用户名: 密码: 验证码:
红砂岩粗粒土加筋挡墙力学机理和地震稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红层软岩主要是指侏罗纪到新近纪的陆相红色岩系,岩性为泥岩、砂岩、泥质砂岩、砂质泥岩、粉砂岩等,俗称红砂岩粗粒土,在我国分布广泛。区域性分布的红砂岩粗粒土在路基工程中得到了大量应用,但是红砂岩粗粒土填方路堤开裂、稳定性不佳及不均匀沉降等病害一直是普遍和突出的问题,给行车舒适性和安全性造成了极不利的影响。因此,红砂岩粗粒土加固处治技术是红层地区软岩填料应用于路基工程的关键之一。针对上述问题,本文依托湖南省交通厅科技项目“高速公路新型加筋土结构技术研究与示范工程”(200612)、湖南省教育厅科研项目“高速公路加筋土路堤力学行为与设计方法的研究”(08C199)等科研课题,结合湖南省湘潭至衡阳高速公路加筋红砂岩粗粒土路堤的建设,采用现场试验、室内试验、理论分析和数值模拟等方法,开展红砂岩粗粒土加筋路堤挡墙力学机理及地震稳定性的研究。主要进行了以下几个方面的工作:
     (1)针对湘南红层软岩填料,在湖南潭衡西线高速公路上进行红砂岩路堤大尺度原位推剪试验,分析红砂岩粗粒土在推剪力作用下的变形特性、力学特性以及破坏特征,得到红砂岩粗粒土原位推剪试样三维滑动面的简化处理方法。并以极限平衡为理论基础,推导在考虑三维滑动面时路堤填料强度参数计算公式,获得红砂岩粗粒土的强度指标。
     (2)采用格宾网和高强土工格栅等加强红层软岩填料,针对格宾网和土工格栅加筋红砂岩粗粒土,分别制备不同加筋层数、不同压实度和不同含水量的试样,进行一系列大三轴试验。主要研究加筋红砂岩粗粒土强度和应力-应变特性,分析红砂岩加筋粗粒土的宏观力学机理,并引入强度比参数分析加筋效果,探讨土的含水量和压实度、加筋层数等对加筋红砂岩粗粒土力学特性和变形的影响。将格宾网与土工格栅加筋效果进行对比,优选红砂岩粗粒土加筋加固方案。
     (3)以PFC3D程序和离散颗粒流理论为研究平台、利用FISH语言编程进行二次开发,建立格宾网加筋红砂岩粗粒土颗粒流数值模型,以大三轴试验、筋材拉伸试验及拉拔试验等为基础,校正颗粒流模型的细观力学参数。在此基础上,研究加筋红砂岩粗粒土细观加筋机理和细观力学特性,分析围压和加筋层数等对其细观力学特性的影响,并获得不同应变阶段加筋红砂岩粗粒土颗粒位移场分布特性和内部剪切带发展规律,为从本质上认识红砂岩粗粒土加筋加固机理提供了方法。
     (4)针对潭衡西线格宾加筋红砂岩粗粒土挡墙试验段,在现场布置各种测试元器件,进行比较系统的监测,得到格宾加筋红砂岩粗粒土挡墙墙面变形、墙后土压力分布、格宾网拉筋变形等规律。以FLAC3D为研究工具,建立格宾石笼面墙、土、格宾网、及接触面的三维耦合数值模型,对影响挡墙受力和变形的主要参数进行数值仿真与优化分析,提出红砂岩粗粒土路堤格宾加筋处治设计时要考虑的控制因素及可供设计和施工参考的资料。
     (5)利用FLAC3D动力分析模块,进行格宾加筋红砂岩粗粒土挡墙抗震性能数值分析,通过室内拉拔试验和模型墙抗震试验结果校正数值模型参数。给出格宾加筋红砂岩粗粒土挡墙在地震作用下的动力响应规律(加速度时程、位移时程、破坏模式等),系统分析结构材料参数以及地震动参数变化对挡墙动力响应的影响,提出格宾加筋红砂岩粗粒土挡墙抗震设计位移控制标准、地震加速度系数取值方法以及不同抗震设防区格宾网合理竖向间距。
     (6)基于不同形状的简化破裂面,将挡墙加筋体划分成一定数量水平土条,针对不同模量加筋材料,提出地震作用下加筋土挡墙内部稳定性设计的水平条分方法,推导筋材拉力和所需筋材长度的计算公式,并分析填土内摩擦角、地震加速度系数对筋材拉力及所需筋材长度的影响。为加筋土挡墙抗震设计提供了方法。
     (7)考虑加筋对路堤抗侧刚度的影响及筋材与土体间的摩擦力,提出将加筋路堤简化为一个由弹簧、阻尼器、筋—土摩擦片相连接的竖向多质点体系。基于达朗贝尔原理,推导水平地震作用下加筋路堤多质点体系的动力方程,将动力方程所代表的动力学系统用状态空间予以描述,最后基于SIMULINK仿真平台建立动力方程的求解模型,得到加筋路堤地震反应结果。为加筋路堤地震反应预估提供了简化方法。
Red soft rock that mainly belongs to continental red rock series from Jurassic to Neogene is widely distributed in China, simply intitule Red-sandstone granular soil. Its lithology is commonly classified as mudstone, sandstone, shaly sand, sandy mudstone, siltstone, etc. Regionally distributed Red-sandstone granular soil is largely used as embankment fillings. However, the engineering practice shows that Red-sandstone granular soil embankment generally exsists some prominent disadvantages such as poor stability, easily cracking, uneven settlement, etc. It causes negative influences to the driving comfort and safety. Strengthening technology for Red-sandstone granular soil plays a important role in the application of red soft rock fillings to embankment engineering in red beds area. In this paper, therefore, the mechanical behaviors and seismic stability of reinforced Red-sandstone granular soil retaining wall were researched deeply by in-situ tests, laboratory experiments, theoretical analysis and numerical simulations, combining with the construction of reinforced Red-sandstone granular soil embankment in highway from Xiangtan to Hengyang in Hunan province and the following projects:Study on new reinforced structure in Highway and its demonstration engineering supported by Hunan Province Transportation Department Research Project (200612) and Study on mechanical mechanism and design method of reinforced highway embankment supported by Hunan Provincial Department of Education Project (08c199). The main researches had been carried out as follows:
     (1) Large-scale horizontal push-shear field tests were carried out aiming at red soft rock fillings of southern Hunan province, test sites on Western Tanheng highway of Hunan province. Mechanical characteristics, deformation properties and failure mechanism of Red-sandstone granular soil embankment when acted thrust were analyzed. Simplified method for three-dimensional sliding surface of its field push-shear sample was proposed. Based on the theoretical analysis of three-dimensional thrust-sliding limit equilibrium method, the computation formulas for the large-scale field horizontal push-shear test considering three-dimensional sliding surface was inferred, and the shear strength parameters of red-sandstone granular soil were calculated.
     (2) Gabion mesh and high strength geogrid were adopted to strengthen red soft rock fillings. A series of large-scale triaxial tests were carried out on gabion mesh and high strength geogrid reinforced Red-sandstone granular soil with different reinforcement layers, different compaction and different water content. Microscopic reinforcement mechanism, strength and stress-strain characteristics of reinforced Red-sandstone granular soil were studied. The effects of reinforcement layers, water content and compaction on stress-strain relationship and strength properties of red-sandstone granular soil were analyzed. The reinforcing effects were evaluated by introducing the strength ratio parameter. Optimization of reinforcement scheme was put forward based on the comparisons between geogrid and gabion mesh reinforced red-sandstone granular soil.
