用户名: 密码: 验证码:
干旱、高温及其双重胁迫对紫御谷(Pennisetum glaucum'Purple Majesty')生理特性的影响及外源SA缓解效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫御谷(Pennisetum glaucum'Purple Majesty')是有世界育种产业“奥斯卡”美誉的全美园艺新品种大赛(All America Selections, AAS)评选的2003年金奖获奖品种,具有很高的科研和观赏价值。自紫御谷引种国内以来,凭借其优良的观赏性状,正被迅速推广于各地城市园林绿化中,逐渐成为重要的城市绿化地被植物。实验模拟干旱、高温和干旱高温双重胁迫三种逆境条件,研究了紫御谷在此三种条件下的生理生化响应,以及水杨酸(Salicylic acid, SA)缓解其逆境伤害的效应,为紫御谷在重庆的育苗种植提供参考。研究结果如下:
     1.早期的干旱胁迫会促进紫御谷幼苗根系的生长,使根系的总根长、根表面积和根体积增加,同时也增加了根系活力。随着胁迫时间的延长,幼苗总根长、根表面积、根体积和根冠比下降,根系活力也减弱。高温以及高温干旱双重胁迫抑制紫御谷幼苗根系的生长,使紫御谷幼苗根系的鲜物质含量、总根长、根表面积、根体积和根尖数减少。SA处理能增加干旱、高温及其双重胁迫下的紫御谷幼苗根系的鲜物质含量、总根长、根表面积、根体积、根系活力和根冠比。说明SA处理能减缓干旱、高温以及双重胁迫对根系的伤害,促进根系的生长。
     2.干旱、高温及双重胁迫处理后,紫御谷叶绿体基粒数量明显减少,基粒垛叠不明显,且基粒片层排列松散,说明干旱、高温和双重胁迫使叶绿体的膜结构遭到不同程度的破坏。而0.5 mmol·L-1的SA预处理紫御谷叶片,在干旱、高温及其双重胁迫条件下,叶绿体膜结构相对完整,基粒片层较紧密,表明SA能有效保护叶绿体的膜结构。干旱、高温及其双重胁迫处理降低了紫御谷幼苗叶片叶绿素a、叶绿素b、叶绿素总含量和Car含量,SA处理能增加干旱、高温及其双重胁迫处理的紫御谷幼苗叶片在各个胁迫处理时期的叶绿素a、叶绿素b、叶绿素总含量和Car含量。
     3.干旱、高温及其双重胁迫处理降低了紫御谷幼苗叶片的光合能力,使紫御谷幼苗叶片的净光合速率、气孔导度、蒸腾速率下降;SA处理能增加干旱、高温及其干旱高温双重胁迫处理的紫御谷幼苗叶片的光合能力,使紫御谷幼苗叶片的净光合速率、气孔导度、蒸腾速率得到了不同程度的增加。干旱、高温及其双重胁迫显著降低紫御谷叶片的初始荧光(Minimal fluorescence, Fo)和光下实际光化学效率(Photochemical efficiency of PSII,ΦPSII), SA处理可有效增加干旱、高温以及双重胁迫处理的紫御谷幼苗叶片的Fo和ΦPSⅡ。干旱、高温以及双重胁迫处理也降低了紫御谷叶片的最大光能转化效率(Photochemical quantum efficiency, Fv/Fm),除了双重胁迫处理的差异显著外,其它处理差异不显著。SA处理可有效增加干旱、高温以及双重胁迫处理下的紫御谷叶片的Fv/Fm。
     4.高温胁迫的3-7天,紫御谷幼苗产生羟自由基的能力和对照相比,差异不显著,但在第9天时,迅速升高,且显著高于对照;干旱以及双重胁迫的紫御谷幼苗产生羟自由基的能力随时间快速升高,在胁迫处理的各个时期内,产生羟自由基的能力都显著高于对照;SA处理能降低干旱、高温及其双重胁迫的紫御谷幼苗产生羟自由基的能力。在干旱、高温及其双重胁迫下,紫御谷叶片抗超氧阴离子自由基活力单位都比对照有所降低,在进行胁迫同时施用SA处理后,部分时期的抗超氧阴离子自由基活力单位比相应的胁迫处理有所升高。干旱、高温及其双重胁迫下,紫御谷幼苗过氧化氢含量都比对照有所升高,而在进行胁迫同时施用SA处理后,过氧化氢含量比相应的胁迫处理有所降低,表明SA对干旱、高温及其双重胁迫有一定的缓解作用。
     5.干旱、高温及其双重胁迫显著或极显著增加了紫御谷幼苗叶片的相对电导率和丙二醛(Malondialdehyde, MDA)含量,随着胁迫处理时间的延长,相对电导率和MDA含量呈递增的趋势,且干旱以及干旱高温双重胁迫下的紫御谷幼苗叶片的相对电导率增加的幅度大于高温胁迫处理的。而SA处理能减轻干旱、高温及其双重胁迫对紫御谷幼苗叶片的相对电导率和MDA含量,对膜结构起一定的保护作用。
     干旱以及干旱高温双重胁迫处理的紫御谷幼苗叶片的可溶性蛋白含量都呈先增加后下降的趋势。干旱高温双重胁迫处理的第5天,可溶性蛋白含量达到最大值,而干旱胁迫处理则在第7天达到最大值。高温胁迫处理的紫御谷幼苗叶片的可溶性蛋白含量是先升后降再上升。干旱、高温及其双重胁迫处理的紫御谷幼苗叶片的可溶性蛋白含量,除了在高温胁迫处理的第5天含量高于同期对照外,其它时期都显著低于同期对照(P<0.05)。SA预处理能增加干旱、高温及其双重胁迫紫御谷幼苗叶片的可溶性蛋白含量。在胁迫处理的各个时期,SA预处理紫御谷幼苗叶片的可溶性蛋白含量都高于同期胁迫处理的,但又低于同期对照的。
     高温胁迫下紫御谷幼苗叶片的可溶性糖含量与对照组差异不明显;干旱胁迫紫御谷幼苗叶片的可溶性糖含量先升后降,在干旱胁迫的第3天、第5天和第7天,可溶性糖含量高于同期对照。在双重胁迫处理的4个时期,可溶性糖含量显著或极显著高于同期对照。水杨酸预处理能增加干旱、高温及其双重胁迫紫御谷幼苗叶片的可溶性糖含量。
     对照、干旱、高温以及干旱高温双重胁迫处理下的紫御谷幼苗叶片脯氨酸(Praline, Pro)含量随时间出现先增后降的趋势,在第7天时达到最大值。高温胁迫处理的前期,Pro含量明显高于对照且差异显著,高温胁迫处理的后期,Pro含量略高于对照,但差异不显著。SA处理则降低了高温胁迫处理各个时期的Pro含量。干旱以及干旱高温双重胁迫处理下的紫御谷幼苗叶片Pro含量都显著或极显著的高于同期对照,SA处理降低了干旱以及干旱高温双重胁迫处理下的紫御谷幼苗叶片Pro含量。
     6.干旱胁迫的3-5天,紫御谷幼苗叶片的过氧化物酶(Peroxidase, POD)和抗坏血酸过氧化物酶(Ascorbate peroxidase, APX)活性迅速升高,显著高于对照,干旱胁迫的7-9天,POD和APX酶活性迅速降低,显著低于对照。SA预处理能增加干旱胁迫下紫御谷幼苗叶片的POD和APX酶活性。高温以及高温干旱双重胁迫显著降低紫御谷幼苗叶片的POD和APX酶活性,但POD活性在高温以及高温干旱双重胁迫处理过程中变化不大。SA预处理能显著增加高温和高温干旱双重胁迫下紫御谷幼苗叶片的POD和APX酶活性。干旱、高温、高温干旱双重胁迫使紫御谷幼苗叶片的超氧化物歧化酶(Superoxide dismutase, SOD)和过氧化氢酶(Catalase, CAT)活性降低,SA预处理能提高干早、高温及其双重胁迫紫御谷幼苗叶片的SOD和CAT酶活性。
     7.在干旱和高温胁迫的早期(3天、5天),IAA含量高于对照,但随胁迫时间延长,IAA含量呈下降趋势,后期(7天、9天)IAA含量低于对照。干旱高温双重胁迫后,IAA含量在所有处理和对照中,一直处于最高水平,在所有时期均高于同期对照的。SA处理能增加干早胁迫下紫御谷幼苗叶片的IAA含量,同时也增加了高温胁迫处理5天、7天和9天的紫御谷幼苗叶片的IAA含量。干旱、高温以及干旱高温双重胁迫能明显增加ABA的含量,SA处理能降低干旱、高温及其双重胁迫紫御谷叶片ABA含量。干旱胁迫处理第3天和第5天,紫御谷幼苗叶片的茉莉酸(Jasmonic acid, JA)含量与对照相当;之后JA含量快速升高,显著高于对照。高温胁迫处理后,紫御谷幼苗叶片的JA含量与对照差异不明显。双重胁迫处理第3天JA稍低于对照;之后JA含量快速升高,均高于同时期对照的JA含量。SA处理能降低干旱、高温及其双重胁迫下紫御谷幼苗叶片的JA含量。
Purple Majesty is the gold medal winner chosen in 2003 by All America Selections (AAS) who has the good reputation of "Oscar" of world breeding industry, which is highly valuable in scientific researches and ornamental. In recent years, Purple Majesty has been promoted to the garden construction in various cities because of its excellent ornamental, and Purple Majesty will most likely be an important green plant in the city. Drought stress, high temperature stress and the double stress were simulated in the experiment to research the correlative physiological and biochemical indexes of Purple Majesty,at the same time, salicylic acid's mitigating the negative effects of temperature stress on Purple Majesty was also studied. By this study, we hope to elucidate a series of response mechanisms of Purple Majesty on drought stress, high temperature stress and the double stress and achieve the goal of further increasing the resources of the landscape ground cover plants in Chongqing. The flowing is the results:
