用户名: 密码: 验证码:
三值光学计算机解码器理论和实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解码器是三值光学计算机的关键部件之一,它在三值光学计算机与电子计算机之间建立了一座桥梁,为三值光学计算机在军事、生物信息学、大型数据库信息检索和信息安全等领域的实际应用奠定了坚实基础。巨位数三值光学计算机解码器研究将推动三值光学计算机的发展,具有重要的理论意义与应用价值。三值光学计算机用线偏振态和光强混合编码表示三值数字信息,解码器的作用是自动判读三值光学运算器输出光信号的物理状态,并将其转换为电信号,解调出加载在三态光信号中的三值数字信息。
     本文以三值光学计算机理论、降值设计理论、偏振光学理论、光电转换技术和嵌入式技术为基础,对三值光学计算机解码器工作原理、设计方案和工程实现进行了深入和系统研究。在实现了三态光信号判定、光电转换、定标、运算图像二值化等关键技术的基础上,成功研制出一种百位数实用解码器样机。通过对百位三值光学逻辑运算结果的解码实验,验证了该解码器原理的正确性和设计的可行性;通过对实用解码器系统的压力测试与随机测试,验证了解码器样机工作的稳定可靠性。
     论文的主要创新工作有:
     1.经过对比分析,采用了基于分振幅法的三态光信号判定方法,用于构造三值光学计算机解码器;
     2.提出了三值光学计算机解码器结构模型和设计方案,并阐述了工作原理和实现技术;
     3.研制了基于嵌入式微处理器和CMOS数字图像传感器的百位实用三值光学计算机解码器原型。
     论文还介绍了大量的实验工作,它们分别证明了所完成解码器的有效性和可靠性。该解码器的理论、技术和设计在构建中的千位三值光学计算机应用研究实验系统中发挥着重要作用。
As one of the key components of Ternary Optical Computer (TOC), decoder makes a good connection between TOC and the electronic computer. This means that through decoder, TOC can communicate and share information smoothly with traditional electronic computer. This is very important and helpful. For it may set the basis for the TOC in the applications such as in military, bioinformatics, information retrieval in large database and information security etc. which are beyond the capability of traditional electronic computer. Therefore, the research on the decoder with huge number of data bits promotes the further study and development of TOC, and has important theoretic significance and applied value.
     Using the intensity and polarization state of light to express tri-valued digit information, i.e., 1, 0, and -1, TOC is a kind of three-valued computer. The role of the decoder in TOC is to automatically analyze and interpret the state of light signal emitted from the arithmetic logical unit of TOC. Besides it also answers for converting the tri-state light signal into digit electron signal and translating the signals into its tri-valued digit.
     In this dissertation, the theory, design and engineering implementation method of the decoder have been studied and discussed systematically based on the theories about TOC, decrease-radix design and polarization optics, photoelectric conversion technology and embedded-system technology and so on. After solved some key issues, such as, determining the Tri-stated signal, photoelectric conversion, calibrating, binarizing image etc., a new practical prototype of the decoder was developed successfully. To demonstrate the decoder, decoding experiments for hundred-bit tri-valued logic optical operation are carried out based on the tri-valued hundred-bit optical logic experiment system. Experimental results show the theoretical model of the decoder is correct and the structure design is feasible. Besides, the results of the stress and randomized testing also show that the practical prototype of the decoder is highly reliable and stable.
     The main contributions of the dissertation are presented as follows:
     1. Through comparative analysis, we selected the method of determining the tri-stated optical signal based on division of amplitude method to construct the decoder of TOC.
     2. Present the structural model and design scheme of the decoder, and the working principle and supporting technique are elaborated.
     3. Develop a new practical hundred-bit decoder based on embedded microprocessor unit and CMOS digital image sensor.
     The dissertation introduced also some experiments demonstrating the validity and reliability of the decoder. The theory and technology of the decoder play an important role in constructing the applied experimental system of the thousand-bit TOC.