     (3) Utilizing PFC3D program and discrete particle flow theory, particle numerical model of Red-sandstone granular soil reinforced with gabion meshes was builded by programming secondary development using FISH. The micro-mechanical parameters of the particle model were calibrated according to large-scale triaxial experiments, tensile tests of gabion mesh and pull-out tests. On this basis, reinforcement micro-mechanism and micro-mechanical properties of reinforced Red-sandstone granular soil were studied, the impacts of confining pressure and reinforcement layers on its micro-mechanical properties were also analyzed. Its displacement distribution and shear zone development law were found at different strain levels. All of these provide nature method for understanding reinforcement mechanism of reinforced Red-sandstone granular soil.
     (4) Comprehensive observations of the test section of reinforced Red-sandstone granular soil retaining wall in western Tanheng highway were accomplished by various testing elements. The distribution pattern such as deformation of the wall face, soil pressure of the wall back, tensile strain of the gabion mesh layers was obtained by the observations. Using FLAC3D program, the three-dimensional coupling numerical model of stone cage wall face, filling, gabion meshes and interfaces was builded to calculate and optimize the stress and strain of the retaining wall in different influencing parameters, and some controlled design parameters of Red-sandstone granular soil embankment reinforced with gabion meshes which should be taken into account were presented.
     (5) Numerical simulation using dynamic analysis module of finite difference procedure FLAC3D was conducted on a full-scale gabion-reinforced Red-sandstone granular soil retaining wall subjected to horizontal seismic, and the numerical model wall was validated by comparison of the numerical and the measured seismic experimental results. The dynamical responses of the retaining wall which subjected to seismic waves with different amplitude and reinforced with different vertical spacing reinforcements, such as horizontal and vertical displacement, acceleration and failure mode were analyzed. On the basis of the above analysis, some measures and suggestions such as the seismic-induced displacement control standard, the reasonable vertical spacing of the gabion mesh reinforcement in different seismic region, and the calculation formula for earthquake acceleration amplification factor were proposed for the seismic design of gabion-reinforced soil retaining wall.
     (6) Based on the assumption of deform rupture shape of the wall which is directed toward the extensibility and inextensibility of reinforcements, a limit equilibrium method identified as horizontal slice method was presented to analyze the internal stability of reinforced retaining wall subjected to horizontal and vertical seismic loads. Formulas about the required tensile force and length of reinforcements to maintain the internal stability of the wall were deduced. In this horizontal slice method, the sliding wedge of reinforced retaining wall was divided into a number of horizontal slices. The effects of variation of parameters such as backfill soil friction angle, horizontal and vertical seismic acceleration coefficients on the stability of the reinforced soil wall were studied. It offered practical method for seismic design of reinforced retaining wall.
     (7) Considering the effects of reinforcements on soil lateral stiffness and reinforcement-soil friction, the reinforced embankment was simplified as a multi-mass system which was connected by springs, dampers, and reinforcement-soil interfaces. Based on the d'alembert theorem, dynamic equation of the multi-mass system under horizontal seismic was deduced. The dynamic system represented by the dynamic equation was expressed by the state space method. According to the state equation, a numerical simulation model was established using SIMULINK so that the dynamic response of reinforced embankment can be obtained. It offered simplified method for earthquake response prediction of reinforced retaining wall.
引文
[1]郭永春,谢强,文江泉.我国红层分布特征及主要工程地质问题[J].水文地质工程地质,2007,(6):67-71.
    [2]卿三惠.红层软岩地区高速铁路软基路堤沉降控制研究[D].成都理工大学博士学位论文,2007.
    [3]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [4]钟共清.湖南红层分布与岩溶形态分类探讨[J].水利技术监督,2002,(5):45-47.
    [5]中国科学院古脊椎动物与古人类研究所,中国科学院南京古生物研究所.华南中、新生代红层—广东南雄“华南白垩纪—早第三纪红层现场会议”论文集[C].北京:科学出版社,1979:1-98.
    [6]中国科学院南京地质古生物研究所,云南省地质局,云南省冶金局地质勘探公司.云南中生代红层[M].北京:科学出版社,1975:1-31.
    [7]中国科学院《中国自然地理》编委会.中国自然地理[M].北京:科学出版社,1980:139-151.
    [8]万维方.“滇中红层”地区路基病害整治及对策[J].石家庄铁道学院学报,2004,17(supp):105-107.
    [9]彭瑞华.湘黔铁路红层边坡稳定性评估[J].土工基础,2006,20(4):44-48.
    [10]孙乔宝,刘涌江,李华昆,杨青.安楚高速公路红层软岩公路路堤病害处治方法[J].公路交通科技,2005,25(6):50-53.
    [11]陈晓斌.高速公路粗粒土路堤填料流变性质研究[D].中南大学博士学位论文,2007.
    [12]潘大文.“加筋土”技术在变电站边坡防护中的应用[J].电力建设,2001,22(3):36-42.
    [13]张深斌,邸建玄,张新生.一种新型的软土路基加固处理技术—土工格栅加砂砾垫层处治软土路基[J].云南交通科技,1999,15(6):25-28.
    [14]Fragaszy R J, Lawton E. Bearing capacity of reinforcers and subgrades [J]. Journal of Geotechnieal Engineering, ASCE,1984,11:1501-1507.
    [15]杨果林.包裹式加筋土挡墙治理矸石山滑坡试验研究[J].湘潭矿业学院学报,1999,14(2):79-83
    [16]李心平.平铺土工格栅对高填方路堤边坡的加固防护[J].铁道建筑技术,2001(增刊):14-16.
    [17]易田宏.Netlon土工格栅在国道绕城线软土地基处理中的应用[J].中南公路工程,2000,25(2):88-89.
    [18]林彤,王迪友,郑轩.土工格栅加筋陡坡路堤在三峡库区道路建设中的应用[J].水利水电快报,2002,23(23):4-6.
    [19]朱湘,黄晓明,邓学钧.土工格栅加筋路堤机理研究[J].公路交通科技,2000,17(1):l-4.
    [20]周志刚,郑健龙.公路土工合成材料设计原理及工程应用[M].北京:人民交通出版社,2001.
    [21]黄晓明,朱湘,编著.公路土工合成材料应用原理[M].北京:人民交通出版社,2001.
    [22]Vidal M H. The development and future of reinforced earth [A]. In:Proceedings of a Symposium on Earth Reinforcement at the ASCE Annual Convention [C]. Pittsburgh, Pennsylvania,1978,1-61.
    [23]杨果林:加筋土挡土结构动力特性研究[D].中南大学博士学位论文,2001.
    [24]Simac M R, Christopher B R, Bonczkiewicz C. Instrumented field performance of a 6m geogrid wall. In:Proceedings of 4th International Conference on Geotextile, Geomembrance and Related Products. Netherlands,1990,53-59.
    [25]周神根.刚性面墙的加筋土挡墙[J].路基工程,1996,67(4):1-9.
    [26]Lo S C R, Li S Q, Gopalan M, Gao Z.背对背连接的土工合成材料加筋土挡墙的分析与设计[J].路基工程,1997,75(6):78-85.
    [27]赵维炳,雷国辉,陈永辉,李松泉,丁建奇.土工织物加筋与塑料板排水联合加固软基的计算方法研究[J].岩土工程学报,1998,20(3):61-65.
    [28]姜燕玲.粉喷桩与土工格栅联合加固技术有限元计算方法中的几个问题[J].山东轻工业学院学报,2002,16(4):21-24.
