 2-Amino-6-arylsulfonylbenzonitriles and Congeners.QSAR Comb.Sci.2004,23,23-35.
    [6]Freitas, M. P. MIA-QSAR modeling of anti-HIV-1 activities of some 2-amino-6-arylsulfonylbenzonitriles and their thio and sulfinyl congeners.Org.Biomol.Chem.2006,4,1154-1159.
    [7]Tang,L.J.;Zhou,Y.P.;Jiang,J.H.;Zou,H.Y.;Wu,H.L.;Shen,G.L.;Yu,R.Q.Radial basis function network-based transform for a nonlinear support vector machine as optimized by a particle swarm optimization algorithm with application to QSAR studies.J.Chem.Inf.Model.2007,47,1438-1445.
    [8]Cerius2,v.3.5,Molecular Simulations Inc:San Diego,USA,1999.
    [9]HyperChem,Release 7.0 for windows,Hypercube,Inc.2002.
    [10]Stewart,J.P.P. MOPAC 6.0;Indiana University,Bloomington,IN.1989.
    [11]Dewar,M.J.S.;Storch,D.M.Development and use of quantum molecular models.75.Comparative tests of theoretical procedures for studying chemical reactions.J.Am.Chem.Soc.1985,107,3898-3902.
    [12]http://www.r-project.org
    [13] Orr, M. J. L. Introduction to Radial Basis Function Networks; Centre for Cognitive Science: Edinburgh University, 1996.
    [14] Orr, M. J. L. MATLAB Routines for Subset Selection and Ridge Regression in Linear Neural Networks; Centre for Cognitive Science: Edinburgh University, 1996.
    [15] http://www.codessa-pro.com/
    [16] Kier, L. B.; Hall, L. H. Molecular connectivity in chemistry and drug research; Academic Press: New York, 1976.
    [17] Kier, L. B.; Hall, L. H.; The nature of structure-activity relationships and their relation to molecular connectivity. Eur. J. Med. Chem. 1977,12, 307-312.
    [18] Leach, A. R. Molecular Modelling, Principles and Applications; Prentice Hall, 2001.
    [19] Rohrbaugh, R. H.; Jurs, P. C. Descriptions of molecular shape applied in studies of structure/activity and structure/property relationships. Anal. Chim. Acta, 1987,199, 99-109.
    [20] Karelson, M. Molecular Descriptors in QSAR/QSPR; J. Wiley & Sons: New York, 2000.
    [21] A.Golbraikh, A. Tropsha, Beware of q2! J. Mol. Graph. Model. 2002, 20, 269-276.
    [22] Roy, P. P.; Roy, K. On some aspects of variable selection for partial least squares regression models. QSAR Comb.Sci. 2008, 27, 302-313.
    [23] Schleyer, P. V. R.; Allinger, N. L.; Clark, T.; Gasteiger, J.; Kollman, P. A.; Schaefer Ⅲ, H.F.; Schreiner, P. R. The Encyclopedia of Computational Chemistry; John Wiley & Sons Ltd., 1998.
    [24] Klebe, G.; Abraham, U. Comparative molecular similarity index analysis (CoMSIA) to study hydrogen-bonding properties and to score combinatorial libraries. J. Comput.-Aided Mol. Design 1999,13, 1-10.
    [25] www.rcsb.org
    [26] Clark, M.; Cramer, R. D., Ⅲ; Van Opdenbosch, N. Validation of the General Purpose Tripose 5.2 Force Field. J. Comput. Chem. 1989,10, 982-1012.
    [27] Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 1980, 36, 3219-3228.
    [28] Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey R.; Hart, W. E.; Belew, R. K.; Olson, A.J. Automated docking using Lamarcking genetic algorithm and an empirical binding free energe function.J.Comp. Chem. 1998,19, 1639-1662.
    [29] Raichurkar, A. V.; Kulkarni, V. M. Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA.J.Med.Chem.2003,46,4419-4427.
    [30]Cramer,R.D.;Patterson,D.E.;Bunce,J.D.Comparative molecular field analysis(CoMFA).J.Am.Chem.Soc.1988,110,5959-5967.
    [31]Wehrens,R.;van der Linden,W.E.Bootstrapping principal-component regression models.J.Chemom.1997,11,157-171.
    [32]Cramer Ⅲ,R.D.;Bunce,J.D.;Patterson,D.E.;Frank,I.E.Crossvalidation,bootstrapping,and partial least squares compared with multiple regression in conventional QSAR studies.QSAR Comb.Sci.1988,7,18-25.