     1.Root vigor and root ratio will increase when the area and root volume increase,as the stress time extend, drought stress on the Purple Majesty at the early time of seeding can promote seedling root growth, so that the material content of fresh roots, total root length, root surface total root length, root surface area, root volume and root-shoot ratio decreased root activity is also reduced. Drought stress,high temperature stress and the double stress can inhibit the root growth of Purple Majesty seedlings, while reduce the fresh root material content of seedlings, total root length, root surface area and root volume, the number of root tips. SA treatment can increase Purple Majesty seedings roots fresh matter content, total root length, root surface area, root volume, root activity and root-shoot ratio caused by the drought stress, high temperatures stress and drought, high temperature double stress. This proved that SA treatment can slow down the root injury because of drought, high temperatures and the double stress, and then promote the root growth of seedings.
     2.Drought stress,high temperature stress and the double stress treatment significantly reduced the number of chloroplast grana, grana of stacking was not obvious, and the grana lamellae arranged in a loose, indicating that drought stress, high temperatures stress and drought, high temperature double stress treatment can make varying degrees of damage on membrane structure of chloroplasts.At the condition of drought stress, high temperatures stress and drought, high temperature double stress,0.5mmol·L-1 of SA treatment on the Purple Majesty seedlings can make Chloroplast membrane structure relatively complete, grana lamellae more closely, indicating that SA can effectively protect the chloroplast membrane structure. Drought stress, high temperature stress and the double stress treatment reduced the chlorophyll a, chlorophyll b, total chlorophyll content and Car content of Purple Majesty seedlings, while SA treatment can increase the chlorophyll a, chlorophyll b, total chlorophyll content and Car content of Purple Majesty seedlings under drought stress, high temperature stress and the double stress treatment at each treatment period.
     3.Drought stress, high temperature stress and the double stress treatment reduced the photosynthetic capacity of the leaves of Purple Majesty seedlings, making the net photosynthetic rate, stomatal conductance, transpiration rate decreased, while SA treatment can increase the photosynthetic capacity of the leaves of Purple Majesty seedlings,in this way, making the net photosynthetic rate, stomatal conductance, transpiration rate increased in varying degrees.In the drought stress,high temperature stress and the double stress treatment, Fo andΦPSⅡof Purple Majesty seedlings leaves was significantly lower than the control, SA treatment can effectively increase the Fo andΦPS II of Purple Majesty seedlings under drought stress,high temperature stress and the double stress treatment; In the drought stress and high temperature double stress, Fv/Fm of Purple Majesty seedlings leaves was significantly lower than the control, SA treatment can effectively increase Fv/Fm of Purple Majesty leaves under drought stress,high temperature stress and the double stress treatment, indicating that drought and high temperature stress on PSII damage was less than the double stress of drought, heat damage to PSII.