    [29]杨果林,邹银生.预张拉土工格栅加筋土挡墙工程应用与分析[J].湘潭矿业学院学报,2002,17(3):67-70.
    [30]申桂花.秦沈客运专线土工格栅拉筋加筋土挡土墙的设计[J].路基工程,2002,104(5):17-19.
    [31]王炳龙,周顺华,宫全美,方卫民.不同高度土工格室整治基床下沉病害的试验研究[J].岩土工程学报,2003,25(2):163-166.
    [32]肖衡林,王钊,张训祥.处理废弃轮胎的一种有效方法—轮胎加筋土结构[J].环境工程,2002,20(3):51-54.
    [33]Sharma J S, Bolton M D. Centrifugal arid Numerical Modelling of Reinforced Embankments on soft Clay Installed with Wick Drains [J]. Geotextiles and Geomembranes,2001,19:23-44.
    [34]孙钧,等.新型土工材料与工程整治[M].北京:中国建筑工业出版社,1998.
    [35]陈永辉,施建勇,马文斌.土工织物加筋堤坝复合有限元分析方法[J].水利学报,2003,(1):28-34.
    [36]刘俊彦,罗强.土工格栅、土工格室加筋垫层对软土地基沉降控制效果的有限元分析[J].铁道标准设计,2002,(12):5-7.
    [37]Yu H S, Sloan S W. Finite Element Limit Analysis of Reinforced soils [J].Computers and structures,1997,63(3):567-577.
    [38]Chai J C, Miura N, Bergado D T, Long P V. Finite element analysis of embankment failure on soft subsoil [J]. Geotechnical Engineering,1997,28(2): 249-276.
    [39]刘浩吾,王雪松.论土石坝的新型结构—加筋堆石坝[J].水利水电技术,2000,31(4):19-21.
    [40]朱湘,黄晓明.有限元方法分析影响加筋路堤效果的几个因素[J].土木工程学报,2002,35(6):86-92.
    [41]Rowe R K, Skinner G D. Numerical analysis of geosynthetic reinforced retaining wall constructed on a layered soil foundation [J]. Geotextiles and Geomembranes,2001,19:387-412.
    [42]魏丽敏,华祖馄.加筋土地基筋带内力量测与分析[J].岩土工程学报,1997,19(1):15-21.
    [43]Chungsik Y. Laboratory investigation of bearing capacity behavior of strip footing on geogrid-reinforced sand slope [J]. Geotextiles and Geomembranes, 2001,19:279-298.
    [44]徐林荣,华祖馄.加筋边坡承载力和位移模型试验及结果分析[J].铁道学报,1999,21(1):72-76.
    [45]Borges J L, Cardoso A S. Structural Behavior and Parametric Study of reinforced Embankments on Soft Clays [J]. Computers and Geotechnics,2001, 28:209-233.
    [46]Fannin R J.土工格栅加筋的荷载—应变—时间的野外观测试验[J].路基工程,1995,66(5):63-69.
    [47]薛忠军,张肖宁,王佳妮,邹桂莲.土工织物加筋沥青面层抗裂性能评价试 验方法研究[J].公路交通科技,2008,25(1):33-37.
    [48]王亚玲,张尚昆,颜祖兴,周玉利.土工格栅加筋水泥稳定碎石材料的疲劳试验[J].长安大学学报(自然科学版),2006,26(2):18-21.
    [49]张孟喜,张石磊.H-V加筋土性状的颗粒流细观模拟[J].岩土工程学报,2008,30(5):625-631.
    [50]柏永生,于广云,李宏波.加筋土挡墙差异沉降数值模拟研究[J].路基工程,2008,136(1):71-72.
    [51]柏巍,陈灯红,王乾峰.加筋路堤边坡的数值模拟分析[J].灾害与防治工程,2007,62(1):1-5.
    [52]李晓俊.土工带加筋碎石垫层的三轴实验与有限元分析[D].太原理工大学硕士学位论文,2002.
    [53]俞永华,谢永利,杨晓华,李新伟.土工格室柔性搭板处治的路桥过渡段差异沉降三维数值分析[J].中国公路学报,2007,20(4):12-18.
    [54]王海涛.土石坝加筋有限元数值模拟[J].河北工程大学学报(自然科学版),2008,25(3):34-37.
    [55]吴顺川,姜春林,王金安.失稳挡墙加固中锚喷力学分析及数值模拟[J].岩土力学,2007,28(6):1192-1196.
    [56]高文华,Bathurst R J.条形荷载下加筋土边坡破坏机制的数值模拟[J].土木工程学报,2007,40(6):54-58.
    [57]周世良,王多垠.格栅加筋土挡墙流固耦合动力响应的有限元解法[J].重庆建筑大学学报,2006,28(5):38-42.
    [58]肖成志,刘波,孙建诚,栾茂田.格栅加筋黏性土挡墙黏弹塑性有限元分析[J].铁道工程学报,2008,120(9):7-12.
    [59]熊宁,杨有海,刘钢.路堤荷载下加筋垫层加固软土地基的有限元分析[J].兰州交通大学学报,2008,27(6):33-36.
    [60]陈建峰,叶铁锋,俞松波,石振明.软土地基加筋石灰土路堤离心模型试验数值模拟[J].岩石力学与工程学报,2008,27(9):1939-1944.
    [61]周世良,刘占芳,何光春.饱水格栅加筋土挡墙结构特性数值分析[J].水利学报,2006,37(8):1015-1021.
    [62]杨果林,王永和.钢筋混凝土网格式加筋土挡土结构强度特性与试验研究[J].岩土工程学报,1999,21(5):534-539.
    [63]杨果林.一种新型的挡土结构试验研究[J].工业建筑,1998,28(4):27-31.
    [64]杨果林,李海深.包裹体—对拉锚板复合式加筋土挡土结构力学分析与工程应用[J].湘潭工学院学报,2000,21(3):76-80.
    [65]杨果林.网格式加筋土挡土结构的稳定分析与工程应用[J].煤炭学报,1999,24(1):78-81.
    [66]杨果林.现代加筋土技术研究与进展[J].力学与实践,2002,24(1):9-17.
    [67]周晖,等.加筋土技术研究现状及发展趋势[J].矿业工程,2005,3(6):17-18.
    [68]山西省交通厅.公路加筋土工程设计规范(JTJ015-91).北京:人民交通出版社,1991.
    [69]中华人民共和国行业标准.公路加筋土工程施工技术规范(JTJ035-91).北京:人民交通出版社,1991.
    [70]中华人民共和国行业标准.公路土工合成材料应用技术规范(JTJ019-98).北京:人民交通出版社,1998.
    [71]中华人民共和国行业标准.公路土工合成材料试验规程(JTJ060-8).北京:人民交通出版社,1998.
    [72]中华人民共和国行业标准.铁路工程土工合成材料应用技术规范(TB10115-99).北京:中国铁道出版社,1999.
    [73]中华人民共和国行业标准.水运工程土工织物应用技术规程(JTJ/T239-98).北京:人民交通出版社,1998.
    [74]中华人民共和国行业标准.水利水电工程土工合成材料应用技术规范(SL/T225-98).北京:水利电力出版社,1995.
    [75]HAERI S M, NOURZAD R, OSKROUCH A M. Effect of geotextile reinforcement on the mechanical behavior of sands [J]. Geotextiles and Geomembranes,2000,18(6):385-402.
    [76]YANG Z. Strength and deformation characteristics of reinforced sand [R], Los Angeles:University of California,1972.
