用户名: 密码: 验证码:
纳米铝粉活性评判方法的建立及其额外储能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米铝粉由于其优异的热释放和低温氧化能力,在推进剂、火炸药和铝热剂等含能材料领域中发挥着重要的作用。但是由于纳米铝粉所具有的小尺寸效应和表面效应使其反应活性很高,一经制备表面原子便被氧化致使单质铝含量降低,同时其高活性也给单质铝含量的测定带来极大困难。纳米铝粉的单质铝含量降低但其反应活性却很高,而且纳米铝粉活性与其制备方法密切相关,因此迫切需要建立纳米铝粉活性的评判方法。作为含能材料其热释放能力备受关注,纳米铝粉由于非平衡的制备条件所引起的额外储能也是活性的重要反映。本文对不同方法制备的纳米铝粉的单质铝含量的测定方法进行了系统研究,建立了100nm以下平均粒径相同的纳米铝粉的活性评判方法,并对制备方法不同引起的纳米铝粉的额外储能进行了研究。
     本文分别用激光加热蒸发法和感应加热蒸发法制备了慢氧化钝化的纳米铝粉,用多种手段对制备的两种纳米铝粉以及电爆炸丝法和等离子体电弧法制备的商用纳米铝粉进行了表征,然后用真空包装的方法对纳米铝粉进行储存以防止其活性降低。经微观表征,这四种纳米铝粉平均粒径约50nm,粒径呈正态分布,它们均具有核壳结构,但是不同方法制备的纳米铝粉的壳层厚度存在差异,在2~5nm之间变化。
     分别用气体容量法、热分析法、氧化还原滴定法和Rietveld精修法对纳米铝粉的单质铝含量进行了测定,系统研究了这些方法对实验结果产生的偏差及其来源。研究表明,气体容量法中氧化物壳层的存在会使小尺寸纳米颗粒反应不完全,而使测定结果偏低,纳米铝粉在1000℃以前氧化不完全致使热分析法测定结果偏低。传统以三价铁盐为氧化剂的高锰酸钾滴定法中纳米铝粉易于与水溶液发生析氢反应,也造成测定结果偏低。采用以乙醇为溶剂、硝酸铁为氧化剂的锰滴法和硫酸高铈为氧化剂的氧化还原滴定法使测定结果更加准确。采用Rietveld精修无标定量物相分析法在所有物相及其晶体结构准确确定的前提下,可以得到准确的物相含量结果,但是非晶物质的存在将给定量分析带来较大困难。
     加热速率对纳米铝粉的热学行为产生了重要影响,根据不同加热速率下热重—差热曲线(TG-DTA)的不同可将加热速率分为低加热速率和高加热速率两类。低加热速率下纳米铝粉的氧化分为三个阶段:第一阶段在520℃左右开始,受化学反应控制,反应剧烈;到600℃左右进入氧化缓和期,此步骤受氧的扩散和化学反应控制,反应较慢:700℃以后纳米铝粉氧化物壳层受拉应力破裂发生了剧烈的氧化反应。在高加热速率下,纳米铝粉温度迅速被加热到560℃以上,芯部的铝熔化造成氧化铝壳层的破裂燃烧,氧化反应剧烈,仅有一次放热和质量增重现象。
     氧化起始温度T_(on)的确定可采用外推起始温度法,随着铝粉粒径的减小,T_(on)减小,但对于平均粒径相同的纳米铝粉T_(on)相差不大。1000℃以前铝粉转化率α是与单质铝含量相关的参数。最大氧化速率v_(ox)可由DTG曲线在580℃左右的极大值来确定,它反映了铝粉氧化反应的激烈程度。铝粉放热热效应H/Δm~*反映了纳米铝粉的热释放能力,是一个衡量纳米铝粉热效应的重要参数。平均粒径大致相同的纳米铝粉的活性评判方法是在相同的低加热速率下,在TG-DTA曲线中提取α、v_(ox)和H/Δm~*等热学参数进行综合评判。基于此评判方法,对四种纳米铝粉的活性评判结果表明,激光法制备的活性最高、电爆法制备的活性次之、等离子体法制备的活性第三、感应法制备的活性最低。
     纳米铝粉在惰性气氛下的DSC分析结果表明不同方法制备的纳米铝粉额外储能水平存在较大差异,这是由于制备过程中的非平衡制备条件引起纳米铝粉缺陷造成的,经微观表征纳米铝粉中存在的缺陷类型包括晶格畸变、位错、孪晶界和颗粒体缺失等。随后用正电子湮没实验研究了块体铝、微米铝和各种纳米铝粉的空位型缺陷,并研究了纳米铝粉空位缺陷随退火温度变化的规律。最后对制备条件不同引起的纳米铝粉额外储能机理进行了分析,研究表明可以通过调整纳米铝粉制备工艺参数提高纳米铝粉额外储能水平,并达到提高活性的目的。
Because of their excellent abilities of heat release and oxidation under lowtemperature, Al nanopowders have an important application in energetic materials such aspropellants, explosives and thermits, etc. Due to the size and surface effect, however, thereactivity of Al nanopowders is so high that atoms on the surface of the particles areoxidized once they are produced, which results in the decrease of metallic Al content. Thehigh reactivity brings difficulties to the determination of metallic Al content at the sametime. The metallic Al content of nanopowders decreases but the reactivity of them is high,meanwhile, the reactivity of Al nanopowders are closely related to the preparationmethods, so it is urgent to set up the methods to evaluate the reactivity of Al nanopowders.As a kind of energetic materials, the ability of heat release of Al nanopowders receivesmuch concern. The excess stored energy brought by the none-equilibrium when preparedis one aspect of the reactivity. In this thesis, methods to determine the metallic Al contentsof the Al nanopowders prepared by different methods were studied systematically, then themethods to evaluate the reactivity of Al nanopowders below 100nm of the same meandiameters were set up, the excess stored energy of Al nanopowders brought by differentpreparation methods were also investigated.
