用户名: 密码: 验证码:
多自由度串联机器人关节摩擦分析与低速高精度运动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多自由度串联机器人广泛应用于工业自动化、医疗、航天、海洋等领域。虽然历经数十年的发展,其相关技术已基本成熟,但从运动控制的角度看,极端情况下的运动控制仍然是个没有很好解决的问题,如低速高精度控制、高速高精度控制,从而导致机器人在很多特殊工况的应用受到较大限制。本文针对多自由度串联机器人低速高精度运动控制的问题开展研究,在机器人结构确定的情况下,主要从关节摩擦建模与补偿、提高速度信号品质、设计高精度运动控制策略这三个角度出发来提升低速运动的性能。
     本文首先介绍相关研究背景,全面分析影响机器人低速运动性能的几方面因素,包括系统结构设计、测量元件分辨率、非线性环节的影响、控制系统的性能等,而结构设计与优化、低速下高品质速度信号获取方法、非线性摩擦建模与补偿,以及高级运动控制策略设计是目前几个主要研究方向。
     设计基于动力学模型的运动控制器是提高低速运动控制精度及平稳性的有效途径。该方法的前提是已知机器人的动力学模型及参数值。因而,本文第二章在动力学建模的基础上,系统地研究了一种在闭环控制下进行的离线辨识方法来获取机器人的动力学参数。该方法针对传统傅里叶级数不满足速度、加速度边界条件的缺陷,提出一种改进傅里叶级数作为激励轨迹。为提升抗噪声能力,以最小化观测矩阵条件数作为优化准则,采用遗传算法来优化激励轨迹系数。进一步,采用最大似然法作为参数估计方法,以便考虑测量噪声的影响。
     在诸多非线性环节中,关节摩擦是影响低速运动性能的核心因素,有必要作深入分析。在机器人系统中,广泛采用RV减速器与谐波减速器作为传动元件,本文的第三章对RV驱动与谐波驱动这两种典型关节的摩擦来源、摩擦测量方法、摩擦特征、建模及辨识方法进行了系统研究。对于RV驱动大惯量关节,分析了不同负载力矩下摩擦参数的变化规律,并基于传统指数模型,提出一种扩展摩擦模型以补充描述负载力矩的影响。对于谐波驱动关节,为描述摩擦随输入角位置变化而周期性波动的现象,采用快速傅里叶变换对摩擦数据作频域分析,提取主导频率成分。提出采用指数模型+正余弦函数的组合形式来描述关节摩擦特性。
     机器人系统中,高品质的关节角速度信号对于补偿非线性摩擦的影响、设计基于全状态反馈的控制器等具有重要的意义。因而在研究补偿控制算法之前,需要设计一种有效的速度估计方法。针对低速下量化误差及测量噪声对速度估计精度产生较大影响的问题,本文探讨了非线性跟踪微分器在实时速度估计中的应用(第四章)。非线性跟踪微分器具有实现便捷、参数整定简单、不依赖于对象模型的优点,非常适合于机器人系统。
     在第二、三章建模及参数辨识的基础上,设计基于模型的补偿控制算法可以明显改善低速运动性能。对于RV驱动关节,为克服固定补偿难以处理摩擦不确定性的弱点,控制器设计时利用了自适应控制在线学习的能力。首先,通过引入模糊逻辑系统逼近关节摩擦,并实现模糊模型的线性化以便设计自适应学习机制。在此基础上,提出一种模糊自适应鲁棒控制算法。对于谐波驱动关节,其摩擦具有随角位置周期性波动的特征,非线性强,难以变换为合理的线性形式,自适应控制并不适用。考虑到当不确定性在一定范围内变化时,鲁棒控制能够保证系统稳定且维持一定的性能指标,因而提出一种具有摩擦补偿的鲁棒控制器。
     当关节数目较多(>3)时,由于模型复杂度、计算量、参数辨识难度的急剧增加,第五章提出的基于模型的控制策略将难以应用。对模型依赖度度低、实时性强、实现便捷的控制器更受工程人员的青睐。因而第六章在开展多关节联动低速控制问题的研究时,以设计对模型依赖程度低或独立于模型的控制算法为目标。首先在交流伺服系统三闭环结构的基础上,设计了具有摩擦前馈的模糊PID控制算法,该算法采用Mamdani型模糊逻辑系统在线调整控制器参数,采用指数摩擦模型作为前馈补偿项。对于不具备摩擦测试条件的情况,本文提出了一种带跟踪微分器的滑模PID控制算法,算法有机结合了PID控制稳态精度高,滑模变结构控制快速性好、鲁棒性强的特点。最后,分别选取了激光切割机器人的两种典型作业轨迹,小圆和腰型孔,进行了平台六轴联动实验或仿真。
Multi-DOF serial robots are widely used in fields such as industrial automation, medical, aerospace, marine. In spite of the seeming mature of industrial robot technology after decades of development, high precision motion control in extreme conditions is still a problem, e.g., moving at extreme low or high speed. So it is difficult for robots to meet the requirements of applications which need low-speed high-precision or high-speed high-precision movement. This dissertation is dedicated to study on the low-speed high-precision motion control of multi-DOF serial robots. After the robot structure determined, we try to improve the low-speed performance mainly through following ways:model and compensate the joint friction, estimate the joint velocity accurately, improve the control algorithm design.