    [33]Agarwal,A.;Pearson,J.P.P.;Taylor,E.W.;Li,H.B.;Dahlgren,T.;Herslof,M.;Yang,Y.;Lambert,G.;Nelson,D.L.;Regan,J.W.;Martin,A.R.Three-dimensional quantitative structure-activity relationships of 5-HT receptor binding data for tetrahydropyridinylindole derivatives:a comparison of the Hansch and CoMFA methods.J.Med.Chem.1993,36,4006-4014.
    [34]B(o|¨)hm,M.;St(u|¨)rzebecher,J.;Klebe,G.Three-dimensional quantitative structure-activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin,thrombin,and factor Xa.J.Med.Chem.1999,42,458-477.
    [35]Norinder,U.3D QSAR in drug design.Theory,methods and applications.Perspect.Drug Discovery Des.1998,25,12-14.
    [36]Barbault,F.;Landon,C.;Guenneugues,M.;Meyer,J.P.;Schott,V.;Dimarcq,J.L.;Vovelle;F.Solution structure of alo-3:a new knottin-type antifungal peptide from the insect acrocinus longimanus.Biochemistry 2003,42,14434-14442.
    [37]Eisenberg D.;Schwarz E.;Komaromy M.;Wall R.Analysis of membrane and surface protein sequences with the hydrophobic moment plot.J.Mol.Biol.1984,179,125-142.
    [38]Hu, R.; Doucet, J. P.; Delamar, M.; Zhang, R. QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and nonlinear regression methods.Eur.J.Med.Chem.2009,44,2158-2171.
    [39]Hu,R.;Barbault,F.;Delamar,M.;Zhang,R.Receptor-and ligand-based 3D-QSAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors.Bioorg.Med.Chem.2009,17,2400-2409.
    [40] Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.;Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. A. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003,24, 1999-2012.
    [41] Wang, J.; Wolf, R. M.; Case, D. A.; Kollman, P. A. Development and testing of a general amber force field.J. Comput. Chem. 2004, 25,1157-1174.
    [42] Wang, J. M.; Wang, W.; Kollman, P. A. ANTECHAMBER: an accessory software package for molecular mechanical calculations. Abstr. Pap. Am. Chem. Soc. 2001, 222, U403.
    [43] Case, D. A.; Darden, T. A.; Cheatham, T. E., Ⅲ; Simmerling, C. L.; Wang, J.; Duke, R. E.;Luo, R.; Merz, K. M.; Pearlman, D. A.; Crowley, M.; Walker, R. C.; Zhang, W.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Wong, K. F.; Paesani, F.; Wu, X.; Brozell, S.; Tsui, V.; Gohlke, H.; Yang, L.; Tan, C; Mongan, J.; Hornak, V.; Cui, G; Beroza, P.; Mathews, D. H.; Schafmeister, C.; Ross, W. S.; Kollman, P. A. AMBER 9; University of California: San Francisco, 2006.
    [44] Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 2000, 21, 132-146.
    [45] Jakalian, A.; Jack, D. B.; Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: Ⅱ. Parameterization and validation. J. Comput. Chem. 2002, 23,1623-1641.
    [46] Darden, T.; York, D.; Pedersen, L. Particle mesh ewald an Nlog(n) method for ewald sums in large systems.J. Chem. Phys. 1993, 98, 10089-10092.
    [47] Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. Numerical integration of the Cartesian equations of motion of a system with constraints; molecular dynamics of n-alkanes. J. Comp. Phys. 1977,23,327-341.
    [48] Jorgensen, W. L.; Chandrasekhar, J.; Madurs, J.; Impey, R. W,; Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
    [49] Srinivasan, J.; Cheatham, I., Thomas E.; Cieplak, P.; Kollman, P. A.; Case, D. A. Continuum solvent studies of the stability of DNA, RNA and phosphoramidate-DNA helices. J. Am. Chem. Soc. 1998,120, 9401-9409.
    [50] Jayaram, B.; Sprous, D.; Beveridge, D. L. Free Energy of Biomacromolecules: Parameters for a Modified Generalized Born Model Consistent with the AMBER Force Field.J.Phys.Chem.B 1998,102,9571-9576.
    [51]Massova,I.;Kollman,P.A.Computational alanine scanning to probe protein-protein interactions:a novel approach to evaluate binding free energies.J.Am.Chem.Soc.1999,121,8133-8143.
    [52]Cheatham,Ⅲ,T.E.;Srinivasan,J.;Case,D.A.;Kollman,P.A.Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution.J.Biomol.Struct.Dyn.1998,16,265-280.