     Alumina passivated Al nanopowders were prepared by laser and induction heatingevaporation methods in this thesis. Many means were employed to characterize the twonanopoweders as well as the commercial nanopowders produced by electro explosionwires (EEW) and plasma arc (PA), then a method of storing the powders to prevent themfrom the decrease of reactivity. As were characterized, all the four kinds of Alnanopowders had a mean diameter of about 50nm and the particle diameters followednormal distribution. These powders had a core-shell structure with a thickness of 2~5nmalumina shell which varied with different production methods.
     Volumetric, thermogravimetry, reductant-oxidant titration and Rietveld refinementwere applied to determine Al content, and then the errors and their reasons were studiedthoroughly. Studies revealed that there were unreacted small sized nanoparticles due to theexistence of oxide shells in volumetric method, which resulted in the lower result. The uncompleted oxidation of Al nanopowders before 1000℃resulted in the lower result inthermogravimetry, too. In conventional reductant-oxidant titration, the results were lowbecause hydrogen evolution reaction was easy to react beteewn Al nanopowders andaqueous solution. The accuracy of Al content determined by the following tworeductant-oxidant titration was improved: a permanganatometric method of ethanol as itssolvent and Fe(NO_3)_3 as its oxidizer and a titration method of Ce(SO_4)_2 as its oxidizer.The phase contents determined by Rietveld quantitative phase refinement were accurateon the premise that the phase composition and the crystal structure were accuratelydetermined; however, the existence of amorphous would make the quantitative phaserefinement difficult. Hydrogen Evolution Reaction
     The thermal behavior of Al nanopowders was heavy influenced by the heating rates,and the heating rates were classified into two kinds: high heating rates and low heatingrates by the TG-DTA curves under different heating rates. In the low heating rates, theoxidation behavior could be divided into three stages: the first oxidation stage whichbegan at about 520℃was dominated by chemical reaction and reacted acutely; the secondoxidation stage which began at about 600℃was dominated by diffusion of oxygen andchemical reaction and reacted slow; the intensive oxidation of the last stage began at700℃because of the fracture of the oxidize shell under the pull force dress. In the highheating rates, Al nanopowders were heated above 560℃rapidly, and then the oxidize shellcracked and combusted due to the fusion of the core part Al. This oxidation process wasacute, and had only one phenomenon of exothermal and mass gain.
     The temperature of intensive oxidation onset T_(on) which could be determined by themethod of extrapolate onset temperature decreased as the decrease of the mean diameterof Al nanopowders. T_(on) changed little for Al nanopowders in same mean diameters. Thedegree of conversion of metallic aluminumαbelow 1000℃was a factor relate to Alcontent. Maximum rate of oxidation v_(ox) which reflected the intensity of oxidation reactionwas determined by the maximum value of DTG curve at about 580℃. The specific heatrelease H/Δm~* was an intrinsic characteristic of Al nanopowders, which could representthe ability of energy release. The reactivity for Al nanopowders in same mean diametersshould be comprehensively evaluated by the thermal parametersα、v_(ox) and H/Δm~* obtained from the TG-DTA curves under a same low heating rate. Al nanopowdersproduced by LCHE had the highest reactivity, and then the reactivities of powders byEEW and PA were second and third respectively. The reactivity of powders by IHE hadthe lowest value.