    [77]Rajagopa L K, Krishnaswamy N R, MadhaviLatha G. Behavior of Sand Confined with Single and Multiple Geocells [J]. Geotextiles and Geomembranes,1999,17:171-184.
    [78]Chandrasekaran B, Broms B B, Wong K S. Strength of Fabric Reinforced Sand Under Axisymmetric Loading [J]. Geotextiles and Geomembranes,1989,8: 293-310.
    [79]Atamatzidis D K, Athanasopoulos G A, Papantonopoulos C I. Sand-geotextile interaction by triaxial compression testing [A]. In:5th International Conference on Geosynthetics [C]. Singapore:Southeast Asia Chapter-International Geosynthetics Society,1994,377-380.
    [80]Moroto N. Triaxial compression test for reinforced sand with a flexible tension
    member [A]. In:International Symposium on Earth Reinforcement Practice [C]. Kyushu:Balkema A A,1992,131-134.
    [81]Morel J C, Gourc J P. Static and cyclic behavior of and reinforced by mesh elements [A]. In:6th International Conference on Geosynthetics [C]. Atlanta: Industrial Fabrics Association International,1994,1069-1072.
    [82]Latha M G. Investigations on sand reinforced with different geosynthetics [J]. ASTM Geotechnical Testing Journal,2006,29(6):474-481.
    [83]Haeri S M, Noorzad R, Oskoorouchi A M. Effect of geotextile reinforcement on the mechanical behaviour of sand [J]. Geotextiles and Geomembranes,2000, 18(6):385-402.
    [84]Gray D H, Refeai Al. Behavior of fabric vs fiber-reinforced sand [J]. Journal of Geotechnical Engineering, ASCE,1986,112(8):804-820.
    [85]Broms B B. Triaxial tests with fabric-reinforced soil [A]. In:Proeeedings of the International Conference on the Use of Fabric in Geotechnics [C]. Paris:Ecole Nationale des Ponts et Chaussees,1977,129-134.
    [86]McGown A, Andrawes K Z, Al-Hasani M M. Effect of inclusion properties on the behavior of sand [J]. Geotechnique,1978,28(3):327-346.
    [87]Rajagopal K, Krishnaswamy N R, Latha G M. Behavior of sand confined with single and multiple geocells [J]. Geotextiles and Geomembranes,1999,17(1): 171-184.
    [88]Bathurst R J, Karpurapu R. Large scale triaxial tests on geocell reinforced granular soils. Geotechnical Testing Journal [J].1993,16 (3):296-303.
    [89]吴景海.土工合成材料与土界面作用特性的研究[J].岩土工程学报,2001,23(1):90-93.
    [90]王吉力,马时冬.加筋砂应力—应变关系的三轴试验研究[A].全国第三届土工合成材料学术会议论文选集[C],1992,17-23.
    [91]杜运兴,尚守平,周芬.CFRP加筋中砂的试验研究[J].湖南大学学报(自然科学版),2005,32(6):28-31.
    [92]张孟喜,闵兴.单层立体加筋砂土性状的三轴试验研究[J].岩土工程学报,2006,28(8):931-936.
    [93]陈群,刘垂远,何昌荣.对两种材料加筋土的三轴试验研究[J].路基工程,2009,142(1):48-50.
    [94]雷胜友,惠会清.非柔性加筋材料加筋土的强度特性分析[J].长安大学学报(建筑与环境科学版),2004,21(1):1-3.
    [95]郑荣基.加筋土强度的试验研究[J].兰州铁道学院学报,1994,13(3):1-8.
    [96]陈存礼,胡再强,王志刚.不同应力路径对加筋土应力—应变关系的影响[J].陕西水力发电,1998,14(1):13-16.
    [97]邹新华,张起森,王天庆.加筋砂土三轴试验特性研究[J].长沙交通学院学报,1998,14(3):55-62.
    [98]舒子亨,王勇.加筋土应力应变和强度特性的试验研究[J].内蒙古水利,1999,(3):5-8.
    [99]保华富,周亦唐,赵川,黄英.聚合物土工格栅加筋碎石土试验研究[J].岩土工程学报,1999,21(2):217-221.
    [100]杨锡武,钟以明.筋材结构对其加筋土强度特性的影响研究[J].重庆交通学院学报,2002,21(1):46-50.
    [101]廖红建,钱春宇,马洪宁等.土工织物加筋土的土压力减轻作用试验研[J].工程勘察,2003,(3):1-4.
    [102]Ling H I, Tatsuoka F. Performance of anisotropic geosynthetic-reinforced cohesive soil mass [J]. Journal of the Geotechnical Engineering, American Society of Civil Engineers,1994,120(7):1166-1184.
    [103]Fabian K, Fourie A. Performance of geotextiles-reinforced clay samples in undrained triaxial tests [J]. Geotextiles and Geomembranes,1986,4(1):53-63.
    [104]Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturated soils [J]. Canadian Geotechnical Journal,1978,15:313-321.
    [105]Ingold T S. Reinforced clay subject to undrained triaxial loading [J]. Journal of the Geotechnical Engineering Division, ASCE,1983,109(GT5):738-743.
    [106]Ingold T S, Miller K S. Drained Axisymmetric Loading of Reinforced Clay [J]. Geo. Eng. Div. ASCE,1983,109(7):883-897.
    [107]Ashis K B, Ambarish G, Amalendu G. Shear strength response of reinforced pond ash [J]. Construction and Building Materials,2009,23(6):2386-2393.
    [108]韩志型,刘德贵,姜兵.加筋层数对土工格栅加筋粘土土体变形及强度的影响[J].西南科技大学学报,2008,23(4):25-28.
    [109]谢婉丽,王家鼎,王亚玲.加筋黄土变形和强度特性的三轴试验研究[J].地球科学进展,2004,19(sup):333-339.
    [110]魏红卫,喻泽红,邹银生.排水条件对土工合成材料加筋黏性土特性的影响[J].水利学报,2006,37(7):838-845.
    [111]谢婉丽,薛建功,常波.加筋土动力特性的三轴试验研究[J].灾害学,2008,23(sup):120-124.
    [112]董营营,郑智能,凌天清.含水量对加筋土强度影响的大三轴试验研[J].中外公路,2008,28(3):37-40.
    [113]赵莹莹,赵燕茹,李驰,韩金宝.纤维土的三轴试验研究[J].水利与建筑工程学报,2009,7(1):127-128.
    [114]赵川,周亦唐.土工格栅加筋碎石土大型三轴试验研究[J].岩土力学,2001,22(4):419-422.
    [115]章为民,赖忠中,徐光明.加筋挡土墙离心模型试验研究[J].土木工程学报,2000,33(3):84-90
    [116]Sehofield A N. Cambridge geotechnical centrifuge operations [J]. Geotechnique,1980,20:227-268.
    [117]Taniguchi E, Koga Y, Yasuda S, Morimoto I. A study on stability analysis of reinforced embankments based on centrifuge model tests [A]. In:Proc. International Geotechnical Symposium on theory and practice of earth reinforcement [C]. Fukuka, Japan,1988,485-90.
    [118]Zhang L, Hu T, Huang D, et al. Design of high reinforced embankment and centrifugal verification [A]. Proc. International Conference on Soft Soil Engineering [C]. Science Press, Beijing, China,1993,56-61.
    [119]Mandal J N, Joshi A. A Centrifuge modeling of geosynthetic reinforced embankments on soft ground [J]. Geotextiles and Geomembranes,1996,14: 147-155.