     Firstly, we introduced the background of the research and conducted a comprehensive analysis of factors affecting the low-speed motion performance, including structure design, sensor resolution, nonlinear phenomenon, controller design, etc. Structural design and optimization, joint velocity estimation, joint friction modeling and compensation, as well as motion control strategy are currently the major research directions.
     Designing model-based control algorithm is an effective way to improve low-speed control precision. However, it needs to know the robot dynamic model and parameters. After the dynamic modeling, we studied on a systematic off-line dynamic parameter identification method conducted under closed-loop control in chapter Ⅱ. Since traditional Fourier series do not satisfy velocity and acceleration boundary conditions, we designed modified Fourier series as exciting trajectory. Then, to minimize the sensitivity to measurement noise, the coefficients of modified Fourier series were optimized according to the condition number criterion using genetic algorithm. In addition, considering the measurement noise effects, maximum likelihood estimation method was adopted to obtain accurate parameter estimates.
     Among the nonlinear phenomenon, joint friction is the main factor which causes control performance deterioration at low speed. Since RV reducer and harmonic reducer are widely used in robots, we studied on the friction of RV-drive-based joint and harmonic-drive-based joint in chapter Ⅲ. We mainly discussed the friction sources, measurement method, the friction characteristics, modeling and identification. For RV-drive-based joints with large inertia, we analyzed the friction parameter variation with different load torque. Then, based on the exponential model, we proposed an extended friction model which can describe the load torque effect. For harmonic-drive-based joints, the friction changes periodically with the joint angle. Based on the frequency domain analysis of the friction data using FFT, the main frequency components were determined. Then a friction model, which is the combination of the exponential model and sine/cosine functions, was involved to model the friction.
     In robot systems, high-quality joint velocity estimation is of great significance for friction compensation, full state feedback controller design, etc. Before controller design, it needs to design an efficient method for velocity estimation. At low speed, quantization error and measurement noise may cause large velocity estimation error. To deal with this problem, we discussed the use of nonlinear tracking differentiator to estimate joint velocity in chapter IV. The nonlinear tracking differentiator has advantages such as easy to use, simple parameter tuning procedure, independent of model, which make it well adapted to robot system.
     Based on the modeling and parameter identification in chapter Ⅱ and Ⅲ, we designed model-based controllers. For RV-drive-based joint, since the friction uncertainty, fixed compensation can not work well. To deal with this problem, we adopted adaptive control to learn the uncertainty. First, fuzzy logic system was involved to approximate the friction phenomenon, and linear model was derived for design of adaptive learning algorithm. Then, we proposed a fuzzy adaptive robust controller. For harmonic-drive-based joints, due to the cyclical changes of friction, it is difficult to obtain linear form, and adaptive control is not applicable. Since robust control can guarantee stable and performance with bounded uncertainty, we proposed a robust controller with friction compensation.
     For robots with multiple joints (>3), it is difficult to design model-based controller due to the model complexity, large calculation and difficulty of parameter identification. Controllers which have strong real-time, simple implementation and low dependence of the model are favored by researchers. We tried to design controllers with little dependence or independent of the model in chapter VI. Firstly, we designed a fuzzy PID controller with friction feedforward. In the controller, Mamdani fuzzy logic system was adopted to tune the controller parameters. Exponential model was used in the friction compensation. For applications with the friction model unknown, we proposed a sliding PID controller with tracking differentiator. As we known, the PID control has good steady-state accuracy. Sliding mode variable structure control has the features of fast response and strong robustness. The designed controller combines the advantages of both. Experimental and simulation studies were conducted. Two typical operating trajectories in robot laser cutting, i.e., small circle and waist-shaped hole, were tested.
引文
[1]胡亮,罗敬文,张永康,et a1.基于高柔性机器人的光纤激光切割系统的研究[J].应用激光,2010,(01):20-22.
