用户名: 密码: 验证码:
面向大规模定制的扩展制造执行系统及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制造执行系统是位于上层计划管理与底层工业控制之间,面向车间制造过程管理与控制的信息系统。制造执行系统一经提出便得到了学术界和工业界的广泛关注,近年来国内外围绕制造执行系统所进行的研究和应用已取得不少成果,但是对面向大规模定制的制造执行系统所进行的研究还远远不够。论文在国家863项目资助下,结合企业的实际需求,对面向大规模定制的扩展制造执行系统及其关键技术进行了研究。
     环境的变化是永恒和不可预测的,制造系统生存发展的能力取决于其对环境变化的响应能力。随着产品品种日趋多样,制造过程日趋复杂,仅仅依靠车间自身制造资源完成生产任务变得越来越困难,将地域上分散的制造资源动态集成,构建跨地域的、资源分布的扩展车间,成为制造系统提高快速响应能力,赢得市场竞争的一条重要途径。论文分析了车间制造系统的发展变化,指出大规模定制环境下的车间是一种建立在广泛合作基础之上,具有灵活组织结构和快速响应能力的扩展车间,其生产活动已经延伸到跨度多个地点、多个合作伙伴的广阔制造空间,其生产管理与控制需要一种建立在制造技术、信息技术和现代管理技术有机结合基础之上的扩展制造执行系统来支撑。为此,依据扩展车间生产管理与控制的要求,遵循有关标准,提出了一种由功能层、工具层和信息交互层组成的扩展制造执行系统的框架结构。该框架下的扩展制造执行系统着眼于对广阔制造空间中的生产活动进行管理与控制,注重车间层面的生产协同和更大范围内资源的优化利用,重视与现场设备和人员的信息交互;其特点表现为纵向支持上层设计、管理等系统与车间底层生产设备和人员的集成运行,横向支持跨地域的协同制造。
     大规模定制环境下的扩展车间任务变化频繁,制造资源分散,产品种类多,生产批量小,难以有效制定作业计划。相似性是事物之间共性的一种表现形式,对于将个性化产品的定制生产问题转化或部分转化为批量生产问题具有重要意义,基于这一认识,论文提出了一种基于工艺过程相似性分组的扩展车间分级作业规划方法。该方法将扩展车间作业规划分为三个阶段,第一阶段对扩展车间进行逻辑制造单元重组,把作业任务归并为在资源使用方面具有相似性的作业任务组,从而将个性化产品的定制生产问题转化为逻辑制造单元内的批量生产问题;第二阶段对逻辑制造单元进行作业规划,实现逻辑制造单元内作业任务的优化排产;第三阶段对外协加工任务进行作业规划,实现外协加工任务在外部制造资源上的优化分配。
     论文对扩展车间分级作业规划每一阶段的问题进行了深入研究。针对扩展车间第一阶段逻辑制造单元重组问题,提出了一种基于资源约束的扩展车间逻辑制造单元重组方法,以实现资源与生产任务的合理匹配。针对扩展车间第二阶段逻辑制造单元作业规划问题,建立了以资源负荷均衡和任务完成时间最短为目标函数的扩展车间逻辑制造单元作业规划模型,以优化单元内的生产作业计划。针对扩展车间第三阶段外协加工作业规划问题,建立了以外协加工成本最小为目标函数的外协加工任务优化分配模型,以实现外协加工任务在外部制造资源上的优化分配。
     基于本论文研究内容所开发的扩展制造执行系统原型系统已经在重庆卡福汽车制动转向系统有限公司试点应用,取得了较好的应用效果。
Manufacturing Execution System, located between the upper production planning management and lower industrial control, is a real-time information system oriented for workshop manufacturing management and control. Manufacturing Execution System attracts widespread attention from both the academia and industrial sector once it’s been proposed. Recent years have witnessed a lot of achievements on research and application of manufacturing execution system both at home and abroad, but there is still a lack of research concerning manufacturing execution system for mass customization. With the support of national 863 high-tech program, and in order to meet the real needs of business community, this paper investigates the key technologies of extended manufacturing execution system for mass customization.
