用户名: 密码: 验证码:
一种面向车身结构设计的大规模问题快速计算方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车身结构设计问题涉及到对复杂结构在多参数条件下多次进行大规模问题求解,是一个较为耗时的过程。本文从节约计算成本和提高计算精度的角度提出一种面向车身设计的复杂结构多参数大规模问题快速计算方法对车身结构进行设计。
     快速计算方法的基本思路是当系统由多个参数来描述时,这些参数组合会使系统有不同的响应,这些响应可以由有限次试验得到,而系统在新参数下的解可以用事先设计的近似解空间来表示。在实际计算过程中,应用迦辽金映射技术,将结构设计问题向一个事先构造的子空间中进行投影,将大规模问题缩减为小规模问题,该小规模问题即可快速求解。这种方法在对结构进行自由度缩减时能很好地保持原系统的物理属性。论文从以下方面展开工作。
     第一,从壳单元的有限元格式入手,对壳单元刚度矩阵在单元水平上进行参数化分解,同时,按照设计问题的具体要求,将具有同一参数特征的单元刚度矩阵按照有限元方法的基本原理进行坐标转换和组装,最终将整体刚度矩阵表达为一种显式参数化格式。显式参数化格式保持了设计问题的参数特性。
     第二,提出一种新的刚度矩阵存储技术,将总体刚度矩阵按照节点的物理属性进行存储,大幅节约了存储空间。对单元刚度矩阵的组成和物理意义进行分析,将单元刚度矩阵按照节点大小的顺序排列成六维的矩阵形式;整体坐标系下的刚度矩阵的六维存储格式通过对单元刚度矩阵在对应位置上的组装实现。在六维格式的基础上,对六维格式的刚度矩阵进行Cholesky分解,并求解线性方程组;考虑到在快速计算方法中需要对矩阵进行的投影运算,对六维存储格式的刚度矩阵进行投影运算研究。
     第三,提出一种直接正交构造子空间的方法,将该方法应用于某车身结构的快速计算中,评价计算的精度和计算成本。直接正交法在进行子空间构造时,首先使用奇异值分解对样本点的有限元解进行正交归一化,左奇异向量即为所构造的近似子空间的一个基。直接正交法比传统的贪婪算法在计算成本方面具有较大的优势。
     第四,为了进一步提高快速计算方法的计算效率,提出一种分级自适应方法。该方法以直接正交法和贪婪算法为基础,将构造子空间的过程分为初级子空间构造过程和最终子空间构造过程。在初级子空间构造过程中使用直接正交法进行计算,以节省计算量为主要目的,在子空间维数较少的情况下,直接正交法的数值损失较小;在初级子空间的基础上使用贪婪算法进行最终子空间的构造,通过误差控制保证所构造子空间的精度。同时,对初始子空间的维数对最终计算的精度和计算量的影响进行了研究。
     第五,针对快速计算方法的较为复杂的计算流程,提出一种自动快速计算方法,该方法通过参数域自动离散、有限元计算、子空间构造和子空间实时更新技术实现了快速计算方法的自动化。通过自动快速计算方法的实现,改变了传统的基于减基法基本思想的快速计算方法的基本计算流程和误差评价方法,形成了一种实时构造、实时更新、实时误差评价的新的快速计算方法。
     在研究过程中,使用多个车身设计算例对提出的方法进行验证,结果表明,文中提出的快速计算方法在精度和效率上都比常规的减基法有较大的提高。文中提出的方法在车身设计问题中具有较高的计算效率,并可以将其应用于其它的设计工况中,特别适用于有实时计算要求的场合。对于工程实际中的壳结构优化问题,使用文中提出的方法可以快速地得到最优解。同时,通过改变参数化有限元格式,文中提出的方法同样可以用于梁结构以及实体结构等的设计中。
Vehicle body design phase is a time-consuming process which requires the solution of a large-scale problem with many parameters. A new computational method is proposed in the paper to achieve a rapid way of solving the large-scale linear algebraic equations with many parameters in vehicle design process with respect to the computational cost and the computational accuracy.