    [2]刘立峰,杨洗陈,王非,et al.基于机器人的柔性激光再制造系统[J].中国激光,2011,(12):1-6.
    [3]周广兵,焦俊科,戴炬,et al.光纤激光三维切割加工中的机器人离线编程[J].华中科技大学学报(自然科学版),2011,39(S2):414-417.
    [4]王旭永,付永领,王宣银,et al.三轴仿真转台用电液马达伺服系统的低速运动分析[J].宇航学报,1996,17(02):85-90.
    [5]李尚义,赵克定,吴盛林,张福恩,刘庆和.三轴飞行仿真转台总体设计及其关键技术[J].宇航学报,1995,16(02):63-66.
    [6]ABB机器人在激光切割领域的相关技术及应用.http://www.opticsjournal.net/OEPNNews.htm?id=PT120314000115sZv2y
    [7]卢泽生,曹东海.爬行物理模型的建立与仿真分析[J].机械工程学报,2004,40(11):107-112.
    [8]姜玉宪.伺服系统低速跳动问题[J].自动化学报,1982,8(02):136-144.
    [9]刘强,尔联洁,刘金琨.摩擦非线性环节的特性、建模与控制补偿综述[J].系统工程与电子技术,2002,24(11):45-52.
    [10]王永富,王殿辉,柴天佑.摩擦诱发极限环的分析与自适应主动控制[J].机械工程学报,2011,47(11):44-51.
    [11]周金柱,段宝岩,黄进LuGre摩擦模型对伺服系统的影响与补偿[J].控制理论与应用,2008,25(06):990-994.
    [12]黄春庆,王兴贵,王祖光.输入力矩受限的机器人鲁棒自适应跟踪控制[J].控制理论与应用,2003,20(03):338-343.
    [13]黄春庆,施颂椒.输入受限机器人的鲁棒自适应输出反馈跟踪控制[J].控制与决策,2004,19(05):565-569.
    [14]Moreno-Valenzuela J, Santibanez V, Campa R. A class of OFT controllers for torque-saturated robot manipulators:Lyapunov stability and experimental evaluation[J]. Journal of Intelligent & Robotic Systems,2008,51(1):65-88.
    [15]Chang T, Ding Y, Hanek H. Matched Feedforward/Model Reference Control of a High Precision Robot With Dead-Zone[J]. IEEE Transactions on Control Systems Technology,2008,16(1):94-102.
    [16]李声晋,芦刚,刘卫国,et al.宽调速直流伺服电机低速力矩波动的计算[J].西北工业大学学报,1993,11(02):204-210.
    [17]崔玥,陆永平,孙力,et al.径向正弦波永磁电机的定位力矩[J].微电机,1993,26(02):8-12+27.
    [18]陈娟,张淑梅,黄艳秋,et al.电机波动力矩的重复学习控制补偿[J].光学精密工程,2003,11(04):390-393.
    [19]Ghorbel F H, Gandhi P S, Alpeter F. On the kinematic error in harmonic drive gears[J]. Journal of Mechanical Design,2001,123(1):90-97.
    [20]邱志成,韩建达,谈大龙,et al.谐波驱动系统的特性及控制策略研究[J].机器人,1999,21(06):442-449.
    [21]郭闯强,倪风雷,孙敬颋,et al.具有力矩传感器的柔性关节的振动抑制[J].机器人,2011,33(04):449-454.
    [22]何春燕,何允纪,浦纪寿.HP99型堆垛机器人结构参数的优化设计[J].江苏理工大学学报(自然科学版),2000,21(03):42-45.
    [23]李瑞峰,于殿勇,高小辉,et al.轻型机器人本体样机设计与开发[J].高技术通讯,2002,(08):68-70.
    [24]钱锡康.BUAA-RR七自由度机器人机械结构设计[J].北京航空航天大学学报,1998,24(03):354-357.
    [25]Su Y X, Zheng C H, Mueller P C, et al. A simple improved velocity estimation for low-speed regions based on position measurements only[J]. IEEE Transactions on Control Systems Technology,2006,14(5):937-942.
    [26]Brown R H, Schneider S C, Mulligan M G. Analysis of algorithms for velocity estimation from discrete position versus time data[J]. IEEE Transactions on Industrial Electronics,1992,39(1):11-19.
    [27]王翔,赵香桂.基于DSP2812的三种电机转速测量方法研究[J].电气传动自动化,2011,33(01):54-57.
    [28]Belanger P R, Dobrovolny P, Helmy A, et al. Estimation of Angular Velocity and Acceleration from Shaft-Encoder Measurements [J]. The International Journal of Robotics Research,1998,17(11):1225-1233.