     The change of environment is eternal and unpredictable, the survival and development of manufacturing system is depended on its responding ability to changes. With the increasingly diverse product variety and the growing complexity of the manufacturing process, it’s becoming more and more difficult for enterprises to complete production tasks solely on its own manufacturing resource in mass customization environment. Dynamically integrating geographically dispersed manufacturing resource to establish a cross-boundary workshop puts forward an important way for manufacturing system to enhance rapid response capacity to win market competition in mass customization environment. This paper discusses the development and changes of workshop manufacturing systems, and points out that the workshop under mass customization environment is based on extensive cooperation with flexible organizational structure and the ability to quickly respond to changes. Operation of such a system requires the support from the extended manufacturing execution system which integrates manufacturing technology, information technology and modern management technology as a whole. For this reason, this paper develops a framework of extended manufacturing execution system for mass customization in accordance with international standards. The extended manufacturing execution systems under the guidance of the proposed formwork focuses on the management and control of production activities involved in the cross-boundary extended workshop, and emphasizes the workshop level production collaboration and resource optimization, it also pays high attention to the information exchange at the scene. The characteristics of the extended manufacturing execution are reflected vertically in the integration of the upper design, management systems with the production equipment and personnel at the bottom, and horizontally in the support of cross-boundary collaborative manufacturing.
     Under the environment of mass customization, issues such as task changing, scattering of manufacturing resource and small production batch, make it hard to achieve an effective production plan. Similarity is a common form of expression for things. Similarity research boasts significant meanings for transforming individual customized production to batch production. For this reason, a multiple layer workshop production schedule based on process similarity and resource constraints is put forward. The method decomposes the extended workshop production planning process into three phases. The first phase chiefly addresses the issues of logic manufacturing cell reconfiguration. By grouping the tasks in accordance with the similarity of process and resource constraints, it transforms individual customized production to inter-cell batch production. The second phase mainly addresses the issues of production schedule for logic manufacturing cells. The third phase principally investigates the issues of production schedule of outsourcing tasks.
     Issues addressed in each phases are discussed in details. To solve the problem of cell reconfiguration at the first phase of planning, a logic manufacturing cell reconfiguration method is developed to partitioning the extended work shop into logic manufacturing cells. As for the production schedule at the second phase of planning, a mathematical model with the objective of balancing workload and minimizing the make span is built. As for the assignment of outsourcing tasks at the third phase of planning, a mathematical model with the aim of minimizing the total cost is developed to optimize the task assignment.
     The prototype of extended manufacturing execution system developed based on this research has been introduced to Chongqing CAFF Automotive Brake Systems Company, and the experimental application indicates a better effect.
引文
[1]路甬祥.团结奋斗开拓创新建设制造强国.机械工程学报[J],2003,39(1):1-8.
    [2]刘德忠,费仁元,吴国蔚.制造工程组织学[M].北京:科学出版社, 2005.
    [3] Cao Le, Liu Fei. Sharing and planning of distributed equipment for networked manufacturing [J]. Chinese Journal of Mechanical Engineering, 2007, 20(1):73-76.
    [4] Joseph B P. Mass Customization: The New Frontier in Business Competition [M]. Boston: Harvard Business School Press, 1993.
    [5] D. M. Anderson. Agile Product Development for Mass Customization: How to Develop and Deliver Products for Mass Customization, Niche Markets, JIT, Build-to-Order and Flexible Manufacturing [M], Feng Juan et al. Tran. Beijing: China Machine Press, 1999.
    [6] Tseng M. M, Jiao J.. Design for mass customization [J]. Annals of the CIRP, 1996, 45(1) 153-156.
    [7] Cao Le, Liu Fei, Lei Qi. Design attributes optimization model for customized product and its application [J]. Chinese Journal of Mechanical Engineering, 2005, 18(2):179-182.
    [8]刘飞,晓冬,杨丹等.制造系统工程[M].北京:国防工业出版社, 2000.
    [9]杨光薰,倪伟英,韩晓露.从精益生产走向大规模定制生产[J].成组技术与生产现代化,2000, (1):16-20.
    [10]李仁旺.大批量定制的若干理论与方法问题研究[D].浙江:浙江大学, 1999.
    [11]顾新建,曹韵红,徐福缘.大批量定制生产与精益生产方式的比较[J].成组技术与生产现代化, 2000, (4): 1-4.
    [12]李敏,徐福缘,顾新建等.大批量定制生产与敏捷制造方式的比较[J].系统工程理论方法应用, 2001, 10(1): 18-22.