     The DSC results of Al nanopowders under inert gas atmosphere revealed that thelevel of excess stored energy was different for Al nanopowders produced by differentmethods, which was brought by the defects when Al nanopowders prepared undernonequilibrium conditions. The types of defects characterized in Al nanopowders werelattice distortion, dislocation, twin boundaries and absence of body in the particles. Thenpositron annihilation lifetime experiment was performed to investigate vacancy-typedefects in bulk, micro-powders and aluminum nanopowders and the evolvement rules ofvacancy as annealing temperature changed. Finally the mechanism of excess stored energybrought by different preparation conditions was analyzed, which revealed that the level ofexcess energy could be improved by tuning the parameters of preparing parameters, andthen the goal of improving the reactivity of Al nanopowders was reached.
引文
[1] 侯林法.复合固体推进剂.北京:宇航出版社,1994.1-138
    [2] Ronald W.J.推进剂和炸药.李洪耀(译).北京:国防工业出版社,1981.79-174
    [3] 郭K.K.,萨默菲尔德 M.固体推进剂燃烧基础.宋兆武(译).北京:宇航出版社,1988.7-55
    [4] 李葆萱,王克秀.固体推进剂性能.西安:西北工业大学出版社,1990.1-45
    [5] Ivanov Y. F., Osmonoliev M. N., Sedoi V. S., et al. Production of ultra-fine powders and their use in high energetic compositions. Propellants, Explosives, Pyrotechnics, 2003, 28(6): 319-333
    [6] 李疏芬,余乐骥.铝粉粒度对含铝推进剂燃烧性能的影响.含能材料,1996,4(2):68-74
    [7] Ivanov G. V., Tepper F. Activated aluminum as a stored energy source for propellants, in: K. K. Kuo (Eds.), Challenges in Propellants and Combustion 100 Years after Nobel. New York: Begell House, 1997. 636-645
    [8] Mench M. M., Kuo K. K., Yeh C. L., et al. Comparison of the thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combustion Science and Technology, 1998, 135: 269-292
    [9] 王桂兰,李疏芬,夏强,等.超细铝粉燃烧性能研究.兵工学报,1996,9(2):23-26
    [10] 高东磊,张炜,朱慧,等.纳米铝粉在复合推进剂中的应用.固体火箭技术,2007,30(5):420-423
    [11] Galfetti L., Luca L. T. D., Severini F., et al. Nanoparticles for solid rocket propulsion. Journal of Physics D: Applied Physics, 2006, 18: 1991-2005
    [12] Luman J. R., Wehrman B., Kuo K. K., et al. Development and characterization of high performance solid propellants containing nano-sized energetic ingredients. Proceedings of the Combustion Institute, 2007, 31: 2089-2096
    [13] Meda L., Marra G., Galfetti L., et al. Nano-aluminum as energetic material for rocket propellants. Materials Science and Engineering C, 2007, 27: 1393-1396
    [14] Meda L., Marra G., Galfetti L., et al. Nano-composites for rocket solid propellants. Composites Science and Technology, 2005, 65: 769-773
    [15] Armstrong R. W., Baschung B., Booth D. W., et al. Enhanced propellant combustion with nanoparticles. Nano Letters, 2003, 3(2): 253-255
    [16] Zhi J., Tian-Fang W., Shu-Fen L., et al. Thermal behavior of ammomium perchlorate and metal powders of different grades. Journal of Thermal Analysis and Calorimetry, 2006, 85(2): 315-320
    [17] 郭连贵,宋武林,谢长生,等.粒径大小对高频感应加热制备纳米铝粉活性影响.含能材料,2006,14(4):276-279
    [18] 田勤书,徐更光,王廷增.铝粉粒度和形状对含铝炸药性能的影响.火炸药学报,2002,2:4-8
    [19] Keicher T., Happ A., Kretschmer A. Influence of aluminium/ammonium perchlorate on the performance of underwater explosives. Propellants, Explosives, Pyrotechnics, 1999, 24: 140-143
    [20] Brousseau P., Anderson C. J. Nanometric aluminum in explosives. Propellants, Explosives, Pyrotechnics, 2002, 27: 300-306
    [21] Sanders V. E., Asay B. W., Foley T. J., et al. Reaction propagation of four nanoscale energetic composites (Al/MoO_3, Al/WO_3, Al/CuO, and Bi_2O_3). Journal of Propulsion and Power, 2007, 23(4): 707-714