    [29]Pagilla P R, Tomizuka M. An adaptive output feedback controller for robot arms: stability and experiments[J]. Automatica,2001,37(7):983-995.
    [30]Malagari S, Driessen B J. Semi-globally Exponential Tracking Observer/Controller for Robots with Joint Hysteresis and Without Velocity Measurement[J]. Journal of Intelligent & Robotic Systems,2011,62(1):29-58.
    [31]陈昶,王朝珠,韩京清.一种估计机动目标运动参数的方法[J].宇航学报,1995,16(01):30-34+97.
    [32]范宏伟,王洪福,张伟明.基于跟踪-微分器的宽动态测速系统设计[J].电光与控制,2012,19(08):59-62.
    [33]王帅,王建立,陈涛,et al.非线性跟踪微分器在光电编码器测速中的应用[J].红外与激光工程,2009,38(05):849-853.
    [34]Liu G, Goldenberg A A, Zhang Y. Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation[J]. Mechatronics,2004, 14(7):821-834.
    [35]Morel G, Iagnemma K, Dubowsky S. The precise control of manipulators with high joint-friction using base force/torque sensing[J]. Automatica,2000,36(7): 931-941.
    [36]张国柱,陈杰,李志平.直线电机伺服系统的自适应模糊摩擦补偿[J].电机与控制学报,2009,13(01):154-160.
    [37]彭书华,李华德,苏中.非线性摩擦干扰下伺服系统模糊趋近律滑模控制[J].北京科技大学学报,2008,30(11):1328-1332.
    [38]朱文坚,王涛.机器人关节轴承的摩擦磨损特性[J].轴承,1996,(10):32-33.
    [39]Bliman P a J. Mathematical study of the Dahl friction model[J]. European Journal of Mechanics a-Solids,1992,11(6):835-848.
    [40]Dewit C C, Olsson H, Astrom K J, et al. A new model for control of systems with friction[J]. IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [41]Swevers J, Al-Bender F, Ganseman C G, et al. An integrated friction model structure with improved presliding behavior for accurate friction compensation[J]. IEEE Transactions on Automatic Control,2000,45(4):675-686.
    [42]Al-Bender F, Lampaert V, Swevers J. The generalized Maxwell-slip model:A novel model for friction simulation and compensation[J]. IEEE Transactions on Automatic Control,2005,50(11):1883-1887.
    [43]倪风雷,刘宏,介党阳.基于速度观测器的GMS摩擦模型辨识与补偿[J].电机与控制学报,2012,16(11):70-75.
    [44]Phillips S M, Ballou K R. Friction modeling and compensation for an industrial robot[J]. Journal of Robotic Systems,1993,10(7):947-971.
    [45]Hamon P, Gautier M, Garrec P. Dynamic identification of robots with a dry friction model depending on load and velocity[C]. Intelligent Robots and Systems (IROS),2010 IEEE/RSJ International Conference on,2010:6187-6193.
    [46]Kennedy C W, Desai J P. Modeling and control of the Mitsubishi PA-10 robot arm harmonic drive system[J]. IEEE-ASME Transactions on Mechatronics,2005, 10(3):263-274.
    [47]Bona B, Indri M. Friction compensation in robotics:an overview[C].200544th IEEE Conference on Decision and Control & European Control Conference, Vols 1-8, New York,2005:4360-4367.
    [48]Bona B, Indri M, Smaldone N. Rapid prototyping of a model-based control with friction compensation for a direct-drive robot[J]. IEEE-ASME Transactions on Mechatronics,2006,11(5):576-584.
    [49]Kwatny H G, Teolis C, Mattice M. Variable structure control of systems with uncertain nonlinear friction[J]. Automatica,2002,38(7):1251-1256.
    [50]Orlov Y, Alvarez J, Acho L, et al. Global position regulation of friction manipulators via switched chattering control[J]. International Journal of Control,2003, 76(14):1446-1452.
    [51]Dewit C C, Noel P, Aubin A, et al. ADAPTIVE FRICTION COMPENSATION IN ROBOT MANIPULATORS-LOW VELOCITIES [J]. International Journal of Robotics Research,1991,10(3):189-199.
    [52]Garagic D, Srinivasan K. Adaptive friction compensation for precision machine tool drive[J]. Control Engineering Practice,2004,12(11):1451-1464.
    [53]Panteley E, Ortega R, Gafvert M. An adaptive friction compensator for global tracking in robot manipulators[J]. Systems & Control Letters,1998,33(5):307-313.