    [13]蒋平,胡宇翔,汤绍林.制造技术面临的挑战及对策[J].中国机械工程, 2001, 12(3): 21-23.
    [14]陈圻.大规模定制的启示-产品功能导向与功能竞争[J].北京工商大学学报(社会科学版), 2002, 17(4): 31-35.
    [15]刘晨光,李随成.生产方式的新发展-客户化大生产[J].成组技术与生产现代化, 2000, (1): 39-41.
    [16]叶文华,陈蔚芳.大规模定制技术[J].机械设计与制造工程, 2001, (4): 37-38, 41.
    [17]邵晓峰,黄培清,季建华.大规模定制生产模式的研究[J].工业工程与管理, 2001, (2):13-17.
    [18]樊树海,肖田元,郝猛.大规模定制下质量保证的研究[J].航空精密制造技术, 2002, 38(6):1-3.
    [19]龚本刚,华中生.基于延迟技术的大规模定制生产模式[J].经济管理, 2001, (16): 46-50.
    [20]苏宝华.面向大量定制生产的产品建模理论、方法及应用研究[D].浙江:浙江大学,1998.
    [21]祁国宁,顾新建,李仁旺.大批量定制及其模型的研究[J].计算机集成制造系统-CIMS, 2000, 6(2):41-45.
    [22] Pine B J, Gilmore J H. The Four Faces of Mass Customization [J]. Harvard Business Review, 1997, 75(1): 91-101.
    [23] Alford D, Sackett P, Nelder G.Mass Customization-an Automotive Perspective [J]. International Journal of Production Economics, 2000(65): 99-110.
    [24] Lampel J, Mintzberg H, Customizing Customization [J]. Sloan Management Review, 1996, 38(1): 21-30.
    [25]李铁克.制造执行系统模型综述与分析[J].冶金自动化,2003(4):13-17.
    [26] MESA International. The Benefits of MES: A Report from the Field [R]. MESA International White Paper Number 1, 1997.
    [27] MESA International. MES functionalities & MRP to MES data flow possibilities[R]. MESA International White Paper 2. 1997.
    [28] MESA International. Controls Definition & MES to Controls Data Flow Possibilities[R]. MESA International White Paper 3, 1997.
    [29] MESA International. MES Software Evaluation/Selection[R]. MESA International White Paper Number 4, 1997.
    [30] MESA International. Execution-driven manufacturing management for competitive advantage[R]. MESA International White Paper 5, 1997.
    [31] MESA International. MES explained: a high level vision[R]. MESA International White Paper 6, 1997.
    [32] Wallace, E.K..NIST Response to MES Request for Information[R]. NIST Response to RFI-3, 1999.
    [33]余海斌,朱云龙.可集成的制造执行系统[J].计算机集成制造系统-CIMS, 2000, 6(6):1-6.
    [34] Nagesh Sukhi, Ward Nick. Intelligent Second-Generation MES Solutions for 300mm Fabs [J]. Solid State Technology, Jun2000, 43(6): 133-137.
    [35] D.Scot. Comparative Advantage through Manufacturing Execution Systems [C]. Proceedings of the SEMICON Taiwan 96 IC Seminar, September, 1996.
    [36] F.T.Cheng, E.Shen, J.YDeng et.al. Development of a System Framework for the Computer-Integrated MES: A Distributed Object-Oriented Approach [J]. International Journal of CIM, 1999, 12(5):385-402.
    [37] M.Hori, T.Kawamura, A.Okano. OpenMES: Scalable Manufacturing Execution Framework Based Distributed Object Computing. Proceedings of IEEE [J]. International Conf. on Sys., Man & Cybernetics, 1999(4): 398-403.
    [38] Barry J, Durniak T, Durniak T. NIIIP-SMART: An Investigation of Distributed Object Approaches to Support MES Development and Deployment in a Virtual Enterprise[R]. Object Computing Workshop, 1998, 366-377.
    [39] Production System Modeling Technical Committee Japan FA Open Systems Promotion Group. Specifications of the OpenMES Framework [R]. Manufacturing Science&Technology Center, 2000.
    [40] ANSI/ISA–95.00.01–2000, Enterprise-Control System Integration Part I: Models and Terminology[S].
    [41] ANSI/ISA–95.00.02–2001, Enterprise-Control System Integration Part 2: Object Model Attributes[S].