    [22] Duraes L., Campos J., Portugal A. Radial combustion propagation in iron (Ⅲ) oxide/aluminum thermite mixtures. Propellants, Explosives, Pyrotechnics, 2006, 31(1): 42-49
    [23] Prakash A., McCormick: A. V., Zachariah M. R. Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO_4. Advanced Materials, 2005, 17(7): 900-903
    [24] Perry W. L., Tappan B. C., Reardon B. L., et al. Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite. Journal of applied physics, 2007, 101: 064313-1-064313-5
    [25] Pantoya M. L., Granier J. J. Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants, Explosives, Pyrotechnics, 2005, 30(1): 53-62
    [26] 陆必志,陈振兴,黄巧萍,等.纳米片状铝粉的制备及其发展动态.材料与冶金学报,2004,3(1):34-38
    [27] 朱骥良,吴申年.颜料工艺学.北京:化学工业出版社,1989.299-314
    [28] 袁诚.铝粉颜料性能及应用.涂料与应用,1992,22(4):40-3
    [29] Muller B., Oughourlian C., Triantafillidis D. Stabilization of aluminum pigment in waterborne paints. Journal of Coatings Technology, 2001, 73: 81-84
    [30] Zhang X., Yang S. H., Knickle H. Novel operation and control of an electric vehicle aluminum/air battery system. Journal of Power Sources, 2004, 128: 331-342
    [31] Licht S., Levitin G., Tel-Vered R., et al. The effect of water on the anodic dissolution of aluminum in non-aqueous electrolytes. Electrochemistry Communications, 2000, 2: 329-333
    [32] Li C. S., Ji W. Q., Chen J., et al. Metallic aluminum nanorods: synthesis via vapor-deposition and applications in Al/air batteries. Chemistry of Materials, 2007, 19(24): 5812-5814
    [33] Sanchez-Lopez J. C., Fernandez A. The melting behavior of passivated nanocrystalline aluminum. NanoStructured Materials, 1996, 7(8): 813-822
    [34] Kotov Y. A., Yavorovsky N. A. Study of particles formed under the electrical explosions of wires. Physics and Chemistry of Materials Treatment, 1978, 4: 24-28
    [35] Kwon Y. S., Gromov A. A., Strokova J. I. Passivation of the surface of aluminum nanopowders by protective coatings of the different chemical origin. Applied Surface Science, 2007, 253: 5558-5564
    [36] Kotov Y. A. Electric explosion of wires as a method for preparation of nanopowders. Journal of Nanoparticle Research, 2003, 5: 539-550
    [37] Dong S., Zou G., Yang H. Thermal characteristic of ultrafine-grained aluminum produced by wire electrical explosion. Scripta Materalia, 2001, 44: 17-23
    [38] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.112-145
    [39] Sanchez-Lopez J. C., Caballero A., Fernandez A. Characterisation of passivated aluminium nanopowders: an XPS and TEM/EELS study. Journal of the European Ceramic Society, 1998, 18: 1195-1200
    [40] 严红革,陈振华,黄培云.超微铝粉的制备.中南工业大学学报,1996,27(6):65-69
    [41] 胡军辉,吴润,夏辉,等.激光-感应复合加热制备纳米Al粉的工艺研究.激光技术,2000,24(6):348-350
    [42] 郭连贵.核/壳结构纳米铝粉的制备及其活性化规律的研究[博士学位论文].保存地点:华中科技大学图书馆,2008
    [43] Guo L., Song W. L., Xie C. S., et al. Characterization and thermal properties of carbon-coated aluminum nanopowders prepared by laser-induction complex heating in methane. Materials Letters, 2007, 61: 3211-3214
    [44] Guo L., Song W. L., Xie C. S., et al. Preparation and reactivity of aluminum nanopowders coated by Hydroxyl-terminated polybutadiene (HTPB). Applied Surface Science, 2008, 254: 2413-2417
    [45] Weigle J. C., Luhrs C. C., Chen C. K., et al. Generation of aluminum nanoparticles using an atmospheric pressure plasma torch. Journal of Physical Chemistry B, 2004, 108(48): 18601-18607
    [46] Markschlager P., Lulhaub W. Thin metal and metal oxide films deposited by the anodic vacuum arc technique. Surface & Coating Technology, 1996, 86-87: 279-284
    [47] 魏智强,温贤伦,吴现成,等.直流电弧等离子体法制备镍纳米粉.兰州大学学报(自然科学版),2003,39(5):38-40