     4.The ability difference to generate hydroxyl radicals was not significant between heat stress and control in 3-7 days,but in the 9th day, the content increased rapidly and significantly higher than the control;The ability to generate hydroxyl radicals of Purple Majesty seedlings increased rapidly as time goes by under drought stress and double stress,and the ability to generate hydroxyl radicals in stress treatment was higher than the control in all the time; SA treatment can reduce the ability to generate hydroxyl radicals under drought stress,high temperature stress and the double stress treatment. Compared to the control, the anti-superoxide anion radical activity unit under the drought stress, high temperature stress and the double stress treatment reduced a little, while after the SA treatmen, anti-superoxide anion radical activity unit were higher than the coressponding stress treatment.Hydrogen peroxide levels were all somewhat higher than control under drought stress, high temperature stress and the double stress treatment, while after SA treatmen,it will be somewhat lower than the corresponding stress theatment, indicating that SA treatmen had some role in mitigation under the drought stress,high temperature stress and the double stress treatment.
     5.The relative conductivity and MDA content of Purple Majesty seedling leaves increased if drought stress, high temperature stress and the double stress treatment was significant or very significant, With the stress treatment time, the relative conductivity and MDA content had a increasing trend,and relative conductivity rate of increase in drought stress and drought,heat double stress is greater than the single heat stress treatment. The SA treatment can reduce the relative conductivity and MDA content of Purple Majesty seedling leaves because of drought stress, high temperature stress and the double stress treatment, playing a protective role on the membrane structure.
     The soluble protein in the Purple Majesty seedling leaves firstly increased and then decreased under drought stress and the drought,high temperature double stress.In the 5th day of the drought,high temperature double stress, the soluble protein content reached the maximum,while in drought stress treatment,it did not reach the maximum until the 7th day.But in the high temperature stress, the soluble protein content in the Purple Majesty seedling leaves was first increased and then decreased,but in the last it increased again. In the drought stress,high temperature stress and the double stress treatment, the soluble protein content in the Purple Majesty seedling leaves were significantly lower than control (P<0.05),except in the 5th day under the the high temperature stress. SA treatment can increase the soluble protein content in the Purple Majesty seedling leaves under the drought stress, high temperature stress and the double stress treatment, In various periods of stress treatment, the soluble protein content in the Purple Majesty seedling leaves were higher than the same stress and lower than the same control.
     The soluble sugar content in the Purple Majesty seedling leaves was not significantly different between the high temperture and the control;Under the drought stress, the soluble sugar content in the Purple Majesty seedling leaves firstly increased and then decreased,in the third day、5th day and 7th day three periods of drought stress, the soluble sugar content was higher than the control of the same period.In 4 hours under double stress, the soluble sugar content was significantly or very significantly higher than the same period control. Salicylic acid pre-treatment can step to increase the soluble sugar content in the Purple Majesty seedling leaves under the drought stress, high temperature stress and the double stress treatment.
     The Pro content in the Purple Majesty seedling leaves under the control, drought stress, high temperature stress and the double stress treatment increased first and then decreased,in the 7th day reached to the maximum. In pre-heat stress treatments,the Pro content was significantly higher than room temperature and the difference was significant, post-heat stress treatments, the Pro content was a little higher than the control.,but the difference was not signicant, SAtreatment reduced the Pro content of all periods under high temperture stress. The Pro content in the Purple Majesty seedling leaves under drought stress and double stress wereboth signicantly or very signicantly higher than that in the control, SA Treatment reduced the Pro content in the Purple Majesty seedling leaves under drought stress and drought, heat double stress.
     6.The POD and APX activity of Purple Majesty seedling leaves increased rapidly, significantly higher than the control at 3-5 days under drought stress, but in 7-9 days of drought stress, POD and APX activity decreased rapidly and significantly lower than the control. SA pre-treatment can increase the POD and APX activity of Purple Majesty seedling leaves under drought stress. High temperature and high temperature, drought double stress significantly reduced the POD and APX activity of Purple Majesty seedling leaves, but POD activity changed little in high-temperature and high temperature, drought double stress treatment. SA pre-treatment can significantly increase the POD and APX activity of Purple Majesty seedling leaves under high temperature and high temperature, drought double stress. Drought stress, high temperature stress and the double stress treatment decreased the SOD and CAT activity of Purple Majesty seedling s, SA pretreatment can improve SOD and CAT activity of Purple Majesty seedling leaves under drought stress, high temperature stress and the double stress treatment.
     7.In the early period (3、5d) of drought and high temperature stress,IAA content was higher than the control,but as the time went on,it would have an decreased trend,in the late time (7、9d),IAA content was lower than the control.After the drought,heat double stress,IAA content were always the highest levels in all treatments. SA treatment can increase the IAA content in the Purple Majesty seedling leaves under drought stress,while the IAA content in the 5d、7d、9d of Purple Majesty seedling leaves under high temperature stress also increased.The ABA content in the control was always at a low level, drought stress, high temperature stress and the double stress treatment can significantly increase the ABA content, SA Treatment reduced the ABA content under the drought stress,high temperature stress and the double stress treatment.The JA content in the 3d and 5d of the Purple Majesty seedling leaves was about the same as the control; After that, the JA content increased rapidly,and significantly higher than the control.But after the high temperature stress,the difference was not significant from the control.In the 3d of drought,heat double stress treatment,the JA content was a little lower than the control,and then increased rapidly,which were higher than the Corresponding control. SA treatment can decrease the JA content of the Purple Majesty seedling leaves under the drought stress, high temperature stress and the double stress treatment.
引文
陈传军,沈益新,周建国.高温季节草地早熟禾草坪质量与叶片抗氧化酶活性的变化[J].草业学报,2006,15(4):81-85
    陈立松,刘星辉.果树对水分胁迫的反应与适应性[J].干旱地区农业研究,1999,(1):193-200
    陈立松,刘星挥.水分胁迫对荔枝叶片内源激素含量的影响[J].热带作物学报,1999.(9):31-35
    陈明涛,赵忠.干旱对4种苗木根系特征及各部分物质分配的影响.北京林业大学学报,2011,33(1):16-22
    陈培琴,郁松林,詹妍妮,康喜光.植物在高温胁迫下的生理研究进展.中国农学通报,2006,22(5):223-227
    陈善福,舒庆尧.植物耐旱胁迫的生物学机理及其基因工程研究进展[J].植物学通报,1999,16(5):555-560.