    [42] ANSI/ISA–95.00.03–2005, Enterprise-Control System Integration Part 3: Activity Models of Manufacturing Operations Management[S].
    [43]李德芳.面向行业应用的可配置MES平台及产品[R].国家高技术研究发展计划课题申请书,2007
    [44]胡春,李平,宋执环等.制造执行系统体系结构中功能模型的研究[J].信息与控制.2002, 31(6):561-566.
    [45]胡春,李平.连续工业生产与离散工业生产MES的比较[J].化工自动化与仪表.2003, 30(5):1-4.
    [46]饶运清,李培根,李淑霞等.制造执行系统的现状与发展趋势[[J],机械科学与技术,2002, 21(6):1011-1016.
    [47]饶运清,刘世平,李淑霞等.敏捷化车间制造执行系统研究[J].中国机械工程,2002,13(8):654- 657.
    [48]饶运清,朱传军,张超勇等.支持网络化制造的车间资源集成与执行系统[J].计算机集成制造系统-CIMS,2003,9(12):1120-1125.
    [49]刘世平,张洁,饶运清等.分布式车间管理控制系统研究[J].中国机械工程.2001, 12(12): 1432-1435.
    [50]朱传军,饶运清,张超勇等.基于CORBA的可重构制造执行系统研究[J].中国机械工程.2004, 15(23):2097-2101.
    [51]杨浩.基于多Agent的敏捷化智能制造执行系统研究[D].南京:南京航空航天大学,2004.
    [52]杨浩,朱剑英.基于多Agent的分布式制造执行系统的建模[J].中国机械工程, 2004, 15(11): 973-977.
    [53]张书亭,杨建军,邹学礼.面向敏捷制造车间的制造执行系统研究[J].新技术新工艺. 2000 (12):2-4.
    [54]张书亭,杨建军,邬学礼.敏捷制造车间的生产管理模式及系统设计[J].航空制造技术,2002 (5):39-41.
    [55]王万雷.制造执行系统(MES)若干关键技术研究[D].大连:大连理工大学,2006.
    [56]刘飞.离散制造业MES需要实现与设备层的集成[J].西部制造业信息化季报, 2007(2):1-2.
    [57]贺德强,鄢萍,刘飞等.网络化制造环境下车间层信息交互模型及实现[J].计算机集成制造系统-CIMS.2004, 10(5):514-518.
    [58]宋海生,王家海,张曙.网络联盟企业中基于Web的制造执行系统[J].制造业自动化. 2001, 23 (2):20-23.
    [59]于海斌,朱云龙.可集成的制造执行系统[J].计算机集成制造系统-CIMS, 2000, 6(6):1-6.
    [60]张新聚,岳彦芳,檀润华.制造执行系统中工具管理的研究[J].江苏机械制造与自动. 2001 (4):48-50.
    [61]武力,张炳泉,张海盛.MES在批流程制造业的应用与发展[J].计算机应用.2002, 22(10):79-81.
    [62]张志英,唐承统,张建民等.基于多代理的制造执行系统研究[J].组合机床与自动化加工技术.2002,7:20-23.
    [63]刘威,初延刚,柴天佑等.基于MES的动态成本控制系统设计及其应用[J].东北大学学报,2003, 24(8):719-722.
    [64]李铁克,孙林,杜景红等.炼钢车间MES中的生产调度系统[J].冶金自动化.2003, 5:22-25
    [65]柴永生,孙树栋,吴秀丽等.制造执行系统柔性应用框架研究[J].计算机应用.2005, 25(3): 679-682.
    [66]冯毅萍,荣冈.流程工业MES体系结构及模型设计化工自动化及仪表.2006, 33(1):1-5.
    [67]李德芳,蒋白桦,王宏安.炼化企业MES体系结构的分析与设计.现代化工2004 ,24,48-52.
    [68]中国企业家调查系统.企业经营者对宏观经济形势、经济政策、企业经营环境及改革热点的判断、评价和建议[R],2007
    [69] Keron Y, H. U., Jovane F,el al. Reconfigurable Manufacturing Systems [J]. Annals of CIRP. 1999, 48(2):1-14.
    [70]许香穗蔡建国.成组技术[M].北京:机械工业出版社,1997.
    [71] Mclean, c. r., bloom, h. m. and hopp, t. h.The virtual manufacturing cell. Proceedings of 4th IFAC/IFIP conference on information control problems in manufacturing technology, maryland, 1982, pp. 207-215.