    [53]Srinivasan,J.;Miller,J.:Kollman,P.A.;Case,D.A.Continuum solvent studies of the stability of RNA hairpin loops and helices.J.Biomol.Struct.Dyn.1998,16,671-682.
    [54]Cheng,Y.;Prusoff,W.Relationship between the inhibition constant (K1)and the concentration of inhibitor which causes 50 per cent inhibition (150)of an enzymatic reaction.Biochem.Pharm.1973,22,3099-3108.
    [55]Weiser,J.;Shenkin,P.S.;Still,W.C.Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO).J.Comput.Chem.1999,20,217-230.
    [56]http://www.ks.uiuc.edu/Research/vmd/
    [1]Ahgren,C.;Backro,K.;Bell,F.W.;Cantrell,A.S.;Clemens,M.;Colacino,J.M.; Deeter,J.B.;Engelhardt,J.A.;Hgberg,M.;Jaskunas,S.R.;Johansson,N.G.;Jordan,C.L.;Kasher,J. S.; Kinnick, M. D.; Lind, P.; Lopez, C.; Morin Jr; J. M..; Muesing, M. A.; Noreen, R.; Berg,B.; Paget, C. J.; Palkowitz, J. A.; Parrish, C. A.; Pranc, P.; Rippy, M. K.; Rydergard, C.;Sahlberg, C.; Swanson, S.; Ternansky, R. J.; Unge, T.; Vasileff, R. T.; Vrang, L.; West, S. J.; Zhang, H.; Zhou, X. X. The PETT series, a new class of potent nonnucleoside inhibitors of human immunodeficiency virus type 1 reverse transcriptase. Antimicrob. Agents Chemother.1995,39, 1329-1335.
    [2] Zhang, H.; Vrang, L.; Backbro, K.; Lind, P.; Sahlberg, C.; Unge, T; Oberg, B. Inhibition of human immunodeficiency virus type 1 wild-type and mutant reverse transcriptases by the phenyl ethyl thiazolyl thiourea derivatives trovirdine and MSC-127. Antiviral Res. 1995, 28,331-342.
    [3] Cantrell, A. S.; Engelhardt, P.; Hogberg, M; Jaskunas, S. R.; Johansson, N. G.; Jordan, C. L.;Kangasmetsa, J.; Kinnick, M. D.; Lind, P.; Morin, J. M.; Jr. Muesing, M. A.; Noreen, R.;Oberg, B.; Pranc, P.; Sahlberg, C.; Ternansky, R. J.; Vasileff, R. T.; Vrang, L.; West, S. J.;Zhang, H. Phenethylthiazolythiourea (PETT) Compounds as a New Class of HIV-1 Reverse Transcriptase Inhibitors. 2. Synthesis and Further Structure-Activity Relationship Studies of PETT Analogs. J. Med.Chem. 1996, 39, 4261-4274.
    [4] Sahlberg, C.; Noreen, R.; Engelhardt, P.; Hogberg, M.; Kangasmetsa, J.; Vrang, L.; Zhang, H. Synthesis and anti-HIV activities of urea-PETT analogs belonging to a new class of potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem. Lett. 1998, 8,1511-1516.
    [5] Vig, P.; Mao, C.; Venkatachalam, T. K.; Tuel-Ahlgren, L.; Sudbeck, E. A.; Uckun, F. M. Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non-nucleoside inhibitors of HIV reserve transcriptase. Bioorg. Med. Chem. 1998, 6,1789-1797.
    [6] Mao, C.; Vig, R.; Venkatachalam, T. K.; Sudbeck, E. A.; Uckun, F. M. Structure-based design of N-[2-(l-piperidinylethyl)-N'-[2-(5-bromopyridyl)]-thiourea and N-[2-(1-piperazinylethyl)-N'-[2-(5-bromopyridyl)]-thiourea as potent non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bioorg. Med. Chem. Lett. 1998, 8, 2213-2218.
    [7] Mao, C.; Sudbeck, E. A.; Venkatachalam, T. K.; Uckun, F. M. Rational design of N-[2-(2,5-dimethoxyphenylethyl)]-N'-[2-(5-bromopyridyl)]-thiourea (HI-236) as a potent non-nucleoside inhibitor of drug-resistant human immunodeficiency virus. Bioorg. Med. Chem.Lett. 1999, 9, 1593-1598.
    [8] Cesarini, S.; Spallarossa, A.; Ranise, A.; Fossa, P.; La Colla, P.; Sanna, G.; Collub, G.; Loddob,R. Thiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 1: Parallel synthesis, molecular modelling and structure-activity relationship studies on O-[2-(hetero)arylethyl]-N-phenylthiocarbamates. Bioorg. Med. Chem. 2008,16, 4160-4172.