    [48] Sakka Y., Okuyama H., Uchikoshi T., et al. Characterization of degraded surfaces of Al and AlN ultrafine powders. NanoStructured Materials, 1995, 5(5): 577-588
    [49] Tillotson T. M., Gash A. E., Simpson R. L., et al. Nanostructured energetic materials using sol-gel methodologies. Journal of Non-Crystalline Solids, 2001, 285(2): 338-345
    [50] 王昕.纳米含能材料研究进展.火炸药学报,2006,29(2):29-32
    [51] Lu H. X., Chen C. P., Sun H. W., et al. Characterization of Al_2O_3-Al nano-composite powder prepared by a wet chemical method. Ceramics International, 2005, 31: 481-485
    [52] Pokhil P. F., Belyaev A. F., Frolov Y. V., et al. Combustion of powdered metals in active media. Moscow: Nauka, 1972. 102-389
    [53] Il'in A. P., Popenko E. M., Gromov A. A., et al. Combustion of agglomerated ultrafine aluminum powders in air. Combustion, Explosion, and Shock Waves, 2002, 38(6): 665-669
    [54] Ilyin A. P., Gromov A. A. Combustion of ultra-fine aluminum and boron, Tomsk State University Publ., Tomsk, 2002.
    [55] Fedotova T. D., Glotov O. G., Zarko V. E. Peculiarities of chemical analysis of ultra fine aluminum. 36~(th) Int. Annual Conference of ICT, Karlsruhe, Germany, 2005.
    [56] 江冶,李疏芬,李凯.含纳米金属粉的推进剂点火试验及燃烧性能研究.固体火箭技术,2004,27(2):117-120
    [57] 李疏芬,金荣超.含金属固体推进剂燃烧残渣的成分分析.推进技术,1996,17(1):83-88
    [58] Fedotova T. D., Glotov O. G., Zarko V. E. Application of cerimetric methods for determining the metallic aluminum content in ultrafine aluminum powders. Propellants, Explosives, Pyrotechnics, 2007, 32(2): 160-164
    [59] Risha G A. Enhancement of hybrid rocket combustion performance using nano-sized energetic particles [Thesis for doctor degree]. The Pennsylvania State University, 2003
    [60] Sun J., Pantoya M. L., Simon S. L. Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO_3. Thermochimica Acta, 2006, 444: 117-127
    [61] Kwon Y. S., Gromov A. A., Ilyin A. P., et al. Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Applied Surface Science, 2003, 211: 57-67
    [62] Valliappan S., Swiatkiewicz J., Puszynski J. A. Reactivity of aluminum nanopowders with metal oxides. Powder Technology, 2005, 156: 164-169
    [63] Mahadevan R., Lee D., Sakurai H., et al. Measurement of condensed-phase reaction kinetics in the aerosol phase using single particle mass spectrometry. Journal of Physical Chemistry A, 2002, 106: 11083-11092
    [64] Park K., Lee D., Rai A., et al. Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. Journal of Physical Chemistry B, 2005, 109: 7290-7299
    [65] Shevchenko V. G., Kononenko V. I., Latosh I. N. Effect of the size factor and alloying on oxidation of aluminum powders. Combustion, Explosion, and Shock Waves, 1994, 30(5): 635-637
    [66] Il'in A. P., Gromov A. A., Yablunovskii G. V. Reactivity of aluminum powders. Combustion, Explosion, and Shock Waves, 2001, 37(4): 418-422
    [67] Kwon Y., Gromov A. A., Ilyin A. P. Reactivity of superfine aluminum powders stabilized by aluminum diboride. Combustion and Flame, 2002, 131: 349-352
    [68] Kwon Y., Moon J., Ilyin A. P., et al. Estimation of the reactivity of aluminum superfine powders for energetic applications. Combustion Science and Technology, 2004, 176: 277-288
    [69] An V. V., Ilyin A. P., Yablunovskii G. V. Thermaoanalytical study of energy saturated electro-explosive nanopowders. Chemistry and Chemical Technologies, KORUS-2002: 317-319
    [70] Yuri F. I., Mirswan N. O., Valentin S. S., et al. Productions of ultra-fine powders and their use in high energetic compositions. Propellants, Explosives, Pyrotechnics, 2003, 28: 319-333
    [71] 张志琨,崔作林,郝春成,等.纳米Cu和Ag的缺陷研究.中国科学(B辑),1997,27(5):424-429