     The basic idea of the method is that although the field variable generally belongs to the infinite-dimensional space associated with the underlying partial differential equation, indeed, it resides on a low-dimensional subspace induced by the parametric dependence. In computational practice, the large-scale system is reduced to a smaller one by Galerkin projection based on that subspace. The structural behaviors are predicted using the reduced system. The physical property of the problem is retained during the projection.The research is carried out in following sections.
     First, the finite element formulation of shell element is analyzed and the element stiffness matrix is decomposed to achieve a parametrized formulation on the element level. Then the element matrices with the same parametric properties are assembled based on the finite element method via coordinate transforming. The parametric property is retained in the form of the explicit parametrized finite element formulation.
     Second, a new storage method of large-scale matrix named six-dimensional method is proposed to save the computational cost and improve the computational accuracy. In the new storage formulation, the global stiffness matrix is stored according to the node information which indicates the physical properties of each node. The components of the element stiffness matrices are analyzed first and the locations of the element stiffness matrices in six-dimensional matrix are determined according to the order of the nodes. The global stiffness matrix in six-dimensional form is achieved by assembling the element stiffness in the corresponding locations. Then, the solving method of large-scale linear algebraic equations in six-dimensional form is developed by Cholesky decomposition. As the matrix manipulation is needed in the Galerkin projection, large-scale matrix manipulating method in six-dimensional formulation is studyed to improve the speed of numerical computation.
     Third, a direct orthogonal method is proposed to construct a subspace which is used in the Galerkin projection. The method is used in some vehicle design problems to evaluate the computational cost and accuracy. When constructing the subspace, the finite element solutions derived from the sampling points are orthogonalized and normalized by using the single value decomposion technique. The left single vectors are orthogonal and used as the basis of the subspace. The subspace constructed by the direct orthogonal method is computational efficient compared with the subapace derived by the traditional Greedy adaptive method.
     Fourth, to further improve the computational efficiency, a hierarchical adaptive method is developed to construct the subspace based on the greedy adaptive method and the direct orthogonal method. The process of constructing the subspace is devided into two phases, which are expressed as the initial subspace and the ultimate subspace. The initial subspace is constructed using the direct orthogonal method and the ultimate subspace is constructed by updating the initial subspace using the greedy adaptive method. The computational accuracy is improved and the computational cost is saved using the hierarchical adaptive method. The effect of the dimension of the initial subspace is analyzed with respect to the computational cost and accuracy.
     Finally, an automatic and rapid computational method is proposed to simplifying the computational procedure. The automatic method is developed based on the automatic parameter domain discretization, finite element method, subspace construction and subspace updating techniques. The computational procedure and computational error evaluation of traditional reduced-basis method are changed completely and the offline-online phase is cancelled. It is a new method with real-time subspace construction, real-time subspace updating and real-time error evaluation.
     The proposed methods are tested on different vehicle design problems. It is found that the proposed methods are of higher accuracy and lower computational cost compared with the traditional reduced-basis methods. It is proved that the proposed methods are efficient in vehicle body design problems and are applicable to many other design contexts, especially in the real-time situation. For shell structural optimization in engineering practice, the proposed techniques provide an efficient way to achieve an optimal design solution. It is also suitable for other structures with a little change in the decomposition of finite element formulation, such as solid element and beam element.