    [54]Lee T H, Tan K K, Huang S N. Adaptive Friction Compensation With a Dynamical Friction Model[J]. IEEE-ASME Transactions on Mechatronics,2011, 16(1):133-140.
    [55]Dewit C C, Lischinsky P. Adaptive friction compensation with partially known dynamic friction model[J]. International Journal of Adaptive Control and Signal Processing,1997,11(1):65-80.
    [56]Tadayoni A, Xie W F, Gordon B W. Adaptive Control of Harmonic Drive with Parameter Varying Friction Using Structurally Dynamic Wavelet Network[J]. International Journal of Control Automation and Systems,2011,9(1):50-59.
    [57]向红标,谭文斌,李醒飞,et al.基于LuGre模型的自适应摩擦补偿[J].机械工程学报,2012,48(17):70-74.
    [58]张文静,台宪青.基于LuGre模型的火炮伺服系统摩擦力矩自适应补偿[J].清华大学学报(自然科学版),2007,47(S2):1756-1760.
    [59]Dewit C C, Kelly R. Passivity analysis of a motion control for robot manipulators with dynamic friction[J]. Asian Journal of Control,2007,9(1):30-36.
    [60]Xie W F. Sliding-mode-observer-based adaptive control for servo actuator with friction[J]. IEEE Transactions on Industrial Electronics,2007,54(3):1517-1527.
    [61]钟琮玮,项基,韦巍,et al.基于简化非线性观测器的LuGre动态摩擦力补偿[J].浙江大学学报(工学版),2012,46(04):764-769.
    [62]郑言海,庄显义,强盛,et al.考虑摩擦力影响精密伺服系统的鲁棒自适应控制[J].自动化学报,2002,28(03):445-449.
    [63]Xu L, Yao B. Adaptive robust control of mechanical systems with non-linear dynamic friction compensation[J]. International Journal of Control,2008,81(2): 167-176.
    [64]王会方.串联机器人多目标轨迹优化与运动控制研究[D].杭州:浙江大学,2011.
    [65]Han S I, Lee K S. Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control [J]. Mechatronics,2010,20(3):384-401.
    [66]Ciliz M K, Tomizuka M. Friction modelling and compensation for motion control using hybrid neural network models[J]. Engineering Applications of Artificial Intelligence,2007,20(7):898-911.
    [67]Castillo O, Melin P. Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach[J]. Applied Soft Computing,2003,3(4): 363-378.
    [68]Huang S N, Tan K K, Lee T H. Adaptive motion control using neural network approximations[J]. Automatica,2002,38(2):227-233.
    [69]Selmic R R, Lewis F L. Neural-network approximation of piecewise continuous functions:Application to friction compensation[J]. IEEE Transactions on Neural Networks,2002,13(3):745-751.
    [70]Huang S N, Tan K K, Lee T H. Adaptive friction compensation using neural network approximations [J]. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,2000,30(4):551-557.
    [71]Chaoui H, Sicard P. Adaptive Fuzzy Logic Control of Permanent Magnet Synchronous Machines With Nonlinear Friction[J]. IEEE Transactions on Industrial Electronics,2012,59(2):1123-1133.
    [72]Lin J, Chen C H. Positioning and tracking of a linear motion stage with friction compensation by fuzzy logic approach[J]. ISA Transactions,2007,46(3):327-342.
    [73]Wang Y F, Wang D H, Chai T Y. Active control of friction-induced self-excited vibration using adaptive fuzzy systems[J]. Journal of Sound and Vibration,2011, 330(17):4201-4210.
    [74]Wang Y F, Wang D H, Chai T Y. Extraction and Adaptation of Fuzzy Rules for Friction Modeling and Control Compensation[J]. IEEE Transactions on Fuzzy Systems, 2011,19(4):682-693.
    [75]Wang Y F, Wang D H, Chai T Y. Modeling and control compensation of nonlinear friction using adaptive fuzzy systems[J]. Mechanical Systems and Signal Processing,2009,23(8):2445-2457.
    [76]过希文,王群京,李国丽,et al.基于摩擦补偿的永磁球形电机自适应模糊控制[J].中国电机工程学报,2011,31(15):75-81.
    [77]王永富,王殿辉,柴天佑.基于数据挖掘与系统理论建立摩擦模糊模型与控制补偿[J].自动化学报,2010,36(03):412-420.
    [78]王永富,柴天佑.机器人关节摩擦的自适应模糊补偿建模与控制[J].仪器仪表学报,2006,33(02):186-190.
    [79]王永富,柴天佑.一种补偿动态摩擦的自适应模糊控制方法[J].中国电机工程学报,2005,25(02):139-143.