引文
[1] Ahmed K N. Perspectives on Emerging/Novel Computing Paradigms and Future Aerospace Workforce Environments [R]. USA: NASA Langley Research Center, 2004
    [2]冯国英,陈建国等译.光信息技术及应用[M].北京:电子工业出版社, 2006: 294-354
    [3] Ajit N. An introductory tutorial to quantum computing [C]. in IEE Colloquium on Quantum Computing: Theory, Applications and Implications. London: IEE, 1997:1-3
    [4] Abdeldayem, Hossin. Optical computing: Need and challenge [J]. Communications of the ACM, 2007, 50(9): 60-62
    [5] Lewin D I. DNA computing [J]. Computing in Science & Engineering, 2002, 4(3):5-8
    [6] Michael C. Molecular computing: the lock-key paradigm [J]. Computer, 1992, 25(11): 11-20
    [7]于荣金.集成光学与光子学[J].光电子·激光, 1998, 9(2): 162-165
    [8] Caulfield H J, Gruninger J H., etc. Bimodal optical computers [J]. Applied Optics, 1986, 25(18):3128-3131
    [9] Habli M A, experimental implementation of bimodal optical computer [J]. Optik, 1992, 90(3):123-128
    [10] Mansoura M K, Mazherb A K. A modified algorithm for computing the eigenvalues and the eigenvectors using the bimodal optical computer [J]. Optics Communications, 2002(201): 309–318
    [11] Main T, Feuerstein R J, Jordan H F, etc. Implementation of a general-purpose stored-program digital optical computer [J]. Applied Optics, 1994, 33(8):1619-1628
    [12] Love C E, Jordon H F. SPOC-a stored program optical computer [J]. Potentials, IEEE, 1994, 13(4): 23– 26
    [13] Lentine A L, Miller D A B. Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels [J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 655 - 669
    [14] Sharma P, Roy S. All-Optical Biomolecular Parallel Logic Gates with Bacteriorhodopsin [J]. IEEE Transactions on nanobioscience, 2004, 3(2):129-136
    [15] Pan J X, Sun Y L. Three-dimensional optical logic devices using spatial multiwaveguide system [J]. Chinese Optics Letters, 2008, 6(6):408-410
    [16] TU H Y , CHEN M L and CHENG C J. Multiple Polarization Encoding for Gray Image Encryption Based on Liquid Crystal Exclusive OR Logic [J]. Optical Review, 2006, 13(5):308–313
    [17] Sun J Q, Wang J. Simulation of optical NOT gate switching by sum-frequency generation in LiNbO3 waveguides [J]. Optics Communications, 267 (2006):187–192
    [18] Kim J Y, Kang J Mo,etc.All-Optical Multiple Logic Gates With XOR, NOR, OR, and NAND Functions Using Parallel SOA-MZI Structures: Theory and Experiment [J]. Journal of lightwave technology, 2006, 24(9):3392-3399
    [19] Roy J, Gayen D K. Integrated all-optical logic and arithmetic operations with the help of a TOAD-based interferometer device—alternative approach [J]. Applied Optics, 2007, 46(22):5304-5310
    [20] Zhang S, Karim M A. Optical arithmetic processing using improved redundant binary algorithms [J]. Optical Engineering, 1999, 38(3): 415-421