引文
[1]凯墨尔,沃尔夫.现代汽车结构分析.北京:人民交通出版社,1987,235-259
    [2]黄天泽,黄金陵.汽车车身结构与设计.北京:机械工业出版社,1997,160-190
    [3]黄金陵.汽车车身设计.北京:机械工业出版社,2007,118-154
    [4]史密斯J H.现代汽车设计概论.北京:化学工业出版社,2006,116-137
    [5]Wang G G, Shan S. Review of Metamodeling Techniques in Support of Engineering Design Optimization. Transaction of the ASME,2007,129(4):370-380
    [6]Dyn N, Levin D, Rippa S. Numerical Procedures for Surface Fitting of Scattered Data by Radial Basis Functions. SIAM,1986,7(2):639-659
    [7]Fang H, Horstemeyer M F. Global Response Approximation with Radial Basis Functionas. Eng Optimiz,2006,38(4):407-424
    [8]Sacks J, Welch W J, Mitchell T J, et al. Design and Analysis of Computer Experiments. Stat Sci,1984,4(4):409-435
    [9]Sacks J, Schiller S B, Welch W J. Designs for Computer Experiments Technometrics,1989,31 (1):41-47
    [10]Cresssie N, Spatial Prediction and Ordinary Kriging. Math Geol,1988,20(4):405-421
    [11]Papadrakakis M, Lagaros M, Tsompanakis Y. Structural Optimization Using Evolution Strategies and Neural Networks. Comput Methods Appl Mech Eng,1998,156(1-4):309-333
    [12]Friedman J H. Multivariate Adaptive Regressive Splines. Ann Stat,1991,19(1):1-67
    [13]Varadarajan S, Chen W, Pelka C J. Robust Concept Exploration of Propulsion Systems With Enhances Model Approximation Capabilities. Eng Optimiz,2000,32(3):309-334
    [14]Box G E P, Wilson K B. On the Experimental Attainment of Optimum Conditions. Journal of the Royal Statistical Society,1951,13(B):1-45
    [15]Lee S H, Kim H Y, Oh S I. Cylindrical tube optimization using response surface method based on stochastic process. Journal of Materials Processing Technolory;2002,130-131:490-496
    [16]Redhe M, Giger M, Nilsson L. An investigation of structural optimization in crashworthiness design using a stochastic approach. Struct Multidisc Optim,2004,27:446-459
    [17]Jansson T, Nilsson L, Redhe M. Using surrogate models and response surfaces in structural optimization with application to crashworthiness design and sheet metal forming. Struct Multidisc Optim,2003,25:129-140
    [18]Carter W H, Wampler G L, Stablein D M. Review of the Application of Response Surface Methodology in the Combination Therapy of Cancer. Cancer Treatment Reports,1983,70:133-140
    [19]Myers R H, Khuti A I, Carter W H. Response surface Methodollgy:1966-1988. Technometrics,1989,31:137-157
    [20]Myers R H. Response Surface Methodology-Current Status and Future Directions. Journal of Quality Technology,1999,31:30-74
    [21]张立新,隋允康,杜家政.基于响应面方法的结构耐撞性优化.北京工业大学学报,2007,33(2):139-133
    [22]王永菲,王成国.响应面法的理论与应用.中央民族大学学报(自然科学版),2005,14(3):236-240
    [23]王海亮,林忠钦,金先龙.基于响应面模型的薄壁构建耐撞性优化设计.应用力学学报,2009,20(3):61-65
    [24]张健,李为吉.飞机多学科设计优化中的近似方法分析.航空计算技术,2005,35(3):5-8
    [25]隋允康,白海波.基于中心点精确响应面法的板壳结构优化.机械设计,2005,22(11):10-12
    [26]苏永华,何满潮,赵明华等.基于区间变量的响应面可靠性分析方法.岩土工程学报,2005,27(12):1408-1413
    [27]芮强,王红岩.基于响应面法的悬架系统优化研究.装甲兵工程学院学报,2006,20(4):49-55
    [28]董恩国,张蕾,申焱华.基于2阶响应面模型的汽车前轮定位参数设计研究.汽车技术,2007, (11):22-25
    [29]张晓云,金先龙,元文果等.基于关键点变形的汽车碰撞事故再现.上海交通大学学报,2007,41(2):238-243
    [30]王永菲.响应面法的数值方法研究及其在悬挂参数优化中的应用:[硕士学位论文].北京:中央民族大学,2006:1-4
    [31]隋允康,李善坡.改进的响应面方法在二维连续体形状优化中的应用.工程力学,2006,23(10):1-6
    [32]郭勤涛,张令弥,费庆国.用于确定性计算仿真的响应面及其试验设计研究.航空学报,2006,27(1):55-61
    [33]刘金辉,乔志德,杨旭东等.基于响应面法的机翼气动—结构多学科优化设计. 空军工程大学学报(自然科学版),2006,7(1):1-3
    [34]Forsberg J, Nilsson L. Evaluation of response surface methodologies used in crashworthiness optimization. International Journal of Impact Engineering,2006,32:759-777
    [35]Fang H, Rais-Rohani M, Liu Z, et al. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Computers and Structures,2005,83:2121-2136
    [36]王海亮,林忠钦,金先龙.基于响应面模式的薄壁构建耐撞性优化设计.应用力学学报,2003,20(3):61-65
    [37]张维刚,廖兴涛,钟志华.基于逐步回归模型的汽车碰撞安全性多目标优化.机械工程学报,2007,43(8):142-147