    陈雅君,祖元刚,刘慧民.干旱对草地早熟禾膜质过氧化酶和保护酶活性的影响[J].中国草地学报.2008,30(5):32-36
    曹翠玲,刘林丽,田强兵.水杨酸对玉米幼苗抗旱性的影响[J].玉米科学,2004,12(增刊):103-104
    曹慧,周磊.水分胁迫下非气孔因素对葡萄叶片光合作用的影响[J].潍坊学院学报,2007,27(2):56-60.
    崔婧.水杨酸与植物抗逆性[J].安徽农学通报,2007,13(9):35-38
    崔香环,李欢庆,郝福顺.水分胁迫下小麦幼苗的抗氧化机制分析[J].河南农业科学,2007(4):25-28
    代其林,王劲,万怀龙,等.水杨酸对干旱胁迫下豇豆幼苗抗氧化酶活性的影响[J].四川大学学报:自然科学版,2008,45(5):1258-1262
    邓丽娟,沈红香,姚允聪.观赏海棠品种对土壤干旱胁迫的响应差异.林业科学,2011,47(3):20-22
    邓雪柯,乔代蓉等.低温胁迫对紫花苜蓿生理特性影响的研究[J].四川大学学报(自然科学版),2005,42(1):190-194
    丁在松,王春艳,关东明,赵凤悟,赵明.旱稻×稗草杂交后代YF2-1光合作用气体交换、叶绿素荧光和抗氧化酶系统对渗透胁迫的响应.作物学报,2011,37(5):876-881
    杜朝昆,李忠光,龚明.水杨酸诱导的玉米幼苗适应高温和低温胁迫的能力与抗氧化酶系统的关系[J].植物生理学通讯,2005,41(1):19-22
    段瑞军,胡新文,符少萍,郭建春.盐胁迫下海马齿叶肉细胞超微结构观察.热带作物学 报,2010年,31(3):397-403
    傅巧娟,汪炳良,陈一,王晓艳.高温胁迫对一串红生长及叶片抗氧化酶活性的影响.
    浙江农业学报,2010,22(5):628-633
    高祥斌,张秀省.高温对高羊茅几个生理指标的影响[J].中国农学通报,2009,25(14):153-156
    高阳华,唐云辉,冉荣生.重庆市伏旱发生分布规律研究[J].贵州气象,2002,26(3):6-11
    龚明,刘友良,朱培仁.植物生理学通讯,1989,25(4):18-22
    关义新,戴俊关,林燕.水分胁迫下植物叶片光合的气孔和非气孔限制[J].植物生理学通讯,1995,31(4):293-297.
    郭卫东,郑建树,张真真.短暂低温对佛手光合生理的影响[J].生态学报,2009,29(5):2286-2293
    郭金铨,陈文涛.香子兰anilla planifolia Andr细胞膜结构的改变和控制及其与抗冷性的关系[J].植物生理学报,1983,9(4):331-337
    韩瑞宏.苗期紫花苜蓿(Medicagosativa)对干旱胁迫的适应机制研究[D].北京:北京林业大学,2006
    何洁,等.低温与植物的光合作用[J].植物生理学通讯,1986,(2):1-6
    何卫军,焦旭亮,张振文.不同干旱胁迫水平下赤霞珠和黑比诺幼苗内源激素水平比较[J].干旱地区农业研究,2008,26(3):142-145
    何亚丽,沈剑,王惠林.冷季型草坪草耐热机理研究:草地早熟禾在热境胁迫下叶片叶绿素含量和POD酶活性的变化[J].上海农学院学报,1997,(2):128-132.
    胡春梅,侯喜林.低温胁迫对不结球白菜光合及叶绿素荧光特性的影响[J].西北植物学报,2008,28(12):2478-2484
    胡丽涛,吴能表,陈凤娟等.水杨酸对UV2B胁迫下黄瓜荧光特性和抗氧化力的影响[J].西南师范大学学报(自然科学版),2010,35(2):191-196
    黄爱霞,佘小平.水杨酸对黄瓜幼苗抗冷性的影响[J].陕西师范大学学报(自然科学版),2003,31(3):107-109黄锦文,陈冬梅,郑红艳.暖季型草坪草对高温胁迫的生理响应[J].中国生态农业学报,
    2009,17(5):964-967
    黄萍,贾东坡,袁志良,梅世秀,叶永忠.外来杂草小花山桃草对干旱胁迫的生理响应.东北农业大学学报,2011,42(4):102-106
    黄清泉,孙歆,张年辉,等.水杨酸对水分胁迫黄瓜幼苗叶片生理过程的影响[J].西北植物学报,2004,24(12):2202-2207
    简令成.植物抗寒机理研究的新进展.植物学通报,1992,9(3):17-22
    蒋明义,荆家海.植物体内羟自由基的产生及其与膜质过氧化作用启动的关系.植物生理学 通讯,1993,32(2):144-150
    江玉华,程炳岩,邓承之等.重庆市严重伏旱气候特征分析[J].高原山地气象研究.2005,10(2):25-29.
    姜义宝,崔国文,李红.干旱胁迫下外源钙对首蓓抗旱相关生理指标的影响[J].草业学报,2005,14(2):32-36
    姜中珠,陈祥伟.水杨酸对灌木幼苗抗旱性的影响[J].水土保持报,2004,32(3)32-36
    金松恒,徐礼根,李雪芹,王俊刚,朱澜,贾晓琳.长期高温胁迫对高羊茅光合特性和抗氧化酶活性的影响.林业科学,2009,45(3):155-159
    康国章,段中岗,王正询等.水杨酸提高香蕉幼苗抗冷性初探[J].植物生理学通讯,2003,39(2):122-124
    康云艳,郭世荣,李娟,段九菊.24-表油菜素内酯对低氧胁迫下黄瓜幼苗根系抗氧化系统的影响[J].中国农业科学,2008,41(1):153-161
    兰茜J.奥德诺,刘建秀.观赏草及其景观配置[M].北京:中国林业出版社,2004.
    李东晓,李存东,孙传范干旱对棉花主茎叶片内源激素含量与平衡的影响[J].棉花学报,2010,22(3):232-235
    李锋,李木英,潘晓华,等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性[J].中国水稻科学,2004,18(1):48-52
    李国婧,周燮.水杨酸与植物抗非生物胁迫[J].植物学通报,2001,18(3):295.