    [80]丁学恭.机器人控制研究[M].杭州:浙江大学出版社,2006.
    [81]杨钢,刘迎雨,杜经民,et al.基于模糊PID控制器的电液负载模拟系统[J].华中科技大学学报(自然科学版),2012,40(04):59-62.
    [82]姜杉,冯文浩,杨志永,et al.基于模糊PID调节的核磁兼容机器人气动控制技术[J].机器人,2012,34(05):531-538.
    [83]叶建雄,张华.机器人焊缝跟踪的FUZZY-PID控制[J].焊接学报,2005,26(11):97-101.
    [84]孙立宁,崔晶,曲东升,et al.高速高精度平面并联机器人模糊自调整PID控制方法的研究[J].机器人,2003,(06).
    [85]糜玉林.高精度甚低速系统的模糊控制[J].机器人,2001,23(S1):619-622.
    [86]Su Y X, Sun D, Duan B Y. Design of an enhanced nonlinear PID controller[J]. Mechatronics,2005,15(8):1005-1024.
    [87]Sun D, Hu S Y, Shao X Y, et al. Global Stability of a Saturated Nonlinear PID Controller for Robot Manipulators [J]. IEEE Transactions on Control Systems Technology,2009,17(4):892-899.
    [88]苏玉鑫,段宝岩,张永芳,et al.并联机器人的非线性PID控制[J].控制与决策,2003,18(04):490-493.
    [89]Wallen J. On Kinematic Modelling and Iterative Learning Control of Industrial Robots[D]. Linkopings University,2008.
    [90]姚仲舒,王宏飞,杨成梧.一种机器人轨迹跟踪的迭代学习控制方法[J].兵工学报,2004,25(03):330-334.
    [91]何熊熊,秦贞华,张端.基于边界层的不确定机器人自适应迭代学习控制[J].控制理论与应用,2012,29(08):1090-1093.
    [92]Tayebi A, Abdul S, Zaremba M B, et al. Robust Iterative Learning Control Design: Application to a Robot Manipulator[J]. IEEE-ASME Transactions on Mechatronics, 2008,13(5):608-613.
    [93]Tayebi A, Islam S. Adaptive iterative learning control for robot manipulators: Experimental results[J]. Control Engineering Practice,2006,14(7):843-851.
    [94]Tayebi A. Adaptive iterative learning control for robot manipulators [J]. Automatica,2004,40(7):1195-1203.
    [95]Santibanez V, Kelly R. PD control with feedforward compensation for robot manipulators:analysis and experimentation[J]. Robotica,2001,19:11-19.
    [96]Grotjahn M, Heimann B. Model-based feedforward control in industrial robotics[J]. International Journal of Robotics Research,2002,21(1):45-60.
    [97]唐新星,侯敬巍,倪涛,et al.在线重力补偿下工程机器人自主作业轨迹跟踪性能分析[J].农业工程学报,2013,29(03):30-37.
    [98]Fardanesh B, Rastegar J. A new model-based tracking controller for robot manipulators using trajectory pattern inverse dynamics[J]. IEEE Transactions on Robotics and Automation,1992,8(2):279-285.
    [99]Codourey A. Dynamic Modeling of Parallel Robots for Computed-Torque Control Implementation[J]. The International Journal of Robotics Research,1998, 17(12):1325-1336.
    [100]Slotine J J E, Li W P. Adaptive manipulator control:a case studyfJ]. IEEE Transactions on Automatic Control,1988,33(11):995-1003.
    [101]Craig J J, Hsu P, Sastry S S. Adaptive control of mechanical manipulators[J]. International Journal of Robotics Research,1987,6(2):16-28.
    [102]Delibasi A, Zergeroglu E, Kucukdemiral I B, et al. Adaptive self-tuning control of robot manipulators with periodic disturbance estimation [J]. International Journal of Robotics & Automation,2010,25(1):48-56.
    [103]Tatlicioglu E, Braganza D, Burg T C, et al. Adaptive control of redundant robot manipulators with sub-task objectives[J]. Robotica,2009,27:873-881.
    [104]Slotine J J E. The robust control of robot manipulators[J]. International Journal of Robotics Research,1985,4(2):49-64.
    [105]Kolhe J P, Shaheed M, Chandar T S, et al. Robust control of robot manipulators based on uncertainty and disturbance estimation[J]. International Journal of Robust and Nonlinear Control,2013,23(1):104-122.
    [106]Islam S, Liu X P. Robust Sliding Mode Control for Robot Manipulators[J]. IEEE Transactions on Industrial Electronics,2011,58(6):2444-2453.