    [21] Cherri A K. Signed-digit arithmetic for optical computing: digit grouping and pixel assignment for spatial encoding [J]. Optical Engineering, 1999, 38(3):422-431
    [22] Fyath R S. Nonrecoded trinary signed-digit multiplication based on digit grouping and pixel assignment [J]. Optics Communications, 2004, 230(1-3):35-44
    [23] Timarchi, Somayeh. Maximally redundant high-radix signed-digit adder: New algorithm and implementation [C]. in Proceedings of the 2009 IEEE Computer Society Annual Symposium on VLSI, 2009: 97-102
    [24] Al-Zayed A S. Improved all-optical modified signed-digit adders using semiconductor optical amplifier and Mach-Zehnder interferometer [J]. Optics and Laser Technology, 2010, 42(5): 810-818
    [25] Chattopadhyay T. Interferometric switch based all optical scheme for conversion of binary number to its quaternary-signed digit form [J]. IET Circuits, Devices and Systems, 2011, 5(2):132-142
    [26] Yatagai T. Cellular logic architectures for optical computers [J]. Applied Optics, 1986, 25(10):1571-1577
    [27] Guilfoyle P S, Wiley W J. Combinatorial logic based digital optical computing architectures [J]. Applied Optics, 1988, 27(7): 1661-1673
    [28] Huang K S, Sawchuk A A, etc. Digital optical cellular image processor (DOCIP): experimentalimplementation [J]. Applied Optics, 1993, 32(2): 166-173
    [29]梁丰,刘立人等.用光电混合方法实现Ritter图像代数的模板操作[J].光学学报, 1995, 15(12): 1684-1688
    [30]王滨,余飞鸿等.基于布尔偏振编码逻辑代数的高效冗余二进制加法的光学实现[J].光学学报, 1998, 27(9): 813-818
    [31] Wu J M. Demonstration and architectural analysis of complementary metal-oxide semiconductor/multiple-quantum-well smart-pixel array cellular logic processors for single-instruction multiple-data parallel-pipeline processing [J]. Applied Optics, 1999, 38(11):2270-2281
    [32]申铉京,千庆姬,张晓旭.基于符号替换算法的光电混合型计算机的设计[J].光学技术, 2000, 26(1): 62-65
    [33] Nishimura N, Awatsuji Y, Kubota T. Two-dimensional arrangement of spatial patterns representing numerical data in input images for effective use of hardware resources in digital optical computing system based on optical array logic [J]. J.Parallel Comput., 2004(64):1027-1040
    [34] Head Tom. Using light to implement parallel boolean algebra [J]. Lecture Notes in Computer Science, 2010, V6224: 231-242
    [35] Kelash, Hamdy M A. High-speed optical computing devices based on VCSEL diodes with feedback [C]. in The Fourth Workshop on Photonics and Its Application, 2004:35-43
    [36] Moagar-Poladian G. Spatial light modulators based on structures containing photoelectrets and electrooptic materials: Key devices for optical computing [J]. Journal of Optical Technology, 2004, 71(7): 478-486