    李合生.植物生理生化实验原理和技术[M].北京,高等教育出版社,2000.7,第1版。.
    李娜.画眉草在温度和水分胁迫下的适应性研究.西南大学硕士论文,2010。
    李品明,杨丙贤,孙玉芳.高温胁迫对黄连幼苗活性氧代谢及保护酶活性的影响[J].安徽农业科学
    李秧秧,刘文兆.土壤水分与氮肥对玉米根系生长的影响[J].中国生态农业学报,2001,9(1):13-15
    李智念,王光明,曾之文.植物干旱胁迫中的ABA研究[J].干旱地区农业研究,2003,21(2):99-104.
    利容千,王建波.植物逆境细胞及生理学[M].武汉大学出版社2002.12
    刘东焕,赵世伟,高荣孚等.植物光合作用对高温的响应[J].植物研究,2002,22(2):205-209
    刘海霞,李晓燕,李连国,王利军,李绍华.葡萄对高温胁迫的生理学响应研究进展.内蒙古农业科技,2007,(2):68-70
    刘洪展,郑风荣,赵世杰.高温胁迫对不同衰老型小麦叶片中活性氧清除系统的影响.贵州农业科学,2006,34(1):8-10
    刘慧民.五叶地锦低温处理条件下与抗寒相关的部分生理生化指标的变化规律[J].东北林 业大学学报,2003,31(4):74-75
    刘明东.大庆地区野生观赏草种质资源调查及引种田[J].东北林业大学,2007.6
    刘鹏,孟庆伟,赵世杰.冷敏感植物的低温光抑制及其生化保护机制[J].植物生理学通讯,2001(1):76-82
    刘伟,艾希珍,梁文娟等.低温弱光下水杨酸对黄瓜幼苗光合作用及抗氧化酶活性的影响[J].应用生态学报,2009,20(2):441-445
    刘玉艳,赵会芝,伍敏华等.干旱胁迫下马蔺与高羊茅的生理反应比较[J].河北农业大学学报,2008,31(4):41-46
    刘招龙,张绍铃,孙益林.水杨酸对梨叶感染轮纹菌后脂肪酸、叶绿素荧光参数和叶绿体超微结构的影响.应用与环境生物学报,2008,14(1):43-47
    刘志龙,胡景江.水分胁迫下水杨酸对小麦幼苗叶片膜脂的保护作用[J].陕西农业科学,2002(10):3-4.
    罗华健,刘星辉.水分胁迫对枇杷光合特性的影响[J].果树科学,1999,16(2):126-130.
    孟令波,秦智伟,李淑敏.高温胁迫对黄瓜幼苗根系生长的影响.园艺学报,2003,30(6):694-694
    潘宝贵,王述彬.高温胁迫对不同辣椒品种苗期光合作用的影响闭.江苏农业学报,2006,22(2):137-140
    祁桂林,张爱芬.保水剂对狼尾草幼苗耐旱效应[J].农业与技术,2005,25(6):45-47
    綦伟,李瑞臣,徐月华,翟衡.葡萄抗旱性研究进展.中外葡萄与葡萄酒,2005,3:33-37.
    青泉,汪丽,谢娜,等.2006年川渝伏旱成因浅析[J].四川气象,2007,(2):10-12
    曲复宁,王云山.张敏.等.高温胁迫对仙客来根系活力和叶片生化指标的影响[J].华北农学报,2002,17(1):127-131
    阙生全,甘志凯.低温胁迫对金边瑞香生理生化变化的影响[J].北方园艺,2010(10):169-170
    任全进,白春平等.江苏地区观赏草及其在园林中的应用[J].中国野生植物资源,2007,26(1):22-24
    斯琴巴特尔,吴红英.不同逆境对玉米幼苗根系活力及硝酸还原酶活性的影响[J].干旱地区农业研究,2001,19(2):67-70
    沈法富.短季棉衰老的激素变化及衰老相关基因的克隆[D].北京:中国农业科学院,2004
    沈火林,刘燕燕,余进安.不结球白菜耐高温胁迫与内源激素含量的关系[J].江苏农业科学,2006(6):217-220
    时丽冉,陈红艳,崔兴国.干旱胁迫对地被菊膜脂过氧化和抗氧化酶活性的影响.北方园艺,2010,(9):96-98
    宋丽萍,蔡体久,喻晓丽.水分胁迫对刺五加幼苗光合生理特性的影响[J].中国水土保持 科学,2007,5(2):91-95
    宋喜贵,佘小平.植物体内过氧化氢的产生及其生理作用.连云港师范高等专科学校学报,2010,12(4):99-103
    宋祥春,赵惠新,苗玉青等.低温对两种沙冬青幼苗光合生理指标的影响[J].新疆大学学报(自然科学版),2009,26(3):342-346
    束良佐,李爽.水杨酸浸种对水分胁迫下玉米幼苗某些生理过程的影响[J].南京农业大学学报,2002,25(3):9-11
    孙存华,白嵩,白宝璋,等.水分胁迫对小麦幼苗根系生长和生理状态的影响[J].吉林农业大学学报,2003,25(3):485-489.
    孙宪芝,郑成淑,王秀峰.高温胁迫对切花菊‘神马’光合作用与叶绿素荧光的影响[J].应用生态学报,2008,19(10):2149-2154
    孙玉芳,王三根,尹丽,等.高温胁迫对黄连生理特性的影响研究[J].中国农学通报,2006,22(4):236-238。
    汤日圣,张大栋,童红玉.高温胁迫对稻苗某些生理指标的影响及ABA和6-BA对其的调节[J].江苏农业学报,2005,21(3):145-149
    唐秀梅,龚春风,周主贵,等.镉对龙葵根系形态及部分生理指标的影响[J].生态环境,2008,17(4):1462-1465
    田生科,李廷轩,彭红云,等.铜胁迫对海州香薷和紫花香薷根系形态及铜富集的影响[J].水土保持学报,2005,19(3):97-100
    万里强,石永红,李向林,何峰,贾亚雄.高温干旱胁迫下三个多年生黑麦草品种叶绿体和线粒体超微结构的变化.草业学报,2009,18(1):25-31
    万正林,罗庆熙.SA、ABA、BR诱导植物抗高温可能机理的研究[J].西南农业学报,2007(06):20-25
    王宝山.生物自由基与植物膜伤害[J].植物生理学通讯,1988(2):12-16.