    [120]Sharma J S, Bolton M D. Centrifugal and finite element modeling of reinforced embankments of soft clay [A]. In:Pro. Int. Symposium of Earth Reinforcement [C]. Fukuoka, Japan,1996,267-172.
    [121]Sharma J S, Bolton M D. Finite element analysis of centrifuge tests on reinforced embankments on soft clay [J]. Computers and Geotechnics,1996, 19(1):1-22.
    [122]Sharma J S, Bolton M D. Centrifuge modeling of an embankment on soft clay reinforcement with a Geogrid [J]. Geotextiles and Geomembrnes,1996,14(1): 1-17.
    [123]Porbaha A J, Goodings D. Centrifuge modeling of geotextile-reinforced cohesive soil retaining walls [J]. Journal of Geotechnical Engineering,1996, 122(10):840-848.
    [124]张师德,吴邦颖.加筋土结构原理及应用[M].北京:中国铁道出版社,1995.
    [125]邹静蓉,杨忠,郑国荣,李志勇.土工格室加筋路堤边坡离心模型试验研究[J].公路工程,2007,32(5):5-9.
    [126]张嘎,王爱霞,张建民,李焯芬.土工织物加筋土坡变形和破坏过程的离心模型试验[J].清华大学学报(自然科学版),2008,48(12):2057-2060.
    [127]俞松波,沈明荣,陈建峰,叶铁锋,石振明.离心模型试验中土工格栅拉力测量[J].岩石力学与工程学报,2008,27(11):2295-2301.
    [128]周世良,何光春,汪承志,杨成渝.台阶式加筋土挡墙模型试验研究[J].岩土工程学报,2007,29(1):152-156.
    [129]莫介臻,周世良,何光春,汪承志,杨成渝.加筋土挡墙潜在破裂面模型试验研究[J].铁道学报,2007,29(6):69-73.
    [130]张孟喜,周淮.条带式带齿加筋砂土挡墙的模型试验[J].中国科学E辑:技术科学,2009,39(1):48-56.
    [131]李仲发,王多垠,汪承志.加筋陡坡模型试验及其有限元分析[J].交通科技,2008,229(4):55-58.
    [132]孙兴虎.新老路基路面拓宽变形破坏机理模型试验[J].湖南交通科技,2008,34(1):46-49.
    [133]杜运兴,龙述尧,尚守平.预应力加筋中砂路堤模型静力试验研究[J].湖南大学学报(自然科学版),2008,35(2):27-30.
    [134]高江平.网状加筋挡墙结构的设计理论与方法研究[D].长安大学博士学位论文,2001.
    [135]BATHURST R J, WALTERS D L, HATAMI K. Full-scale performance testing and numerical of reinforced soil retaining walls [A]. In:Proceedings of International Symposium on Earth Reinforcement [C]. Fukuoka:IS Kyushu, 2001,202-231.
    [136]丁钧巍,何光春,汪承志,周世良.台阶格栅加筋土墙土压力的模型试验研究[J].岩石力学与工程学报,2007,26(sup.2):4292-4298.
    [137]许岩,杨果林,吴永照.加筋膨胀土挡墙模型试验研究[J].铁道科学与工程学报,2005,2(4):11-15.
    [138]杨庆,季大雪,栾茂田,张克.土工格栅加筋路堤边坡结构性能模型试验研究[J].岩土力学,2005,26(8):1243-1247.
    [139]杨果林,李海深,王永和.加筋土挡墙动力特性模型试验与动力分析[J].土木工程学报,2003,36(6):105-110.
    [140]吴伟,姚令侃,陈强.坡形和加筋措施对地震响应影响的振动台模型实验研究[J].重庆交通大学学报(自然科学版),2008,27(5):689-694.
    [141]Richardson G N, Lee K L. Seismic design of reinforced earth walls [J]. Journal of the Geotechnical Engineering Division, ASCE,1975,101(GT-2):167-188.
    [142]El-Emam M M, Bathurst R J, Hatami K. Numerical modeling of reinforced soil retaining walls subjected to base acceleration [A]. In:13th WCEE [C]. Canada: Vancouver, B C,2004,2621-2624.
    [143]Iai S. Similitude for shaking table tests on soil-structure-fluid models in 1-g gravitational field [J]. Soils and Foundations,1989,29 (1):105-118.
    [144]Bathurst R J, Hatami K. Seismic response analysis of a geosynthetic-reinforced soil retaining Wall [J]. Geosynthetics International,1998,5 (2):127-166.
    [145]Ramakrishnan S, Budhu M, Britto A. Laboratory seismic tests on geotextile wrap-faced and geotextile-reinforced segmental retaining walls [J]. Geosynthetics International,1998,5(2):55-71.
    [146]Ling H I, Yoshiyuki M, Burke C, Matsushima K, Liu H B. Large-Scale Shaking Table Tests on Modular-Block Reinforced Soil Retaining Walls [J]. Journal of the Geotechnical and Geoenvironmental Engineering,2005,131(4): 465-476.
    [147]Koga Y, Ito Y, Washida S, Shimazu T. Seismic resistance of reinforced embankment by model shaking table tests [J]. International Geotechnical Symposium On Theory and Practice of Earth Reinforcement,1988,413-418.
    [148]Koseki J, Munaf Y, Tatsuoka F, Tateyarna M, Kojima K, Sato T. Shaking table and tilt table test of geosynthetic-reinforced soil and conventional type retaining walls [J]. Geosynthetics International,1998,5(2):73-96.
    [149]Murata O, Tateyama M, Tatsuoka F. Shaking table tests on a large geosynthetic-reinforced soil retaining wall model [A]. In:Recent Case Histories of Permanent Geosynthetic Reinforced Soil Retaining Walls: Proceedings of Seiken Symposium No.11 [C]. Tokyo, Japan,1994,259-264.
    [150]Matsuo O, Tsutsumi T, Yokoyama K, Saito Y. Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls [J]. Geosynthetics International, 1998,5(2):97-126.
    [151]Christopher B R. Design and construction and monitoring of full scale test of reinforced soil walls [A]. In:Recent Case Histories of Permanent Geosynthetic reinforced Soil Retaining Walls [C]. Balkema, Rotterdam,1994,253-257.
    [152]Collin J G, Chouery-Curtis V E, Berg R R. Field observations of reinforced soil structures under seismic loading [A]. In:Proceeding of the International Symposium on Earth. Reinforcement Practice [C]. Fukuoka, Japan,1992, 223-228.
    [153]Tatsuoka F, Tateyama M, Koseki J. Performance of soil retaining walls for railway embankments [J]. Soils and Foundations, (Special Issue on Geotechnical Aspects of the January 17,1995, Hyogoken-Nanbu Earthquake), 1996,311-324.
    [154]王祥,周顺华,顾湘生,等.路堤式加筋挡土墙的试验研究[J].土木工程学报,2005,38(10):119-128.
    [155]张发春.土工格栅加筋土高挡墙的现场试验研究[J].中国铁道科学,2008,29(4):1-7.
    [156]杨广庆,吕鹏,庞巍,赵玉.返包式土工格栅加筋土高挡墙现场试验研究[J].岩土力学,2008,29(2):517-522.
    [157]包俊惠,陶虎,邓国华.弱膨胀土加筋挡土墙现场试验研究[J].电网与水力发电进展,2008,24(1):68-72.
    [158]张永清,王选仓,王朝辉,陈希梅.土工格栅处治填挖交界路基数值模拟与现场试验[J].交通运输工程学报,2008,8(3):63-67.
    [159]胡幼常,邓伟,蔡运生,郭慧光,林勇,张镇山.双向土工格栅加筋路堤现场试验研究[J].交通科技,2007,221(2):32-34.