    [9] Cesarini, S.; Spallarossa, A.; Ranise, A.; Bruno, O.; La Colla, P.; Secci, B.; Collub, G.; Loddob, R. Thiocarbamates as non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 2: Parallel synthesis, molecular modelling and structure-activity relationship studies on analogues of O-(2-phenylethyl)-N-phenylthiocarbamate. Bioorg. Med. Chem. 2008,16, 4173-4185.
    [10] Spallarossa A.; Cesarini S.; Ranise A.; Ponassi M.; Unge T.; Bolognesi M. Crystal structures of HIV-1 reverse transcriptase complexes with thiocarbamate non-nucleoside inhibitors.Biochem. Biophys. Res. Commun. 2008, 365, 764-770.
    [11] Spallarossa, A.; Cesarini, S.; Ranise, A.; Bruno, O.; Schenone, S.; La Colla, P.; Collub, G.; Sanna, G.; Secci, B.; Loddob, R. Novel modifications in the series of O-(2-phthalirnidoethyl)-N-substituted thiocarbamates and their ring-opened congeners as non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur. J. Med. Chem. 2009, 44,1650-1663.
    [13] Clark, M.; Cramer, R. D., Ⅲ; Van Opdenbosch, N. Validation of the General Purpose Tripose 5.2 Force Field. J. Comput. Chem. 1989,10, 982-1012.
    [14] Gasteiger, J.; Marsili, M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron 1980, 36, 3219-3228.
    [15] Stewart, J. P. P. MOPAC 6.0; Indiana University, Bloomington, IN. 1989.
    [16] Dewar, M. J. S.; Storch, D. M. Development and use of quantum molecular models. 75. Comparative tests of theoretical procedures for studying chemical reactions. J. Am. Chem. Soc. 1985,107, 3898-3902.
    [17] http://www.codessa-pro.com/
    [18] Raichurkar, A. V.; Kulkarni, V. M. Understanding the antitumor activity of novel hydroxysemicarbazide derivatives as ribonucleotide reductase inhibitors using CoMFA and CoMSIA. J. Med. Chem. 2003, 46, 4419-4427.
    [19] Agarwal, A.; Pearson, J. P. P.; Taylor, E. W.; Li, H. B.; Dahlgren, T.; Herslof, M.; Yang,Y.;Lambert, G.; Nelson, D. L.; Regan, J. W.; Martin, A. R. Three-dimensional quantitative structure-activity relationships of 5-HT receptor binding data for tetrahydropyridinylindole derivatives: a comparison of the Hansch and CoMFA methods. J. Med. Chem. 1993, 36,4006-4014.
    [20] Wehrens, R.; van der Linden, W. E. Bootstrapping principal-component regression models. J.Chemom. 1997,77,157-171.
    [21] Cramer Ⅲ, R. D.; Bunce, J. D.; Patterson, D. E.; Frank, I. E. Crossvalidation, bootstrapping,and partial least squares compared with multiple regression in conventional QSAR studies. QSAR Comb. Sci. 1988, 7,18-25.
    [22] R. Franke, Theoretical Drug Design Methods; Elsevier: Amsterdam, 1984.
    [23] Stanton, D. T.; Jurs, P. C. Development and use of charged partial surface area structural descriptors in computer assissted quantitative structure property relationship studies. Anal. Chem. 1990, 62, 2323-2329.
    [24] Karelson, M. Molecular Descriptors in QSAR/QSPR; J. Wiley & Sons: New York, 2000.
    [25] Csizmadia I. G. Theory and Practice of MO Calculations on Organic Molecules; Elsevier:Amsterdam, 1976.
    [26] Weast, R. C. Handbook of Chemistry and Physics; CRC Press: Cleveland OH, 1974.
    [27] Sannigrahi, A. B. Ab initio molecular orbital calculations of bond index and valency. Adv.Quant. Chem. 1992, 23, 301-351.
    [28] Atkins, P. W. Quanta : A Hanbook of concepts; Oxford University Press:Oxford, 1991.
    [29] Barbault, F.; Landon, C.; Guenneugues, M.; Meyer, J. P.; Schott, V.; Dimarcq, J. L.; Vovelle;F. Solution structure of alo-3: a new knottin-type antifungal peptide from the insect acrocinus longimanus. Biochemistry 2003, 42, 14434- 14442.
    [30] Eisenberg D.; Schwarz E.; Komaromy M.; Wall R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 1984,179, 125-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700