    [37] Deng Z j. Novel optical devices for information processing [D]. USA: Texas A&M University, 2006
    [38] Ghosh A K. Trinary registers and counters using savant plate and spatial light modulator for optical computation in multivalued logic [J]. Optoelectronics Letters, 2009, 5, (3):194-197
    [39] Roy S. Optical computing circuits, devices and systems [J]. IET Circuits, Devices and Systems, 2011, (2): 73-75
    [40] Tu H Y, Chen M L and Cheng C J. Multiple polarization encoding for gray image encryption basedon liquid crystal exclusive OR Logic [J]. Optical Review, 2006, 13 (5): 308–313
    [41] David F. Dinges and Sundara Venkataraman etc. Monitoring of facial stress during space flight- Optical computer recognition combining discriminative and generative methods [J]. Acta Astronautica, 2007 (60):341–350
    [42] Ghoniemy, Samy. An optoelectronic expert system for knowledge base systems [C]. Proceedings of the 2010 10th International Conference on Intelligent Systems Design and Applications, ISDA'10, 2010:689-695
    [43] Lee, Kanghee. Coherent optical computing for T-ray imaging [J]. Optics Letters, 2010, 35(4):508-510
    [44] Archan K D and Partha P D, etc. A new approach of binary addition and subtraction by non-linear material based switching technique [J]. Journal of Physics, 2005, 64(2):239-247
    [45] Yoshioka T and Kato T, etc. Two-dimensionally parallel optical interconnects using VCSELs with an integrated lens [C]. in 31st Int. Symposium on Optical Communications, 2008:167-168
    [46] Kumar G, Sisir. A novel method of developing all-optical frequency encoded memory unit exploiting nonlinear switching character of semiconductor optical amplifier [J]. Optics and Laser Technology, 2010, 42(7):1122-1127
    [47]戴培,曹文华,徐平.几种基于非线性效应的全光逻辑门及其发展[J].激光与红外,2010,40(6):593-597
    [48]翟耀,孙阳等.基于半导体材料微纳波导全光逻辑门的研究进展[J].物理,2010,39(2):130-135
    [49] Gayen D K and Taraphdar C, etc. All-optical binary-coded decimal adder with a terahertz optical asymmetric demultiplexer [J]. Computing in Science and Engineering, 2011, 13(1):50-57
    [50] Phongsanam P, Mitatha S, etc. All optical half adder/subtractor using dark-bright soliton conversion control [J]. Microwave and Optical Technology Letters, 2011, 53(7):1541-1544
    [51] Caulfield H J, Vikram C S, Zavalin A. Optical logic redux [J]. Optik, 2006, 117: 199-209
    [52]金翊.三值光计算机原理和结构[D].西安:西北工业大学,2002
    [53]金翊,何华灿,吕养天.三值光计算机基本原理[J].中国科学E辑, 2003, 33(1): 111-115
    [54] Jin Y, He H C, LüY T. Ternary Optical Computer principle [J]. Sci China Ser F-Inf Sci, 2004, 46(2): 145-150
    [55] Jin Y, He H C, LüY T. Ternary Optical Computer Architecture [J]. Physica Scripta, 2005, T118:98-101.
    [56]金翊,何华灿,艾丽蓉.进位直达并行三值光加法器原理[J].中国科学, E辑, 2004, 34(8): 930-938