    [160]邓国华,邵生俊,程新星.膨胀土加筋挡土墙现场试验研究与分析[J].西北农林科技大学学报(自然科学版),2007,35(2):220-224.
    [161]王钊,王协群.土工合成材料加筋地基的应用研究现状[J].地基处理,2000,11(1):9-19.
    [162]Ingol J S. some fractors in the design of geotextile Reinforced Embankments [A]. In:Proc.8th European Conf. SMFE [C],1983,503-508.
    [163]Jewell R A. A Limit Equilibrium design Method for Reinforced Embankments [A]. In:2nd Int. conf.on Geotextiles [C].1982,665-670.
    [164]Quast P. Polymer Fabrics Mats for the improvement of the Embankments stability [A]. In:Proc.8th European Conf. SMFE [C].1983,531-534.
    [165]Takemura J, et al. Bearing Capacities and Deformations of Sand rinforced with Geogrids [A]. In:Proc. Int. Symposium on Earth Reinforcement [C]. Fukuoka, JaPan,1992,601-605.
    [166]Shenbaga R K. Direction and Magnitude of Reinforcement Force in Embankments on soft soils [A]. In:Proc. Int. Symposium on Earth Reinforcement [C]. Fukuoka, Japan,1992,221-225.
    [167]Leshchinsky D, Reinschmidt A J. Stability of membrane reinforced slopes [J]. Journal of Gcotechoical Engineering, ASCE,1985,111(11):1285-1300.
    [168]Gourc G P. Reinforced embankments on weak soil:Different theoretical approaches [A]. In:3rd International Conference on Geotextiles [C]. Austria, 1986,225-232.
    [169]汪承志,王广生,何光春,王多银,刘明维.基于蒙特卡罗法的加筋土陡坡可靠度分析[J].重庆交通学院学报,2004,23(sup.):44-46.
    [170]邓正和,邹志鹏,苏永华.加筋土挡土墙全墙倾覆稳定性可靠度分析[J].交通科技,2007,225(6):34-36.
    [171]涂帆,常方强.土性参数的互相关性对加筋土挡墙可靠度的影响[J].岩石力学与工程学报,2005,24(15):2654-2658.
    [172]Harrison W J, Gerrard C M. Elastic theory applied to reinforced earth [J]. Journal of the Soil Mechanics and Foundation Division,1972,98(12): 1325-1345.
    [173]Gerrard C M. Reinforced soil:an orthorhombic material [J]. Journal of the Geotechnical Engineering,1982,108(12):1460-1474.
    [174]Romstad K M, Herrmann L R, Shen C K. Integrated study of reinforced earth-Ⅰ:Theoretical formulation [J]. Journal of the Geotechnical Engineering Division,1976,102(5):457-471.
    [175]Shen C K, Romstad K M, Herrmann L R. Integrated study of reinforced earth-Ⅱ:Behavior and design [J]. Journal of the Geotechnical Engineering Division,1976,102(6):577-590.
    [176]Di-Prisco C, Nova R. Constitutive model for soil reinforced by continuous threads [J]. Geotextiles and Geomembranes,1994,12(2):161-178.
    [177]Shukla S K, Chandra S. Generalized mechanical model for geosynthetic-reinforced foundation soil [J]. Geotextiles and Geomembranes, 1994,13(12):813-825.
    [178]Yin J H. Nonlinear model of geosynthetic-reinforced granular fill over soft soil [J]. Geosynthetics International,1997,4(5):523-537.
    [179]Chen T C, Chen R H, Lin S S. A nonlinear homogenized model applicable to reinforced soil analysis [J].Geotextiles and Geomembranes,2000,18(5): 349-366.
    [180]Nejad E M, Shahrour I A. simplified elastic-plastic macroscopic model for the reinforced earth material [J]. Mechanics Research Communications,2000,
    27(1):79-86.
    [181]Sawicki A, Kazimierowicz-Frankowsak K. Creep behavior of geosynthetics [J]. Geotextiles and Geomembranes,1998,16(6):365-382.
    [182]Goodman R F, Taylor R L, Brekke T L. A model for the mechanics of jointed rock [J]. Journal of soil Mechanics and Foundation Engineering Division, ASCE,1968,94(3):637-660.
    [183]Clough G W, Duncan J M. Finite element analysis of retaining wall behavior [J]. Journal of soil Mechanics and Foundation Engineering Division, ASCE, 1971,97(12):657-673.
    [184]Desai C S, Zaman M M. Thin layer element for interfaces and joints [J]. International journal for numerical and analytical methods in geomechanics, 1984,8(1):19-43.
    [185]陈慧远.摩擦接触面单元及其分析方法[J].水利学报,1985,(4):44-50.
    [186]Boulon M, Nova R. Modeling of soil structure interface behavior:A comparison between elastic-plastic and rate-type laws [J]. Computers and Geotechnics,1990, (9):21-46.
    [187]殷宗泽,朱泓,许国华.土与结构材料的接触面变形及数学模型[J].岩土工程学报,1994,16(3):14-22.
    [188]张东霁,卢廷浩.土与结构接触面模型的建立与应用[J].岩土工程学报,1998,20(6):63-66.
    [189]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000,(2):71-75.
    [190]高俊合,于海学等.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(8):42-46.
    [191]安关峰,高大钊.接触面弹粘塑性本构关系[J].土木工程学报,2001,34(1):88-91.
    [192]张道宽.土工织物加强软土路基的研究[D].铁道科学研究院博士论文,1987.
    [193]介玉新,李广信等.纤维加筋土计算的新方法[J].工程力学,1999,16(3):81-89.
    [194]吕文良,闫澍旺等.弹塑性有限元在加筋土挡墙中的应用[J].天津大学学报,35(5):596-600.
    [195]Pierre S, Michel J B. Seismic design of RE retaining walls-the contribution of FEA [A]. In:International Geotechnical Symposium on Theory and Practice of Earth Reinforcement [C]. Fukuoka, Japan,1998,95-102.
    [196]甘田昌平.加筋土挡墙设计施工指南[M].日本:土木研究所,1981.
    [197]陈华.塑料土工格栅加筋土挡墙动力有限元分析[D].昆明理工大学硕士研究生学位论文,2002.
    [198]Ling H I, Leshchinsky D, Perry E. Seismic Design and Performance of Geosynthetic Reinforced Soil Structures [J]. Geotechnique:1997,47(5): 933-952.
    [199]Ling H I, Leshchinsky D. Effects of Vertical Acceleration on Seismic Design of Geosynthetic Reinforced Soil Structures [J]. Geotechnique:1998,48(3): 347-373.
    [200]Kramer S L, Paulsen S B. Seismic performance evaluation of reinforced slopes [J]. Geosynthetics International,2004,11(6):429-438.
    [201]Huang C C, Wang W C. Seismic displacement charts for the performance-based assessment of reinforced soil walls [J]. Geosynthetics International,2005,12(4):176-190.
    [202]Michalowski R L. Soil reinforcement for seismic design of geotechnical structures [J]. Computers and Geotechnics,1998,23 (1):1-17.
    [203]Shahgholi M, Fakher A, Jones C J F P. Horizontal slice method of analysis [J]. Geotechnique,2001,51(10):881-885.
    [204]Nouri H, Fakher A, Jones C J F P. Development of horizontal slice method for seisimic stability analysis of reinforced slopes and walls [J]. Geotextiles and Geomembranes,2006,24(5):175-187.
    [205]蒋建清,杨果林.加筋土挡墙地震稳定性分析的水平条分方法[J].中国铁道科学,2009,30(1):36-40.