    [38]Yang R J, Gu L. Experience with approximate reliability-based optimization methods. Struct Multidisc Optim.26(2004)152-159
    [39]S. Kodiyalam, R.J. Yang, L. Gu, et al, Multidisciplinary design optimization of a vehicle system in a scalable, high performance computing environment, Struct Multidisc Optim.26(2004)256-263
    [40]B.D. Youn, K.K. Choi, R.J. Yang, et al, Reliabllity-based design optimization for crashworthiness of vehicle side impact, Struct Multidisc Optim.26(2004)272-283
    [41]P.N. Koch, R.J. Yang, L. Gu, Design for six sigma through robust optimization, Struct Multidisc Optim.26(2004)235-248
    [42]Byeng D. Youn, Kyung K. Choi, A new response surface methodology for reliability-based design optimization, Computers and Structures.82(2004)241-256
    [43]Yu Zhang, Ping Zhu, Guanlong Chen, Lightweight Design of Automotive Front Side Rail Based on Robust Optimization, Thin-Walled Structures. 45(2007)670-676
    [44]孙光勇,李光耀,张勇,等,基于鲁棒性的概率优化设计在薄壁构建耐撞性中的应用,中国机械工程,2007,18(4):479-483
    [45]阎宏生,胡云昌,牛勇.基于神经网络响应面的结构可靠性分析方法研究.海洋工程,2002,20(2):1-6
    [46]Hall K, Thomas J, Dowell E. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows. AIAA,2000,38:1853-1862
    [47]Romanowski M. Reduced order unsteady aerodynamic and aeroelastic models using karhunen-loeve eigenmode. AIAA,1996,96-194
    [48]Dowell E, Hall K. Modeling of fluid-structure interaction. Annual Review of Fluid Mechanics,2001,33:445-490
    [49]Willcox K, Peraire J. Application of model order reduction to compressor aeroelastic models. In:Proceedings of ASME International Gas Turbine and Aeroengine Congress. Munich,2000,2000-0315
    [50]Willcox K, Peraire J. Application of reduced-order aerodynamic modeling to the analysis of structural uncertainty in bladed disks. In:Proceedings of ASME International Gas Turbine and Aeroengine Congress. Amsterdam,2002
    [51]Ly H V, Tran H T. Modeling and control of physical processes using proper orthogonal decomposition. Journal of Mathematical and Computer Modeling,1999
    [52]Ravindaran S S. A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. Int J Numer Meth Fluids,2000,34:425-448
    [53]Kowalski M E, Jin J-M. Karhunen-love based model order reduction of systems. In:Proceeding of the International Conference on Modeling and nonlinear Simulation of Microsystems,2002,1:552-555
    [54]Meyer M, Matthies H G. Efficient model reduction in nonlinear dynamics using the karhunen-love expansion and dual-weighted-residual methods. Computational Mechanics,2003,31:179-191
    [55]Bui T T, Damodaran M, Wilcox K. Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics. In:Proceedings of the 15th AIAA Computational Fluid Dynamics Conference,2003
    [56]Grimme E J. Krylov Projection Methods for Model Reduction. PhD thesis, University of Illinois at Urbana-Champain,1997
    [57]Chou M, White J. Efficient formulation and model-order reduction for the transient simulation of three-dimensional vlsi interconnect. In IEEE Transactions On Computer-Aided Design of Integrated Circuit and Systems,1997,16: 1454-1476
    [58]Wang F, White J. Automatic model order reduction of a microdevice using the arnoldi approach. In Proceedings of the International Mechanical Engineering Congress and Exposition,1998:527-530
    [59]Lassaux G, Wilcox K. Model reduction for active control design using multi-point arnoldi methods (AIAA Paper 2003-0616). In Proceedings of the 41st Aerospace Sciences Meeting and Exibit, January 2003
    [60]Willcox K, Peraire J, White J. An arnoldi approach for generation of reducedorder models for turbomachinery. Computers and Fluids,2002,31(3):369-389
    [61]Chen Y, White J. A quadratic method for nonlinear model order reduction. In: Proceeding of the international Conference on Modeling and Simulation of Microsystems.2000,477-480