    [57] Jin Y, He H C, Ai L R. Lane of parallel through carry in ternary optical adder [J]. Sci China Ser F-Inf Sci, 2005, 48(1): 107-116
    [58]孙浩,金翊,严军勇.三值光计算机编码器与解码器原理的实验研究[J].计算机工程与应用, 2004, 40(16): 82-83, 136
    [59]严军勇,金翊,孙浩.三值光计算机多位编码器与解码器的可行性实验研究[J].计算机工程, 2004, 30(14): 175-177
    [60]黄伟刚,金翊,艾丽蓉,等.三值光计算机百位编码器的设计与构造[J].计算机工程与科学, 2006, 28(4): 139-142
    [61]包九龙,金翊,蔡超.三值光计算机百位量级编码器的实现[J].计算机技术与发展, 2007, 17(2): 19-22
    [62]左开中,金翊,薛涛,等.三值光计算机解码模拟器的图像采集系统[J].半导体光电, 2008, 29(6): 135-138
    [63] Zuo K Z, Jin Y, Xue T, etc. Tri-state Light Decoder of Ternary Optical Computer [C]. in The 3rd International Conference on Computer Science & Education,厦门:厦门大学出版社, 2008: 442-444
    [64]薛涛,金翊,左开中.三值光学计算机解码器的数据采集控制系统[J].计算机工程与设计, 2009.30(17):3932-3933, 3945
    [65]左开中,金翊,彭俊杰,薛涛.三值光学计算机百位量级解码器的设计[J].中国激光, 2009, 36(4):823-827
    [66]严军勇,金翊,左开中.无进(借)位运算器的降值设计理论及其在三值光计算机中的应用[J].中国科学E辑:信息科学, 2008. 38(12): 2112-2122
    [67] Yan J Y, Jin Y, Zuo K Z. Decrease-Radix Design principle for carrying / borrowing free multi-valued calculator and application in Ternary Optical Computer[J]. Science in China Series F: Information Sciences, 2008, 51 (10): 1415-1426
    [68]严军勇.降值设计理论[D].上海:上海大学, 2009
    [69]左开中,金翊,严军勇.三值光计算机的数值表示及其基本算法[J].计算机技术与发展, 2007, 17(9):8-10
    [70]蔡超,金翊.对称三进制光学加法器的进位直达通道设计[J].微电子学与计算机, 2007, 24(6): 150-152, 155
    [71]蔡超,金翊,包九龙,等.三值光计算机的对称三进制半加器原理设计[J].计算机工程, 2007, 33(17): 278-279
    [72]尹逊玮,金翊,李军.三值光计算机半加器结构的简化[J].计算机工程与设计, 2008, 29(14): 3773-3775
    [73]左开中.基于细菌视紫红质薄膜的三值光学数据存储研究[J].计算机技术与发展, 2008, 18(3): 132-134
    [74]左开中.吲哚俘精酸酐实现三值偏振全息光学存储器[J].光电工程, 2008, 35(7): 121-125
    [75]金翊.三值光计算机高数据宽度的管理策略[J].上海大学学报, 2007, 13(5): 519-523
    [76]薛涛.百位量级三值逻辑光学运算实验系统[D].上海:上海大学,2009
    [77] Shen Z Y, Jin Y, Peng J J. Experimental system of ternary logic optical computer with reconfigurability [C]. in 4th Inter. Symposium on Advanced Optical, 2009, SPIE: 72823I.
    [78]谌章义.千位三值光学处理器理论、结构和实现[D].上海:上海大学,2010
    [79] Wang X C, Peng J J, and Ouyang S. Control method for the optical components of a dynamically reconfigurable optical platform [J]. Applied Optics, 2011. 50(5): 662-670
    [80]李双凤,金翊.三值光学计算机数据位与运算部件像素的映射技术[J].计算机工程与设计, 2010. 31(5): 1077-1080
    [81] Liu S B, Peng J J, Jin Y and Li M. The Response Time Measurement System of Optical Computer Component [C]. in International Conference on Information Engineering and Computer Science, 2009, IEEE Computer Society: 1-5
    [82]李梅,何华灿,金翊等.一种实现平衡三进制向量矩阵乘法的光学方法[J].计算机应用研究, 2009. 26(10): 3812-3814
    [83]李梅,金翊,何华灿等.基于三值逻辑光学处理器实现向量矩阵乘法[J].计算机应用研究, 2009. 26(8): 2840-2842
    [84]李梅,何华灿,金翊,王先超.一种实现MSD加法的光学方法[J].光子学报, 2010. 39(6): 1053-1057
    [85]王先超,姚云飞,金翊.基于三值光学计算机的并行无进位加法[J].计算机科学, 2010. 37(2): 290-293