    王成章,潘晓建,张春梅,等.外源ABA对不同秋眠型苜蓿品种植物激素含量的影响[J].草业学报,2006,15(2):30-36
    王代军,温洋.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,1998,(1):75-80.
    王海娟,段昌群,郭涛.不同污染经历的玉米在高温胁迫下SOD酶的活性的变化[J].云南大学学报(自然科学版),2004,26(1):80-84
    王洪春.植物抗性生理[J].植物生理学通讯,1981(6):72-81
    王红梅,包维楷,李芳兰.不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应.应用与环境生物学报,2008,14(6):757-762
    王开冻,颜志明,马卫军.水杨酸对高温胁迫下南瓜幼苗生理生化的影响[J].浙江农业科 学,2009(1):42-47
    王利军,刘允芬,刘琪璟,黄卫东,石玉林.高温干旱胁迫下水杨酸和钾对温洲蜜柑光合作用和叶绿素荧光的影响.江西科学,2003,21(3):201-205
    王利军,李家承,刘允芬,刘琪瑾,黄卫东,石玉林.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响.中国农学通报,2003,19(6):185-189
    王利军,李家永,战吉成,等.水杨酸对高温胁迫的葡萄幼苗和同化物分配的影响.植物生理学通讯,2003,39(3):215-217
    王启现,王璞,杨相勇,等.不同施氮期对玉米根系分布及其活性的影响[J].中国农业科学,2003,36(12):1469-1475
    王淑芳,杨雪清,田桂香等.水杨酸对NaCl胁迫下黄芩幼苗生长的影响[J].西南师范大学学报(自然科学版),2006,31(5):159-162
    王霞.土壤缓慢水分胁迫下柽柳植物内源激素的变化[J].新疆农业大学学报,2000,23(4):41-43
    王晓冬,李长海,杜晓琪.干旱胁迫对真桦苗木抗氧化系统及脂质过氧化的影响.防护林科技,2011,(3):31-33,42
    王兴明,涂俊芳,李晶.镉处理对油菜生长和抗氧化酶系统的影响[J].应用生态学报,2006,17(1):102-106
    王玉凤,王庆祥,商丽威.钙对NaCl胁迫下玉米幼苗根系活力和有机渗透调节物质含量的影响[J].玉米科学,2008,16(2):66-70
    魏晓东,陈国祥,徐艳丽,雷华,施大伟.银杏叶片衰老过程中光合生理特性及叶绿体超微结构的变化.植物研究,2008,28(4):433-437
    吴国胜,曹婉虹,王永健,等..细胞膜热稳定性及保护酶和大白菜耐热性的关系.园艺学报,1995,22(4):353-358
    吴锦程,梁杰,陈建琴,戴巧斌,曹连黄,许鑫,许金榜,官玲.GSH对低温胁迫下枇杷幼果叶绿体AsA-GSH循环代谢的影响.林业科学,2009年,45(11):15-19
    吴能表.外源水杨酸对萝卜低温胁迫的缓解作用[J].西南农业大学学报(自然科学版),2006,28(5):782-785
    吴翩翩,徐秋蓉,王磊,梁婵娟,周青.镉与酸雨对大豆幼苗叶片叶绿体超微结构的复合影响.农业环境科学学报,2010,29(7):1428-1428
    吴顺,萧浪涛.植物体内活性氧代谢及其信号传导[J].湖南农业大学学报(自然科学版),2003,29(5):450-456
    武菊英,滕文军,王庆海.狼尾草的生物学特性及在园林中的应用[J].中国园林,2005,12:57-59
    武玉叶,李德全.土壤水分胁迫对冬小麦叶片渗透调节及叶绿体超微结构的影响[J].华北 农学报,2001,16(2):87-93
    萧浪涛,王三根.植物生理学实验技术[M].北京,中国农业出版社,2005,111-112.
    萧浪涛,王三根.植物生理学[M].北京:中国农业出版社,2004
    谢寅峰,张千千,刘伟龙外源水杨酸对高氯酸盐胁迫下水花生叶绿素荧光特性的影响[J].环境科学学报。2010.30(7):1457-1465
    谢亚军,王兵,梁新华.干旱胁迫对甘草幼苗活性氧代谢及保护酶活性的影响[J].农业科学研究.2008,29(4):19-22
    熊格生,袁小玲,贺彭毅,田东洋,葛瑞华,刘志.三个不同耐高温棉花品系的光合特性及对盛花期高温胁迫的响应.棉花学报,2011,23(2):106-112
    徐渝江.伏旱及成因[J].四川气象.2006(3):10-10
    徐胜,李建龙,何兴元,陈玮.冷季型草坪草对高温胁迫的生理生态适应机理研究进展.生态学杂志,2006,25(6):698-702
    许耀照,曾秀存,郁继华,颉建明,张国斌.水杨酸对高温胁迫下黄瓜幼苗叶绿素荧光参数的影响[J],西北植物学报,2007,27(2):267-271
    许文平,陈昆松,李方,等.脂氧合酶、茉莉酸和水杨酸对猕猴桃果实后熟软化进程中乙烯生物合成的调控[J].植物生理学报,2000,26(6):507-514.