    [62]Phillips J R. Projection-based approaches for model reduction of weakly nonlinear systems, time-varying systems. In:IEEE Transactions On Computer-Aided Design of Integrated Circuit and Systems,2003,22:171-187
    [63]Rewienski M, White J. A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. In IEEE Transactions On Computer-Aided Design of Integrated Circuit and Systems,2003,22:155-170
    [64]Guyan R J. Reduction of stiffness and mass matrices. AIAA J,.1965,3(2):380-381
    [65]Wilson E L, Bayo E P. Use of special ritz vectors in dynamic substructure analysis. AIAA J,1967,5(7):1944-1954
    [66]Moore B C. Principal component analysis in linear systems:Controllability, observability, and model reduction. IEEE Transactions on automatic control,1981,26(1):17-32
    [67]Almroth B O, Stern P, Brogan F A. Automatic choice of global shape function sin structural analysis. AIAA Journal,1978,16:525-528
    [68]Noor A K, Peters J M. Reduced basis technique for nonlinear analysis of structures. AIAA Journal,1980,18(4):455-462
    [69]Noor A K, Peters J M. Multi-parameter reduced basis technique for bifurcation and post-buckling analysis of composite plates. Int J Num Meth Engrg,1983,19:1783-1803
    [70]Fink J P, Rheinboldt W C. On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z Angew Math Mech,1983,63:21-28
    [71]Porsching T A. Estimation of the error in the reduced basis method solution of nonlinear equations. Math Comput,1985,45(172):487-496
    [72]Peterson J S. The reduced basis method for incompressible viscous flow calculations. SIAM J Sci. Statist. Comput,1989,10(4):777-786
    [73]Balmes E. Parametric families of reduced finite element models:Theory and applications. Mechanical Systems and Signal Processing,1996,10(4):381-394
    [74]Ito K, Ravindran S S. A reduced-order method for simulation and control of fluid flows. Journal of Computational Physics,1998,143(2):403-425
    [75]Maday Y, Patera A T, Turinici G. Global a priori convergence theory for reduced-basis approximation of single-parameter symmetric coercive elliptic partial differential equations. C R Acad Sci Paris, S'erie I,2002,335(3):289-294
    [76]Maday Y, Patera A T, Turinici G. A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. Journal of Scientific Computing,2002,17(1-4):437-446
    [77]Machiels L, Maday Y, Oliveira I B, et al. Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems. C R Acad Sci Paris, Serie I,2000,331(2):153-158
    [78]Machiels L, Maday Y, Patera A T. Output bounds for reduced-order approximations of elliptic partial differential equations. Comp Meth Appl Mech Engrg,2001,190(26-27):3413-3426
    [79]Veroy K, Prud'homme C, Rovas D V, et al. A Posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 2003-3847). In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference,2003,2003-3847
    [80]Veroy K, Prud'homme C, Patera A T. Reduced-basis approximation of the viscous Burgers equation:Rigorous a posteriori error bounds. C. R. Acad. Sci. Paris, S'erie I,2003,337(9):619-624
    [81]Veroy K, Rovas D V, Patera A T. A posteriori error estimation for reducedbasis approximation of parametrized elliptic coercive partial differential equations: "Convex inverse" bound conditioners. Control, Optimisation and Calculus of Variations,2002,8:1007-1028
    [82]Grepl M A, Patera A T. A posteriori error bounds for reduced-basis approximations of parameterized parabolic partial differential equations. Math Modell Numer Anal,2005,39(1):157-181
    [83]Nguyen N C, Veroy K, Patera A T. Certified Real-Time Solution of Parameterized Partial Differential Equations. In:Handbook of Materials Modeling, New York,2005,1523-1558
    [84]Prud'homme C, Rovas D, Veroy K, et al. Reliable real-time solution of parametrized partial differential equations:reduced-basis output bound methods. J Fluids Engrg,2002,124(1):70-80