    [206]Choudhury D, Nimbalkar S S. Seismic passive resistance by pseudo-dynamic method [J]. Geotechnique,2005,55(9):699-702.
    [207]Choudhury D, Nimbalkar S S. Pseudo-dynamic approach of seismic active earth pressure behind retaining wall [J]. Geotechnical and Geological Engineering,2006,24(5):1103-1113.
    [208]Nimbalkar S S, Choudhury D, Mandal J N. Seismic stability of reinforced-soil wall by pseudo-dynamic method [J]. Geosynthetics International,2006,13(3): 111-119.
    [209]Cai Z, Bathurst R J. Seismic response analysis of geosynthetic reinforced soil segmental retaining walls by finite element method [J]. Computers and
    Geotechnics,1995,17(4):523-546.
    [210]Bathurst R J, Hatami K. Seismic response analysis of a geosynthetic reinforced soil retaining wall [J]. Geosynthetics International,1998,5(2):127-166.
    [211]Helwany S M B, Budhu M, McCallen D. Seismic analysis of segmental retaining wall, I:Model verification [J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127(9):741-749.
    [212]Zarnanic S, Bathurst R J. Numerical modeling of EPS seismic buffer shaking table tests [J]. Geotextiles and Geomembranes,2008,26(3):371-383.
    [213]刘华北.水平与竖向地震作用下土工格栅加筋土挡墙动力分析[J].岩土工程学报,2006,28(5):594-599.
    [214]Adib M, Mitchell J K, Christopher, et al. Finite element modeling of reinforced soil walls and embankments [J]. Geotechnical Special Publication No.25, Design Performance of Earth Retaining Structures, ASCE,1990,116(GT5): 221-248.
    [215]Plumelle C, Schlosser F, Delage P, et al. French national research project on soil nailing [J]. Geotechnical Special Publication No.25, Design Performance of Earth Retaining Structures, ASCE,1990,116(GT5):660-675.
    [216]Ho S K, Rowe R K. Predicted behavior of two centrifugal model soil walls [J]. Journal of the Geotechnical Engineering Division, ASCE,1994,120(GT5): 1845-1873.
    [217]袁捷,曾四平,祝云琪,凌建明.地震作用下加筋土路基力学行为的弹塑性分析[J].同济大学学报(自然科学版),2008,36(4):483-487.
    [218]谢婉丽.黄土地区高填方加筋土路堤变形及稳定性分析[D].西安:西北大学地质学系,2004.
    [219]蒋建清,邹银生.动力作用下加筋土挡墙的数值模拟[J].湖南城市学院学报(自然科学版),2006,15(4):12-14.
    [220]刘多文,熊承仁.红砂岩路用性质的试验研究[J].中南公路工程,2003,28(4):27-31.
    [221]董泽福,刘多文.“红砂岩”的路堤用工程性质研究[J].湖南大学学报(自然科学版),2003,30(3):90-93.
    [222]朱貌贤,陈晓斌.红砂岩粗粒土路基填料试验分析[J].广州建筑,2007,(3):13-16.
    [223]张剑.红砂岩在高等级公路路基填筑中的应用[J].公路,2006,(5):151-152.
    [224]陈晓斌,张家生,安关峰.红砂岩粗粒土流变机理试验研究[J].矿冶工程, 2006,26(6):16-19.
    [225]马春德,李夕兵,陈枫,徐纪成.单轴动静组合加载对岩石力学特性影响的试验研究[J].矿业研究与开发,2004,24(4):1-7.
    [226]胡昕,洪宝宁,孟云梅.考虑含水率影响的红砂岩损伤统计模型[J].中国矿业大学学报,2007,36(5):609-613.
    [227]费廷玉,王军,徐惠民,秦玉春.吸水率对南京红山窑膨胀红砂岩抗剪强度的影响[J].勘察科学技术,2007,(4):13-15.
    [228]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [229]左宇军,李夕兵,唐春安,王卫华,马春德.受静载荷的岩石在周期载荷作用下破坏的试验研究[J].岩土力学,2007,28(5):927-932.
    [230]殷跃平.长江三峡库区移民迁建新址重大地质灾害及防治研究[M].北京:地质出版社,2004.
    [231]VALLEJO L E. An explanation for mudflows [J]. Geotechnique,1979,29(4): 351-354.
    [232]VALLEJO L E. An extension of the particulate model of stability analysis for mudflows [J]. Soil and Found,1989,29(3):1-13.
    [233]VALLEJO L E, MAWBY R. Porosity influence on the shear strength of granular material-clay mixtures [J]. Engineering Geology,2000, (2):125-136.
    [234]XU W J, HU R L, TAN R J. Some geomechanical properties of soil-rock mixtures in the Hutiao Gorge area, China [J]. Geotechnique,2007,57(3): 255-264.
    [235]ALTMAN S J, RIVERS M L, RENO M D, CYGAN R T, MCLAIN A A. Characterization of adsorption sites on aggregate soil samples using synchrotron X-ray computerized microtomography [J]. Environmental Science & Technology,2005,39 (8):2679-2685.
    [236]LANARO F, TOLPPANEN P.3D characterization of coarse aggregates [J]. Engineering Geology,2002,65(1):17-30.
    [237]XU W J, YUE ZH Q, HU R L. Study on the microstructure and micromechanical characteristics of the soil-rock mixture using digital image processing based finite element method [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(5):749-762.
    [238]SPRINGMAN S M, JOMMI C, TEYSSEIRE P. Instabilities on moraine slopes induced by loss of suction:a case history [J]. Geotechnique,2003,53(1):3-10.
    [239]YUE ZH Q, CHEN S, THAM L G. Finite element modeling of geomaterials using digital image processing [J]. Computers and Geotechnics,2003,30(5): 375-397.
    [240]武明.土石混合非均质填料力学特性试验研究[J].公路,1997,42(1):40-42.
    [241]韩世莲,周虎鑫,陈荣生.土和碎石混合料的蠕变试验研究[J].岩土工程学报,1999,21(2):196-199.
    [242]李世海,汪远年.三维离散元土石混合体随机计算模型及单向加载试验数值模拟[J].岩土工程学报,2004,26(2):172-177.
    [243]LI S H, ZHAO M H, WANG Y M, et al. A new numerical method for DEM-block and particle model [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(3):436-436.
    [244]李晓,廖秋林,赫建明,陈剑.土石混合体力学特性的原位试验研究[J].岩石力学与工程学报,2007,26(12):2377-2384.
    [245]徐文杰,胡瑞林,谭儒蛟,曾如意,于火青.虎跳峡龙蟠右岸土石混合体野外试验研究[J].岩石力学与工程学报,2006,25(6):1270-1277.
    [246]油新华,汤劲松.土石混合体野外水平推剪试验研究[J].岩石力学与工程学报,2002,21(10):1537-1540.
    [247]董文澎,周建普.推滑平衡法应用于填石路堤的试验研究[J].岩土工程学报,2006,28(1):106-109.
    [248]丁梧秀,冯夏庭,程昌炳.红砂岩的一种新的抗风化化学加固方法试验研究[J].岩石力学与工程学报,2005,24(21):3841-3846.
    [249]喻泽红,魏红卫,邹银生.加筋红砂岩风化土强度和变形特性[J].岩石力学与工程学报,2005,24(15):2270-2279.
    [250]ZHAO M H, ZOU X J, ZOU P X W. Disintegration Characteristics of Red Sandstone and Its Filling Methods for Highway Roadbed and Embankment [J]. Journal of Material in Civil Engineering, ASCE,2007,19(5):404-410.