    [72] DROLET, J., ABDULNOUR. G. and RHFAUI.T. M. The cellular manufacturing evolution. Proceedings of the 19th Conference on Computers and Industrial Engineering. 1996, Vol. 31(1-2): 139-142.
    [73]高鄂.基于多Agent的车间制造系统控制结构及控制技术研究[D].合肥:合肥工业大学,2003.
    [74]饶运清.支持网络化制造的车间资源集成与制造过程管理[R].国家高技术研究发展计划课题申请书,2003
    [75]严治雄,左革成,张超勇,朱传军,饶运清.支持网络化制造的车间资源集成与执行系统[J].计算机集成制造系统,2003,9(12):1120-1125.
    [76]张书亭,杨建军,邬学礼.敏捷制造车间的生产管理模式及系统设计[J].航空制造技术, 2002 (5):39-41.
    [77]饶运清,李培根,李淑霞等.制造执行系统的现状与发展趋势[J].机械科学与技术,2002, 21(6):1011-1016.
    [78] Camstar.从现有MES到未来的虚拟工厂MES[EB/OL]. http://asia.camstar.com/asia/simplified/pdfs/Semicon_WhyChange_WP20-20CH-Simple.pdf.
    [79]刘飞,黄海龙,曹乐.大规模定制中的制造执行系统[R]. The workshop MCP in China暨2005年全国大批量定制学术研讨会,杭州,2005.
    [80]郑华林.面向大规模定制的生产管理模式及其产品族建模技术研究[D].重庆:重庆大学,2002.
    [81] Johnson S.Optimal two-and-three stage production schedules with setup times included [J]. Naval Research Logistics Quarterly, 1954, 1:61-68.
    [82] Balas E. Discrete programming by the filter method [J].Operations Research, 1967, 15:915-957.
    [83] Balas E. Machine sequencing via disjunctive graphs: An implicit enumeration algorithm [J]. Operations Research, 1969, 17:1-10.
    [84] Efstathiou J.Anytime heuristic schedule repair in manufacturing industry [J]. IEEE Proc-Control Theory Appl, 1996, 143(2):114-124.
    [85] Srinivasan, V. A hybrid algorithm for the one machine sequencing problem to minimize total tardiness[J], Naval Research Logistics Quarterly, 1971,18:317-327.
    [86] Shanker, Kripa and Ya-juei J. T. A loading and dispatching problem in a random flexible manufacturing system [J]. Int.J.Prod.Res, 1985, 23(3):579-595.
    [87] Scudder, Gray D. and Thomas R. Hoffmann. Composite cost-based rules for priority scheduling in a randomly routed job shop [J]. Int.J.Prod.Res, 1985, 23(6):1185-1195.
    [88] Tzafestas, Spyros and Alekos T.A new adaptively weighted combinatorial dispatching rule for complex scheduling problems [J]. Computer Integrated Manufacturing Systems, 1994, (17)1:7-15.
    [89] Panwalker S. S., lskander W. A survey of scheduling rules [J]. Operation Research, 1977, 25(1): 45-61.
    [90] Ramash R. Dynamic job shop scheduling-A review of simulation research [J]. OMEGA Int.Jof Manag. Sci., 1990, 18(1):43-57.
    [91] Wu, Szu-Yung David and Richard A.Wysk. An application of discrete-event simulation to on-line control and scheduling in flexible manufacturing [J].Int.J.Prod.Res, 1989, 27(9):1603-1623.
    [92] Jeffcoat, David E and Robert L. Bulfin. Simulated annealing for resource-constrained scheduling [J]. European Journal of Operational Research, 1993, 70, 43-51.
    [93] Mittenthal John, Madabhushi R. And Arif I. Rana. A hybrid simulated Annealing approach for single machine scheduling problems with non-regular penalty functions [J]. Computer Ops. Res., 1993, 20(2):103-111.
    [94] Golver Fred. Future paths for integer programming and links to artificial intelligence [J]. Computers Ops. Res., 1986, 13(5): 533-549.
    [95] Golver Fred. Tabu search: A tutorial [J]. Interfaces, 1990, 20(4):74-94.
    [96] Sergio C. and Paolo G. Hybrid genetic algorithms for a multiple objective scheduling problem [J]. Journal of Intelligent Manufacturing, 1998 9:361-367.