    [85]Veroy K, Patera A T. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations:rigorous reduced-basis a posteriori error bounds. Int J Numer Methods Fluids,2005,47:773-788
    [86]Rozza G, Veroy K. On the stability of the reduced basis method for Stokes equations in parameterized domains. Comput Methods Appl Mech Engrg,2007,196:1244-1260
    [87]Patera A T, Rφnquist E M. Reduced basis approximation and a posteriori error estimation for a Boltzmann model. Comput Methods Appl Mech Engrg,2007,196:2925-2942
    [88]Ito K, Ravindran S S. Reduced basis method for optimal control of unsteady viscous flows. International Journal of Computational Fluid Dynamics,2001,15(2):97-113
    [89]Liu G R, Zaw Khin, Wang Y Y. Rapid inverse parameter estimation using reduced-basis approximation with asymptotic error estimation. Comput Methods Appl Mech Engrg,2008,197:3898-3910
    [90]Liu G R, Lee J H, Patera A T, et al. Inverse identification of thermal parameters using reduced-basis method. Comput Methods Appl Mech Engrg,2005,194:3090-3107
    [91]Nguyen N C. Reduced Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations:Application to Inverse Analysis:[PhD Thesis]. Singapore:National University of Singapore,2005
    [92]Hyunh D B P. Reduced-Basis Approximation and Application to Fracture and Inverse Analysis:[PhD Thesis]. Singapore:National University of Singapore,2007
    [93]Veroy K. Reduced-Basis Methods Applied to Problems in Elasticity:Analysis and Applications:[PhD Thesis] Massachusetts:MIT,2003
    [94]Hyunh D B P, Patera A T. Reduced-basis approximation and a posteriori error estimation for stress intensity factors. Int J Numer Mech Engrg,2007,72(10):1219-1259
    [95]Milani Roberto, Quarteroni Alfio, Rozza Gianluigi. Reduced basis method for linear elasticity problems with many parameters. Comput Methods Appl Mech Engrg,2008,197:4812-4829
    [96]Sen S, Veroy K, Huynh D B P, et al. "Natural Norm" a posteriori error estimators for reduced-basis approximation. J Comput Phys,2006,217:37-62
    [97]Liu G R, Zaw Khin, Wang Y Y, et al. A novel reduced-basis method with upper and lower bounds for real-time computation of linear elasticity problems. Comput Methods Appl Mech Engrg,2008,198:269-279
    [98]Nguyen N C. A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parameterized linear elliptic partial differential equations. Journal of Computational Physics,2007,227:983-1006
    [99]徐芝纶.弹性力学简明教程.北京:高等教育出版社,2002,105-140
    [100]Kincaid D, Cheney W. Numerical Analysis:Mathematics of Scientific Computing. Pacific Grove, CA:Brooks/Cole,2002,615-680
    [101]Zienkiewica O C, Taylor R L. The Finite Element Method, fifth de, volume2: Solid Mechanics. Oxford:Butterworth-Hinemann,2000,111-243
    [102]Bathe K J. Finite Element Procedure. Upper Saddle River:Prentice Hall, 1996,148-299
    [103]Liu G R, Quek S S. Finite Element Method:A Practical Course. Burlington: Butterworth-Heinemann,2003,173-198
    [104]张贤达.矩阵分析与应用.北京:清华大学出版社,2004,589-612
    [105]Trefethen L N, Bau D. Numerical Linear Algebra. Philadelphia:SIAM Press, 1997,24-37
    [106]Demmel J, Veselic K. Jacobi's method is more accurate than QR. SIAM J Matrix Anal Appl,1992,13(4):1204-1245
    [107]钱德拉佩特拉,贝莱冈度.工程中的有限元方法.北京:机械工业出版社,2005,22-29
    [108]Golub G H, Van L C F. Matrix Computation. Baltimore:The John Hopkins University Press,1989
    [109]Saad Y. Iterative Methods for Sparse Linear Systems. Boston:PWS Publishing Company,1996
    [110]Greenbaum A. Iterative Methods for Solving Linear Systems. Philadelphia: SIAM Press,1997
    [111]Kelley C T. Iterative Methods for Linear and Nonlinear Equations. Philadelphia:SIAM Press,1995
    [112]Demmel J W. Applied Numerical Linear Algebra. Philadelphia:SIAM Press, 1997,299-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700