    [72] Li Y., Song W. L., Xie C. S., et al. Influence of humidity on the thermal behavior of aluminum nanopowders, Materials Chemistry and Physics, 2006, 97: 127-131
    [73] 张小塔,宋武林,郭连贵,等.激光-感应复合加热法制备碳包覆纳米铝粉.推进技术,2007,28(3):333-336
    [74] Kwok Q. S. M., Badeen C., Armstrong K., et al. Hazard characterization of uncoated and coated aluminum nanopowder compositions Journal of Propulsion and Power, 2007, 23(4): 659-668
    [75] Katz J., Tepper F., Ivanov G. V., et al. Metastable nanosize aluminum powder as a reactant in energetic formulations, JANNAF Propulsion meeting, CPIA Pubublication 675, 1998, 3: 343-349
    [76] Desena J. T., Kuo K. K. Evaluation of stored energy in ultrafine aluminum powder produced by plasma explosion. Journal of Propulsion and Power, 1999, 15: 795-800
    [77] Ivanov V. G., Safronov M. N., Gavrilyuk O. V. Macrokinetics of oxidation of ultradisperse aluminum by water in the liquid phase. Combustion Explosion and Shock Waves, 2001, 37: 173-177
    [78] 崔忠圻,覃耀春.金属学与热处理(第二版).北京:机械工业出版社,2007.290-318
    [79] 梁文林,夏越良.高频感应加热设备的原理、工程计算、调整与维修.北京:机械工业出版社,1986.1-20
    [80] Xie C. S., Hu J. H., Wu R., et al. Structure transition comparison between the amorphous nanosize particles and coarse-grained polycrystalline of cobalt. NanoStructured Materials, 1999, 11(8): 1061-1066
    [81] 胡军辉,吴润,夏辉,等.高频等离子弧对纳米钴粉的组织结构的影响.材料科学与工艺,2000,22(1):74-76
    [82] 谢长生,胡木林,胡军辉,等.激光复合加热制备金属纳米粉体材料.材料热处理学报.2001,22(1):20-23
    [83] Steffens H. D., Reznik B., Kruzhanov V., et al. Carbide formation in aluminum-carbon fiber-reinforced composites. Journal of Materials Science, 1997, 32: 5413-5417
    [84] Warren B. E. X-ray Diffraction. New York: Dover, 1990. 70-205
    [85] Kuhn L. T., Bojesen A., Timmermann L., et al. Structural and magnetic properties of core-shell iron-iron oxide nanoparticles. Journal of Physics: Condensed Matter, 2002, 14: 13551-13567
    [86] Kwok Q. S. M., Fouchard R. C., Turcotte A. M., et al. Characterization of aluminum nanopowder compositions. Propellants, Explosives, Pyrotechnics, 2002, 27: 229-240
    [87] 周玉,武高峰.材料分析测试技术--材料X射线衍射与电子显微分析.哈尔滨:哈尔滨工业大学出版社,1998.80-95
    [88] Suryanarayana D. Oxidation kinetics of aluminum nitride. Journal of the American Ceramic Society, 1990, 73(4): 1108-1110
    [89] Jones D. E. G., Brousseau P., Fouchard R. C, et al. Thermal characterization of passicated nanometer size aluminum powders. Journal of Thermal Analysis and Calorimetry, 2000, 61: 805-818
    [90] Jones D. E. G., Turcotte R., Fouchard R. C, et al. Hazard characterization of aluminum nanopowder compositions. Propellants, Explosives, Pyrotechnics, 2003,28(3): 120-131
    [91] Gromov A., Ilyin A., Forter-Barth U. Characterization of aluminum powders: Ⅱ.aluminum nanopowders passivated by non-inert coatings. Propellants, Explosives,Pyrotechnics, 2006, 31 (5): 401-409
    [92] Streletskii A. N., Kolbanev I. V., Borunova A. B., et al. Mechanochemically activated aluminium: preparation, structure, and chemical properties. Journal of Materials Science, 2004, 39 (16-17): 5175-5179
    [93] Li J. W., Nakamura M., Shirai T., et al. Mechanism and kinetics of aluminum nitride powder degradation in moist air. Journal of the American Ceramic Society, 2006, 89(3): 937-943
    [94] Oh Y. H., Rhee C. K., KLim D. H., et al. Formation characteristics of an aluminum hydroxide fiber by a hydrolysis of aluminum nanopowder. Journal of Materials Science, 2006,41: 4191-4195
    [95] Streletskii A. N., Kolbanev I. V., Borunova A. B., et al. Mechanochemical activation of aluminum: 3. kinetics of interaction between aluminum and water. Colloid Journal, 2005, 67(5): 631-637
    [96] Bunker B. C, Nelson G C, Zavadil K. R., et al. Hydration of passive oxide films on aluminum. Journal of Physical Chemistry B, 2002,106(18): 4705-4713