    [107]Bascetta L, Rocco P. Revising the Robust-Control Design for Rigid Robot Manipulators[J]. IEEE Transactions on Robotics,2010,26(1):180-187.
    [108]李世敬,王解法,冯祖仁,et al.基于动态观测器的不确定机器人鲁棒控制研究[J].兵工学报,2005,26(02):263-266.
    [109]石宗英,钟宜生,徐文立.参数不确定机器人分散鲁棒跟踪控制[J].控制与决策,2004,19(07):759-763.
    [110]Yang Z J, Fukushima Y, Qin P. Decentralized Adaptive Robust Control of Robot Manipulators Using Disturbance Observers[J]. IEEE Transactions on Control Systems Technology,2012,20(5):1357-1365.
    [111]Er M J, Gao Y. Robust adaptive control of robot manipulators using generalized fuzzy neural networks[J]. IEEE Transactions on Industrial Electronics,2003,50(3): 620-628.
    [112]Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of manipulators with guaranteed transient performance [J]. Journal of Dynamic Systems Measurement and Control,1996,118(4):764-775.
    [113]Barambones O, Etxebarria V. Robust adaptive control for robot manipulators with unmodelled dynamics[J]. Cybernetics and Systems,2000,31(1):67-86.
    [114]Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:Theory and experiments [J]. IEEE-ASME Transactions on Mechatronics,2001,6(4):444-452.
    [115]向红标,裘祖荣,李醒飞,et al.精密实验平台的非线性摩擦建模与补偿[J].光学精密工程,2010,(05):1119-1127.
    [116]Kostic D, De Jager B, Steinbuch M, et al. Modeling and identification for high-performance robot control:An RRR-robotic arm case study [J]. IEEE Transactions on Control Systems Technology,2004,12(6):904-919.
    [117]Zergeroglu E. Model-based control algorithms for robot manipulators[D]. United States:Clemson University,2000.
    [118]Wu J, Wang J S, You Z. An overview of dynamic parameter identification of robots[J]. Robotics and Computer-Integrated Manufacturing,2010,26(5):414-419.
    [119]Armstrong B, Khatib O, Burdick J. The explicit dynamic model and inertial parameters of the PUMA 560 arm[C]. IEEE International Conference on Robotics and Automation.1986:510-518.
    [120]王树新,张海根,黄铁球,et al.机器人动力学参数辨识方法的研究[J].机械工程学报,1999,35(01):23-26.
    [121]Calanca A, Capisani L M, Ferrara A, et al. MIMO Closed Loop Identification of an Industrial Robot[J]. IEEE Transactions on Control Systems Technology,2011, 19(5):1214-1224.
    [122]Ostring M, Gunnarsson S, Norrlof M. Closed-loop identification of an industrial robot containing flexibilities[J]. Control Engineering Practice,2003,11(3):291-300.
    [123]Qin Z K, Baron L, Birglen L. A new approach to the dynamic parameter identification of robotic manipulators [J]. Robotica,2010,28:539-547.
    [124]Benimeli F, Mata V, Valero F. A comparison between direct and indirect dynamic parameter identification methods in industrial robots[J]. Robotica,2006,24: 579-590.
    [125]Waiboer R. Dynamic modelling, identification and simulation of industrial robots-for off-line programming of robotised laser welding[D]. Netherlands: Universiteit Twente (The Netherlands),2007.
    [126]Ganseman C. Dynamic modelling and identification of mechanisms with application to industrial robots[D]. Belgium:Katholieke Universiteit Leuven (Belgium),1998.
    [127]Atkeson C G, An C H, Hollerbach J M. Estimation of inertial parameters of manipulator loads and links[J]. International Journal of Robotics Research,1986,5(3): 101-119.
    [128]Swevers J, Ganseman C, Deschutter J, et al. Experimental robot identification using optimised periodic trajectories[J]. Mechanical Systems and Signal Processing, 1996,10(5):561-577.
    [129]Vuong N D, Ang M H. Dynamic Model Identification for Industrial Robots[J]. Acta Polytechnica Hungarica,2009,6(5):51-68.
    [130]Armstrong B. On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics[J]. International Journal of Robotics Research,1989,8(6):28-48.
    [131]Antonelli G, Caccavale F, Chiacchio P. A systematic procedure for the identification of dynamic parameters of robot manipulators [J]. Robotica,1999,17: 427-435.
    [132]Swevers J, Ganseman C, Tukel D B, et al. Optimal robot excitation and identification[J]. IEEE Transactions on Robotics and Automation,1997,13(5): 730-740.