    [86] Wang X C, Peng J J, Li M, Shen Z Y. and Ouyang S. Carry-free vector-matrix multiplication on a dynamically reconfigurable optical platform [J]. Applied Optics, 2010. 49(12): 2352-2362
    [87]金翊,沈云付,彭俊杰等.三值光学计算机中MSD加法器的理论和结构[J].中国科学E辑:信息科学, 2010. 38(12): 2112-2122
    [88]王先超.三值光学计算机监控系统及其理论研究[D].上海:上海大学,2011
    [89] Teng L, Peng J J, Jin Y and Li M. A Cellular Automata Calculation Model based on Ternary Optical Computer[C]. in 2nd International Conference on High Performance Computing and Applications, 2008, Springer-Verlag: 377-383
    [90]金翊,王先超,彭俊杰,谌章义,欧阳山.三值光计算机与高性能计算机系统融合的概念结构[J].高性能计算技术, 2010. 1(6): 1-4
    [91]胡助理,安文源,李玲,欧阳小东.基于单片机技术的光电检测研究[J].现代电子技术,2004(13):39-41
    [92]张记龙.光电信息技术与应用[M].国防工业出版社,2008.8: 108
    [93]浦昭邦,赵辉.光电测试实用技术(第2版)[M].机械工业出版社,2010.3:87-89
    [94]雷玉堂.光电信息实用技术[M].电子工业出版社,2011.1:69-70,118,122
    [95]王庆有.光电传感器应用技术[M].机械工业出版社,2007.10:154-186
    [96]米本和也. CCD/CMO S图像传感器基础与应用[M].北京:科学出版社,2006:147-156
    [97]潘银松.像素级CMOS数字图像传感器的研究[D].重庆:重庆大学, 2005
    [98]侯舒志,姚素英等. CMOS图像传感器时序控制方法研究与实现[J].固体电子学研究与进展,2007,27(1):119-122
    [99]刘智,柴华,李娜娜. CMOS图像传感器中卷帘式快门特性及其应用[J].光学精密工程, 2009,17(8):2017-2023
    [100]黄美玲,张伯琳. CCD和CMOS图像传感器性能比较[J].科学技术与工程, 2007,7(2):249-251
    [101]倪景华,黄其煌. CMOS图像传感器及其发展趋势J].光机电信息, 2008(5):33-38
    [102]李继军,杜云刚等. CMOS图像传感器的研究进展[J].激光与光电子学进展,2009(4):45-52
    [103] OmniVision Technologies Inc. OV7660 Data Sheet [Z]. 2005
    [104]覃海明,饶建华,荣振宇.基于OV7660的图像采集系统设计[J].电子元器件应用, 2007, 9(1):23-25
    [105] OmniVision Technologies Inc. Serial Camera Control Bus (SCCB) Design Guide [Z]. 2003
    [106]马超刘政林邹雪城. SCCB在ARM9嵌入式平台上的实现[J].计算机与数字工程2006,34(7):134-137
    [107]杨侃,孙尧,詹艳艳.基于S3C44B0嵌入式系统的SCCB设计与实现[J].现代电子技术, 2008(22):183-186
    [108]廖延彪.偏振光学[M].北京:科学出版社,2003
    [109]吴重庆.光波导理论[M].北京:清华大学出版社,2000:124-127
    [110] SAMSUNG Electronics Corp. S3C44B0X Data Sheet [Z]. 2001
    [111] Hyundai Electronics Corp. HY57V641620Data Sheet [Z]. 2000
    [112] Silicon Storage Technology, Inc. SST39VF160Data Sheet [Z]. 2001
    [113]刘江虹,徐晓东.微型计算机中的串行通信总线技术[J].内蒙古大学学报(自然科学版), 2005(3):328-332
    [114]古辉.微型计算机接口技术[M].北京:科学出版社,2006
    [115] Don Anderson(精英科技译). USB系统体系[M].北京:中国电力出版社, 2001
    [116]舒晖翔,何雪涛,杨卫民.单片机开发中常用的几类USB接口芯片[J].电子元器件应用, 2007,9(12):11-14
    [117] Philips Semiconductor. PDIUSBD12 Datasheet [Z]. 2001.
    [118]广州周立功单片机发展有限公司.PDIUSBD12-USB接口器件[DB/OL]. http://www.zlgmcu.com/philips/usb/ PDIUSBD12. Asp
    [119]周立功. PDIUSBD12 USB固件编程与驱动开发[M].北京:北京航空航天大学出版社, 2003: 25-28
    [120]马驰,张红云.改进的多阈值动态二值化算法[J].计算机工程, 2006,32(6):203-205
    [121]曹计昌,杨帆.灰度烟支图像的二值化算法[J].计算机工程与科学, 2007,29(3):41-42转73
    [122]李良华,罗彬杰.针对特定目标提取的二值化算法[J].计算机科学, 2009,36(12):282-284
    [123]安成锦,牛照东,李志军,陈曾平.典型Otsu算法阈值比较及其SAR图像水域分割性能分析[J].电子与信息学报, 2010,32(9):2215-219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700