    薛建平,张爱民,杨建.高温胁迫下半夏倒苗前后内源激素的变化[J].中国中药杂志,2007,32(23):2489-2491
    薛建平,王兴,张爱民,常莉.水杨酸对高温胁迫下半夏叶片光合作用及叶绿素荧光的影响.中国药学杂志,2008,43,(24):1855-1858
    薛永常,曹敏,李云荫.不同的抑制剂处理对水分胁迫诱导的冬小麦幼苗ABA累积的影响[J].华北农学报,1997,12(1):25-29
    杨华庚,陈慧娟.高温胁迫对蝴蝶兰幼苗叶片形态和生理特性的影响[J].中国农学通报,2009,25(11):123-127
    杨静.低温胁迫对红叶石楠抗寒生理生化特性的影响[J].西南农业大学学报,008.29(6):988-92
    杨秋珍,李军.高温胁迫下甜瓜生理生态特性研究.中国生态农业学报,2003,11(1):20-22
    杨文钰,樊高琼,任万军,等. 烯效唑干拌种对小麦根叶生理功能的影响[J].中国农业科学,2005,38(7):1339-1345
    叶陈亮,柯玉琴陈伟.大白菜耐热性的生理研究[J].福建农业大学学报,1997,26(4):498-501
    叶亚新,金进,王金虎.稀土镧对镉胁迫小麦遗传学防护效应的研究[J].中国生态农业学报,2007,15(3):97-99
    姚元千,石雪晖.辣椒耐热性与叶片脂膜透性及几种生化物质含量的关系[J].湖南农业大学学报,2000,26(2):97-99
    郁万文,曹福亮.高温肋迫下银杏叶片部分调节物质的动态变化[J].福建林业科技,2008,35(2):126-128
    原永兵.水杨酸在苹果树中的生理作用及其机制的研究[D].北京:北京大学博士论文,1996.61-65
    张景云,白雅梅,于萌,李文霞,吕文河.盐胁迫对二倍体马铃薯叶超微结构的影响.东北农业大学学报,2010,(8):7-10
    张巨明,谢新明,董朝霞.高温胁迫下冷季型草坪草的耐热性评价[J].草业科学,2007,24(2):105-109
    张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61-65
    张明生,谢波,谈锋.水分胁迫下甘薯内源激素的变化与品种抗旱性的关系[J].中国农业科学,2002,35(5):498-501
    张施君,周厚高,钟云娟.高温胁迫对观赏百合苗期的生理影响研究[J].中国生态学报,2006,14(3):103-104
    赵晓松,关德新,吴家兵,长白山阔叶红松林的零平面位移和粗糙度[J],生态学报,2004,23(5):84-88
    郑敏娜,李向林,万里强,何峰,席翠玲.水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响.草地学报,2009,(5):643-649
    种培芳,杨江山.水杨酸对水分胁迫下甜瓜幼苗生理特性的影响[J].甘肃农业大学学报,2006(3):44-47
    钟希琼,叶振邦.玉米受旱后叶片超微结构的变化.华南农业大学学报,1995,13(3):64-68
    周建,杨立峰,郝峰鸽.低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J].西北农林学报,2009,29(1):0136-0142
    周志琦,张贵友,刘强.植物对环境胁迫的分子应答[M].北京:中国科学出版社,1998.234-235
    朱澜,李雪芹,贾晓琳等.高温胁迫对高羊茅光合作用的影响[J].浙江林学报,2009,26(5):652-655
    宰学明,钦佩,吴国荣,王光,闫道良.高温胁迫对花生幼苗光合速率、叶绿素含量、叶绿体Ca2+ATPase、Mg2+-ATpase及Ca2+分布的影响.植物研究,2007,27(4):416-420
    Agarwal P, Agarwal P, Jain P, Jha B, Reddy M, Sopory S.Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from pennisetum glaucum enhances abiotic stress tolerance in transgentic tobacco. Plant cell Reports.2008,27:105-115.
    Ball S, Qian Y L, Stushnoff C. Soluble carbohydrates in two buffalograss cultivars with contrasting freezing tolerance[J].2002(2):159-160.
    Ch and l er P A, RobertsonM. Gene exp ressi on regu l ated by abscisic acid and i ts relati on to stress tol eran ce[J]. Annu Rev Plant Physiol Plant Mol Bio,1994,45:113-141.
    Constitutive overexpression of a stress-inducible small GTP-binding protein PgRab7 from Pennisetum glaucum enhances abiotic stress tolerance in transgenic tobacco. Plant Cell Reports. 2008,27:105-115
    Dat J F, Lopez-Delgado H, Foye C H. Parallel change in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in musturd seedlings. Plant Physiology,1998,116:1351-1357.
    DEMMIG, ADAMS B,ADAMS W W. Photoprotection and ot her responses of plant s to high light st ress [J].A nn. Rev. Plant Physiol.Plant. Mol. Biol.,1992,43:599-626.
    Diac J, Cambell W F, Seeley S D. Temperature-stress-induced production of abscisic acid and dihydrophasic acid in warm and cold season crops [J]. J Amer Soc Hort Sci,1981,106:111-113
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis. Annual Review of Plant physiology,1982,33:317-345.
    FU J, LIU H B, LI Y, et al.Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice [J]. Plant Physiology,2011,155:589-602
    Gong M, L iY J, C hen SZ. Ab s cisic aci d i nduced ther motolerance in maize seed lingism edi ated by calcium and associated with antioxidant systems[J]. J Plant Physio,1998,153 (4): 488-496.
    Guan L, Scandalios J G. Cis-elements and trans factors that regulate expression of the maize CAT1 antioxidant gene in response to ABA and osmotic stress:H2O2 is the likely intermediary signaling molecule for the response[J]. Plant J,2000,22:87-95.
    Guy, C L. Cold acclimation and freezing stress tolerance:Role of protein metabolism [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:187-223
    Hu AS,Guan YL, Jiang RF, et al. Study on the mechanism of high temperature damage of citrus and its prevention [J].South China Fruits,1998,27(2):13-14.
    James T C, Janet C C. Ornamental grass growth response to three shade intensities. Journal of Environmental Horticulture,2000,18 (1):18-22.
    Janda T G, Szalai I T, Padi E. Hydroponic treatment with salicylic acid decrease the effects of chilling injury in mazie (Zea mays L.) plants. Planta,1999,208:175-480.
    Jane L, Marc R K. Protection against heat stress-induced oxida2 tive damage in Arabidop sis involves Calcium, abscisic acid, ethyl2ene, and salicylic acid[J]. Plant physiology,2002,128: 682-695
    Journot-Catalino N, Somssich IE, Roby D, et al. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana [J].Plant Cell, 2006,18:3289-3302
    Karim M.A, Fracheboud Y, Stamp P, Effect of higher temperature on seedling growth and photosynthesis of tropical maize genotypes, J AGR,Crop.Sci.2000,184:217-223
    Kaminaka H, Mor ita S, To kumoto M, et al. Differential gene expression of rice super oxide dismutase isoforms to oxidative and environmental stresses[J]. Free Radical Research,1999,31: 219-225.