    [97]陈荣秋.排序的理论和方法[M].武汉:华中科技大学出版社.1987..
    [98]熊锐,吴澄.车间生产调度问题的技术现状与发展趋势[J].清华大学学报, 1998,38 (10):55-60.
    [99]徐俊刚,戴国忠,王宏安.生产调度理论和方法研究综述[J].计算机研究与发展, 2004,41 (2):257-267.
    [100]咸仁英.成组技术在生产管理中的应用[M].北京:经济科学出版社,1988.
    [101]王时龙,孙命,陶桂宝.DNC系统设备组重构技术研究[J].机械工程学报,36(12):81-84.
    [102] B. R. Sarker, Z. Li. Job Routing and Operations Scheduling: A Network-Based Virtual Cell Formation Approach [J]. The Journal of the Operational Research Society, 2001, 52(6):673-681.
    [103] T. KESAVADAS and M. ERNZER. Design of an interactive virtual factory using cell formation methodologies [J]. Journal of Advanced Manufacturing Systems, 2003, 2(2):229-246.
    [104] J. Miltenburg andW. Zhang, A comparative evaluation of nine well-known algorithms for solving the cell formation problem in group technology [J]. Journal of Operational Management 10, 1 (1991) 44–72.
    [105] KUO-CHENG KO and PIUS J. EGBELU. Virtual cell formation [J]. INT. J. FROD. RES., 2003, 41(11):2365-2389.
    [106] Slomp J, Chowdary B.V and Suresh N.C. Design of Virtual Manufacturing Cells: A Mathematical Programming Approach [J]. International Journal of Robotics andComputer-Integrated Manufacturing. 21(3), 273-288.
    [107]梁福军,宁汝新.可重构制造系统中基于相似性理论的虚拟制造单元生成方法[J].计算机集成制造系统,2004,10(11):1370-1377.
    [108] Su C.T and Hsu C.M. Multi-objective Machine-part Cell Formation through Parallel Simulated Annealing [J]. International Journal of Production research, 1998, 36:2185-2207.
    [109] Suresh N.C, Slomp J. and Kapanhi S. Sequence-dependent clustering of Pans and Machines: A Fuzzy ART Neural Network Approach [J]. International Journal of Production Re.search, 1999, 37(12):27793-2816.
    [110] Harhalkis G., Nagi R. and Proth J.M. An Efficient Heuristic in Manut aciuring Cell Formation for Group Technology Applications [J]. Intematinnal Jounuil of Production Research. 1990.28:185-198.
    [111] Tani K.Y. (1990) An Operation Sequence based Similarity Coefficient for Part Families Formation [J]. Journal of Manufacturing Systems. 9(1):55-68.
    [112] A. KUSIAK, W. S. CHOW. Efficient solving of the group technology problem [J]. J. Man. Sys. 1987,6:117-124.
    [113] A. KUSIAK, W. S. CHOW.An efficient Cluster Identification Algorithm [J]. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(4):696-699.
    [114]周美立.相似性科学[M].北京:科学出版社,2004.
    [115] Gupta T,Seifoddini H. Production data based similarity coefficient for machine-componet grouping decisions in the design of cellular manufacturing system[J]. INT .J. Prod. Res, 1990, 28
    [116] N. ZRIBI, I. KACEMt. Optimization by Phases for the Flexible Job-shop Scheduling Problem[C]. 5th Asian Control Conference, 2004.
    [117] ZHANG H P, GEN M.Multistage-based genetic algorithm for flexible job-shop scheduling problem [J].Complexity International, 2005, 11:223-232.
    [118]龙飞,何钦铭.构件化开发方法在J2EE项目中的应用[J].计算机工程与设计.2007, 28(3): 591-594.
    [119]王忠杰,战德臣,徐晓飞.业务构件识别方法研究综述[J].计算机集成制造系统-CIMS, 2007,13(4):791-805.
    [120]许劲松,曹先彬.企业应用软件架构分析[J].计算机工程与设计.2006, 27(7):1190-1193.
    [121]顾天竺,沈洁,陈晓红等.基于XML的异构数据集成模式的研究[J].计算机应用研究.2007, (24)4:94-96.
    [122]王珂,廖文和,郭宇.工程机械复杂产品实例的XML表示方法研究[J].机械科学与技术.2007, 26(2):151-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700