    [97] Fedotova T. D., Glotov O. G., Zarko V. E. Chemical analysis of aluminum as a propellant ingredient and determination of aluminum and aluminum nitride in condensed combustion products, Propellants, Explosives, Pyrotechnics, 2000, 25:325-332
    [98] Kolthoff I. M. Treatise on analytical chemistry (2~(nd) Edition). New York: Wiley,1978.134-209
    [99] Rietveld H. M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallographica, 1967,22: 151-152
    [100] 马礼敦.近代X射线多晶体衍射--实验技术与数据分析.北京:化学工业出版社,2004.399-529
    [101] Rietveld H. M. A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 1969, 2: 65-71
    [102] Hill R. J., Howard C. J. Quantitative phase aualysis from neutron powder diffraction using Rietveld method. Journal of Applied Crystallography, 1987, 20: 467-474
    [103] Juan R. C. An introduction to the program FullProf 2000. CEA/Saclay, 91191 Gif sur Yvette Cedex, France, 2001. 8-19
    [104] Ortiz A. L., Cumbrera F. L., Sanchez-Bajo F., et al. Fundamental parameters approach in the Rietveld method: a study of the stability of results versus the accuracy of the instrumental profile. Journal of the European Ceramic Society, 2000, 20: 1845-1851
    [105] Kim Y. I., Jung J. K., Ryu K. S., et al. Quantitative phase analysis of boron nitride nanotubes using Rietveld refinement. Journal of Physics D: Applied Physics, 2005, 38: 1127-1131
    [106] Kalita S. J., Qiu S., Verma S. A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties. Materials Chemistry and Physics, 2008, 109: 392-398
    [107] Bish D. L., Howard S. A. Quantitative phase analysis using the Rietveld method. Journal of Applied Crystallography, 1988, 21: 86-91
    [108] Gualtieri M. L., Prudenziati M., Gualtieri A. F. Quantitative determination of the amorphous phase in plasma sprayed alumina coatings using the Rietveld method. Surface & Coating Technology, 2008, 201: 2984-2989
    [109] 李余增.热分析.北京:清华大学出版社,1987.12-219
    [110] 波普 M.I.,尤德 M.D.波普差热分析DTA技术及其应用指导.北京:北京师范大学出版社,1981.27-37
    [111] Beckstead M. W. Correlating aluminum burning times. Combustion, Explosion, and Shock Waves, 2005, 41(5): 533-546
    [112] Ma Y. W., Hu Z., Yu L. S., et al. Chemical functionalization of magnetic carbon encapsulated nanoparticles based on acid oxidation. Journal of Physical Chemistry B, 2006,110:20118-20122
    [113]Eisenreich N., Fietzek H., Juez-Lorenzo M. M., et al. On the mechanism of low temperature oxidation for aluminum particles down to the nano-scale. Propellants,Explosives, Pyrotechnics, 2004,29 (3):137-145
    [114] Levin I., Brandon D. Metastable alumina polymorphs: crystal structures and transitions sequences, Journal of the American Ceramic Society, 1998, 81(8):1995-2012
    [115]Eckert J., Holzer J. C, Ahn C. C, et al. Melting behavior of nanocrystalline aluminum powders. NanoStructured Materials, 1993,2(4): 407-413
    [116]Smithells C. J. Metals reference book (5~(th) edition). London: Butterworths, 1976.102-378
    [117] Campbell T., Kalia R. K., Nakano A., et al. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamics simulations on parallel computers. Physical Review Letters, 1999, 82(24): 4866-4869
    [118] Kalia R. K., Campbell T. J., Chatterjee A., et al. Multire solution algorithms for massively parallel molecular dynamics simulations of nanostructured materials.Computer Physics Communications, 2000,128:245-259
    [119] Vashishta P., Bachlechner M., Nakano A., et al. Multimillion atom simulation of materials on parallel computers-nanopixel, interfacial fracture, nanoindentation, and oxidation. Applied Surface Science, 2001,182: 258-264