    [133]Bingul Z, Karahan O. Dynamic identification of Staubli RX-60 robot using PSO and LS methods[J]. Expert Systems with Applications,2011,38(4):4136-4149.
    [134]Olsen M M, Swevers J, Verdonck W. Maximum likelihood identification of a dynamic robot model:Implementation issues[J]. International Journal of Robotics Research,2002,21(2):89-96.
    [135]朱世强,王宣银.机器人技术及其应用[M].杭州:浙江大学出版社,2001.
    [136]熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,1996.
    [137]霍伟.机器人动力学与控制[M].北京:高等教育出版社,2005.
    [138]Gautier M, Khalil W. Direct calculation of minimum set of inertial parameters of serial robots[J]. IEEE Transactions on Robotics and Automation,1990,6(3):368-373.
    [139]Lin S K. Minimal linear-combinations of the inertia parameters of a manipulator[J]. IEEE Transactions on Robotics and Automation,1995,11(3): 360-373.
    [140]李力行,何卫东,王秀琦,et al.机器人用高精度RV传动的研究[J].大连铁道学院学报,1999,20(02):1-11.
    [141]栾楠,陈建平,言勇华,et al. AC-RV新型驱动单元研制[J].机器人,1999,21(05):370-374.
    [142]刘继岩,孙涛,戚厚军.RV减速器的动力学模型与固有频率研究[J].中国机械工程,1999,10(04):381-385.
    [143]宋健,孙学岩,张铁中,et al.开放式茄子采摘机器人设计与试验[J].农业机械学报,2009,40(01):143-147.
    [144]刘延杰,孙立宁,蔡鹤皋,et al.谐波驱动并联机器人的加速度反馈抑振控制[J].哈尔滨工业大学学报,2004,36(03):281-285.
    [145]Taghirad H D, Belanger P R. Modeling and parameter identification of harmonic drive systems[J]. Journal of Dynamic Systems Measurement and Control-Transactions of the ASME,1998,120(4):439-444.
    [146]Tuttle T D, Seering W P. A nonlinear model of a harmonic drive gear transmission[J]. IEEE Transactions on Robotics and Automation,1996,12(3): 368-374.
    [147]Gandhi P S, Ghorbel F. High-speed precision tracking with harmonic drive systems using integral manifold control design[J]. International Journal of Control, 2005,78(2):112-121.
    [148]刘强,扈宏杰,刘金琨,et al.基于遗传算法的伺服系统摩擦参数辨识研究[J].系统工程与电子技术,2003,25(01):77-79+121.
    [149]Su Y X, Zheng C H, Sun D, et al. A simple nonlinear velocity estimator for high-performance motion control[J]. IEEE Transactions on Industrial Electronics, 2005,52(4):1161-1169.
    [150]韩京清,王伟.非线性跟踪—微分器[J].系统科学与数学,1994,14(02):177-183.
    [151]韩京清,黄远灿.二阶跟踪—微分器的频率特性[J].数学的实践与认识,2003,33(03):71-74.
    [152]朱承元,杨涤,荆武兴.跟踪微分器参数与输入输出信号幅值频率关系[J].电机与控制学报,2005,9(04):81-84+88.
    [153]宋金来,甘作新,韩京清.自抗扰控制技术滤波特性的研究[J].控制与决策,2003,18(01):110-112+119.
    [154]武利强,林浩,韩京清.跟踪微分器滤波性能研究[J].系统仿真学报,2004,(04):651-652+670.
    [155]王新华,陈增强,袁著祉.全程快速非线性跟踪-微分器[J].控制理论与应用,2003,18(06):875-878.
    [156]杨丽君,卢志刚.三阶线性跟踪-微分器的收敛性证明及仿真研究[J].燕山大学学报,2006,30(01):44-47.
    [157]韩京清,袁露林.跟踪-微分器的离散形式[J].系统科学与数学,1999,19(03):268-273.
    [158]Marton L, Lantos B. Modeling, identification, and compensation of stick-slip friction[J]. IEEE Transactions on Industrial Electronics,2007,54(1):511-521.
    [159]刘华山.旋转关节串联机器人多轴运动控制技术研究[D].杭州:浙江大学,2010.
    [160]Kuc T Y, Han W G. An adaptive PID learning control of robot manipulators[J]. Automatica,2000,36(5):717-725.
    [161]刘松国.六自由度串联机器人运动优化与轨迹跟踪控制研究[D].浙江大学,2009.
    [162]Slotine J J E, Li W. Applied Nonlinear Control[M]. Science Press,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700