    Kratsch H A, Wise R R. The ultra structure of chilling stress [J]. Plant Cell Environ,2000, 23:337-350
    Lawlor DW, Cornic G, Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell and Enviroment,2002,25:275-294
    Liu, C.J., J.R., Witcombe, T.S. Pittaway, M. Nash, C.T. Hash, C.S. Busso, and M.D. Gale, An RFLP-based genetic linkage map of pearl millet (Pennisetum glaucum)[J]. Theor. Appl. Genet. 1994,89:481-487
    Liu X Z, Huang B R. Heat stress injury in relation to membrane lipid peroxidation in creeping Bentrass [J]. Crop Science,2000,40:503-510
    Liu X.Z., Huang B. R. Root physiological factors involved in cool-season grass responsetohigh soil temperature [J].Environmental and Experimental Botany,2005,53 (3):233-245
    Luo J P, Jiang S T, Pan L J. Enhanced somatic embryo genesis by salicylic acid of Astragalus adsurgens pall:relation ship with H2O2 production and H2O2 metabolizing enzyme activities [J].Plant Sci,2001,161:125-132
    M.Ashraf, M.Arfan, A.Ahmad, Evaluation of the usefulness of senescing agent potassium iodide for assessing inter-cultivar variation for drought tolerance in pearl millet [Pennisetum glaucum(L.) R.Br] [J]. Australian Journal of Experimental Agriculture,2003,43:1337-1347
    Mahalakshmi, V., Bidinger, F.R., Raju, D.S., Effects of timing of stress in pearl millet.[Pennisetum americanum(L.) Leeke][J]. Field Grops Res,1987,15:327-339
    Mao P, Duan M, Wei C, et al. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate responsive gene expression [J]. Plant Cell Physiol.2007, 48:833-842
    Masayuki K,M, Tatsuhito F. Contribution of inorganic components to osmotic adjustment and leaf folding for drought tolerance in pearl millet.Physiologia Plantarum.2005,125:474-489.
    M.Ashraf, M.Hafeez, Themotolerance of pearl millet and maize at early growth stages: growth and nutrient relations [J]. Biologia Plantarum,2004,48(1):81-86
    Medina CL, Machado EC, Pinto JM.Photsynthesis of Valencia orange grafted on four root stocks and submitted to water deficit [J].Bragantia,1998,57(1):1-14
    Moons A, Bauw G, Prinsen E, et al. Molecular and physiological responses to abscisic acid and salts in roots of salt sensitive and salt tolerant indica rice varieties [J]. Plan physiology, 1995,107:177-186
    Pethani, K. V., and H. R. Dave, Heterosis for grain yield in pearl millet (Pennisetum typhoides (B.)S.and H.)[J]. Indian J. Genet. Plant Breed,1992,52:45-59
    Qi,X.,S.Lindup,T.S.Pittaway, S. Allouis, M.D. Gale, and K.M. Devos. Development of simple sequence repeat markers from bacterial artifi cial chromosomes without subcloning [J]. Biotechniques,2001,31:355-362
    Qi, X., T.S. Pittaway, S. Lindup, H. Liu, E. Waterman, F.K. Padi, C.T. Hash, J. Zhu, M.D. Gale, and K.M. Devos. An integrated genetic map and a new set of simple sequence repeat markers for pearl millet, Pennisetum glaucum [J]. Theor. Appl. Genet.2004,109:1485-1493
    Rachid Serraj, C. Tom Hash, S. Masood H. Rizvi, Recent advances in marker-assisted selection for drought tolerance in Pearl Millet[J]. Plant Prod. Sci,2005,8(3):334-337
    Sarika A, Sar iam P K, Srivastava G C, et al. Role of ABA, salicylic acid, calcium and hydrogen per oxide on antioxidant enzymes induction in w heat seedling s[J].Plant Science,2005, 169:559-570.
    Sattelmacher B, Horst W J, Becker H C. Factors that contributeto genetic variation for nutrient efficiency of crop plants[J]. Z Pflanzen Bodenk,1994,157:215-22
    Senaratna T, Touchell D, Bunn E. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation,2000,30:157-161.
    Shiras K, Nakajima H, Rajashekar K, et al. Salicylic acid potentiates an agonist dependent gain control that amplifies pathogen signal in the activation of defense mechanisms [J].Plant Cell, 1997,9:261-270
    TAN X, CALDERON-VILLALOBOS L I A, SHARON M, et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase [J].Nature,2007,446:640-645
    Talanova V V, Titov A F, Effect of whole plant and local heating on the ABA content in cucumber seedling leaves and roots and on their heat tolerance [J]. Russian Journal of Plant Physiology,2002,50(1):90-94
    Virk, D. S., and B. K. Mangat, Detection of cross over genotype xenvironment interactions in pearl millet [J]. Euphytica,1991,52:193-199
    Vu JCV, Allen LH Jr, Boote KJ, et, al. Effects of elevated CO2 and temperature on photosynthesis and Rubisco in rice and soybean [J]. Plant and Cell Enviroment,1997,20:68-76
    Walter Z L, Morio L. Deep root water uptake ability and water use efficiency of Pearl millet in comparison to other millet species.. Plant Production Science.2005,8 (4):454-460.
    WANG D, PAJEROWSKA-MUKHTAR K, CULLER A H, et al. Salicylic Acid Inhibits Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway [J]. Current Biology,2007,17:1784-1790
    Wang X J. Drying rate and dehydrin synthesis associated with ab-scisic acid-induced dehydration tolerance in Spathogottis plicata or-chidaceae protocorms.J Exp Bot.2002,53(368):551-558
    Yadav,O.P.,and E.R.Weltzien,Differential response of pearl millet landrace-based populations and high yielding varieties in contrasting environments[J]. Ann. Arid Zone,2000,39:39-45
    Yadav, O. P., E. Weltzien-Rattunde, F. R. Bidinger, and V. Mahalakshmi, Heterosis in landrace-based topcross hybrids of pearl millet across arid environments [J]. Euphytica 2000,112: 285-295
    YAMANE Y,KASHINO Y,KOIKE H,et al. Increases in t he fluorescence Fo level and reversible inhibition photosystem II reaction by high temperature t reatment s in higher plant s[J]. Photos y nth. Res.,1997,52:57-64.
    Ye C, Ke YQ, Chen W. A study on the physiology of heat tolerance in Chinese cabbage III.Ability to scavenge active oxygen of enzyme and non-enzyme system and heat tolerance [J].Journal of Fujian University,1997,26(4):498-501
    Ye CL,Ke YQ,Chen W. A study on the physiology of heat tolerance in Chinese cabbage III. Ability to scavenge active oxygen of enzyme and non-enzyme system and heat tolerance [J]. Journal of Fujian University,1997,26(4):498-501
    Zhu D, Scandalios J G.. Differential accumulation of manganese super oxide dismutase transcripts in maize in response to abscisic acid and high osmoticum [J]. Plant Physiology 1994,106:173-178.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700