    [120] Campbell T., Aral G., Ogata S., et al. Oxidation of aluminum nanoclusters. Physical Review B, 2005,413 (71): 1-14
    [121]Rosenband V. Thermo-mechanical aspects of the heterogeneous ignition of metals.Combustion and Flame, 2004,137: 366-375
    [122] Friedman R., Macek A. Ignition and combustion of aluminum particles in hot ambient gases. Combustion and Flame, 1962, 6: 9-19
    [123]Merzhanov A. G., Grigorjev Y. M., Galchenko Y. A. Aluminum ignition.Combustion and Flame, 1977,29:1-14
    [124]Trunov M. A., Schoenitz; M., Dreizin E. L. Ignition of aluminum powders under different experimental conditions. Propellants, Explosives, Pyrotechnics, 2005,30(1): 36-43
    [125] Aumann C. E., Skofronick G. L., Martin J. A. Oxidation behavior of aluminum nanopowders. Journal of Vacuum Science & Technology B, 1995, 13 (3): 1178-1183
    [126] Ingenito A., Bruno C. Using aluminum for space propulsion. Journal of Propulsion and Power, 2004, 20 (6): 1056-1063
    [127] Rai A., Lee D., Park K., et al. Importance of phase change of aluminum in oxidation of aluminum nanoparticles. Journal of Physical Chemistry B, 2004, 108: 14793-14795
    [128] Rufino B., Boulch F., Coulet M. V., et al. Influence of particles size on thermal properties of aluminium powder. Acta Materialia, 2007, 55: 2815-2827
    [129] Lowe T. The revolution in nanometals. Advanced materials & processes, 2002, 160: 63-65
    [130] Ilyin A., Gromov A., An V., et al. Characterization of aluminum powders I. parameters of reactivity of aluminum powders. Propellants, Explosives, Pyrotechnics, 2002, 27: 361-364
    [131] Oya H. An improved preparation method of ultrafine particles by gas evaporation with arc plasma sputtering. Japanese Journal of Applied Physics, 1991, 30(8): 1775-1778
    [132] 李超.金属学原理.哈尔滨:哈尔滨工业大学出版社,1996.220-256
    [133] Caoa W. Q., Gua C. F., Perelomab E. V., et al. Stored energy, vacancies and thermal stability of ultra-fine grained copper. Materials Science and Engineering A, 2008, 492: 74-79
    [134] 刘国勋.金属学原理.北京:冶金工业出版社,1979.217-258
    [135] Champion Y., Bigot J. Synthesis and structural and analysis of aluminum nanocrystalline powders. NanoStructured Materials, 1998, 10(7): 1097-1110
    [136] 林栋梁.晶体缺陷.上海:上海交通大学出版社,1996.52-85
    [137] Head A. K. The interaction of dislocations and boundaries, Philosophical Magazine, 1953, 44: 92-94
    [138] Inkson B. J., Dehm G., Wagner T. In situ TEM observation of dislocation motion in thermally strained Al nanowires. Acta Materialia, 2002, 50: 5033-5047
    [139] Dirae P. A. M. On the annihilation of positrons and electrons. Proceeding of Cambridge Philosophical Society, 1930, 26: 361-375
    [140] Anderson C. D. Energies of cosmic-ray particles. Physical Review, 1932, 41: 405-421
    [141] Brandt W., Dupasquier A. Positron solid-state physics. North-Holland: Amsterdam, 1983. 48-479
    [142] 王少阶,陈志权,王波..等.应用正电子谱学.武汉:湖北科学技术出版社,2008.53-83
    [143] 郁伟中.正电子物理及其应用.北京:科学出版社,2003.249-272
    [144] 滕敏康.正电子湮没谱学及其应用.北京:原子能出版社,2000.1-120
    [145] Schaefer H. E., Wurschura R. Positron lifetime spectroscopy in nanocrystalline iron. Physics Letters A, 1987, 119(7): 370-374
    [146] Wurschum R., Scheytt M., Schaefer H. E. Nanocrystalline metals and semiconductors studied by positron lifetime spectroscopy. Physica Status Solidi (a), 1987, 102(1): 119-126
    [147] 吴奕初,滕敏康,夏元复,等.应用正电子淹没技术定量估算高纯铁相变的位错密度和空位浓度.核技术,1994,17(10):597-600
    [148] 祁景玉.X射线结构分析.上海:同济大学出版社,2003.106-115
    [149] 王群.用电爆炸方法制备纳米微粉及其物性研究[博士学位论文].保存地点:吉林大学图书馆,1996
    [150] 陆建,倪晓武,贺安之.激光与材料相互作用物理学.北京:机械工业出版社,1996.98-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700