    [251]CHEN X B, ZHANG J SH, LIU B CH, TANG M X. Effects of stress conditions on rheological properties of granular soil in large triaxial rheology laboratory tests [J]. Journal of Central South University of Technology,2008, 15(s1):397-401.
    [252]卿三惠.红层软岩地区高速铁路软基路堤沉降控制研究[D].成都:成都理工大学,2007.
    [253]章清叙,葛修润,黄铭,孙红.周期荷载作用下红砂岩三轴疲劳变形特性试验研究[J].岩石力学与工程学报,2006,25(3):473-478.
    [254]Belheine N, Plassiard J P, Donze F V, et al. Numerical simulation of drained triaxial test using 3D discrete element modeling [J]. Computers and Geotechnics,2009,36(2):320-331.
    [255]Potyondy D O, Cundall P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics& Mining Sciences,2004,41(8):1329-1364.
    [256]Holt R M, Kjolaas J, Larsen I, et al. Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock [J]. International Journal of Rock Mechanics& Mining Sciences,2005, 42(8):985-995.
    [257]Wang C, Tannant D D, Lilly P A. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D [J]. International Journal of Rock Mechanics & Mining Sciences,2003,40(3):415-424.
    [258]Kulatilake P H S W, Malama B, Wang J L. Physical and particle flow modeling of jointed rock block behavior under uniaxial loading [J]. International Journal of Rock Mechanics& Mining Sciences,2001,38(5):641-657.
    [259]Shamy U E, Groger T. Micromechanical aspects of the shear strength of wet granular soils [J]. International Journal for Numerical and Analytical Methods in Geomechanics,2008,32(1):1763-1790.
    [260]Jeyisanker K, Gunaratne M. Analysis of water seepage in a pavement system using the particulate approach [J]. Computers and Geotechnics,2009,36(4): 641-654.
    [261]Hadjigeorgiou J, Esmaieli K, Grenon M. Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model [J]. Tunnelling and Underground Space Technology,2009,24(3):296-308.
    [262]Fakhimi A. A hybrid discrete-finite element model for numerical simulation of geomaterials [J]. Computers and Geotechnics,2009,36(3):386-395.
    [263]Marketos G, Bolton M D. Compaction bands simulated in Discrete Element Models [J]. Journal of Structural Geology,2009,31(5):479-490.
    [264]Schopfer M P J, Abe S, Childs C, et al. The impact of porosity and crack density on the elasticity, strength and friction of cohesive granular materials: Insights from DEM modeling [J]. International Journal of Rock Mechanics& Mining Sciences,2009,46 (2):250-261.
    [265]Cheung G, O'Sullivan C. Effective simulation of flexible lateral boundaries in two-and three-dimensional DEM simulations [J]. Particuology,2008,6(6):
    483-500.
    [266]Bagherzadeh-Khalkhali A, Mirghasemi A A, Mohammadi S. Micromechanics of breakage in sharp-edge particles using combined DEM and FEM [J]. Particuology,2008,6(5):347-361.
    [267]Zeghal M, Shamy U E. Liquefaction of saturated loose and cemented granular soils [J]. Powder Technology,2008,184(2):254-265.
    [268]周健,池毓蔚,池永,徐建平.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):701-704.
    [269]周健,廖雄华,池永,徐建平.土的室内平面应变试验的颗粒流模拟[J].同济大学学报,2002,30(9):1044-1050.
    [270]刘文白,周健.上拔荷载作用下桩的颗粒流数值模拟[J].岩土工程学报,2004,26(4):516-521.
    [271]周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):377-382.
    [272]周健,苏燕,池永.颗粒流模拟土的工程性质[J].岩土工程学报,2006,28(3):390-396.
    [273]周健,史旦达,贾敏才,闫东霄.循环加荷条件下饱和砂土液化细观数值模拟[J].水利学报,2007,38(6):396-703.
    [274]史旦达,周健,刘文白,贾敏才.循环荷载作用下砂土液化特性的非圆颗粒数值模拟[J].水利学报,2008,39(9):1074-1082.
    [275]罗勇,龚晓南,连峰.三维离散颗粒单元模拟无黏性土的工程力学性质[J].岩土工程学报,2008,30(2):292-297.
    [276]罗勇.土工问题的颗粒流数值模拟及应用研究[D].杭州:浙江大学建筑工程学院,2007.
    [277]周健,姚志雄,张刚.砂土渗流过程的细观数值模拟[J].岩土工程学报,2007,29(7):977-981.
    [278]周健,白彦峰,张昭,贾敏才.砂土中群桩室内模型试验及颗粒流模拟研究[J].岩土工程学报,2009,31(8):1275-1280.
    [279]王孝存.加筋地基的加筋机理和破坏模式试验研究与颗粒流数值模拟[D].上海:同济大学地下建筑与工程系,2005.
    [280]张孟喜,张石磊.H-V加筋土性状的颗粒流细观模拟[J].岩土工程学报,2008,30(5):626-631.
    [281]周健,孔祥利,鞠庆海,李玉岐.土工合成材料与土界面的细观研究[J].岩石力学与工程学报,2007,26(supp.l):3196-3202.
    [282]周健,郭建军,崔积弘,贾敏才‘.土钉拉拔接触面的细观模型试验研究与数值模拟[J].岩石力学与工程学报,2009,28(9):1396-1944.
    [283]常士骠.工程地质手册(第三版)[M].北京:中国建筑工业出版社,1992.
    [284]陈祖煜,弥宏亮,汪小刚,等.边坡稳定三维分析的极限平衡方法[J].岩土工程学报,2001,23(5):525-529.
    [285]张发明,陈祖煜,弥宏亮.三维极限平衡理论及其在块体稳定分析中的应用[J].水文地质工程地质,2002,29(4):33-35.
    [286]DASH S K, SIREESH S, SITHARAM T G. Model studies on circular footing supported on geocell reinforced sand underlain by soft clay [J]. Geotextiles and Geomembranes,2003,21(4):197-219.
    [287]晏长根,杨晓华,石玉玲,祁生文.土工格室在黄土边坡公路中的试验研究及应用[J].岩石力学与工程学报,2006,25(S1):3235-3238.
    [288]WANG Yi-min, CHEN Ye-kai, LIU Wei. Large-scale direct shear testing of geocell reinforced soil [J]. Journal of Central South University of Technology, 2008,15(6):895-900.
    [289]范臻辉,王永和.土工格栅加筋高路堤边坡稳定性的弹塑性有限元分析[J].中南大学学报(自然科学版),2005,36(5):904-910.
    [290]BUSH D I, JENNER C G, BASSETT R H. The design and construction of geocell foundation mattress supporting embankments over soft ground [J]. Geotextiles and Geomembranes,1990,8(1):83-98.
    [291]BRITISH R R. Supporting roll-geogrids provide a solution to railway track ballast problems on soft and variable subgrades [J]. Ground Engineering,2002, 31(3):24-27.
    [292]LEONARDS G A, FROST J D, BRAY J D. Collapse of geogrid-reinforced retaing structure [J]. Journal of Performance of Construced Facilities-ASCE, 1994,8(4):274-292.
    [293]PERKINS S W, ISMEIK M. A synthesis and evaluation of geosynsthetic reinforced base layers in flexible pavements:part Ⅱ [J]. Geosynthetics International,1987,4(6):605-621.
    [294]DASH S K, SIREESH S, SITHARAM T G. Behaviour of geocell reinforced sand beds under circular footing. Ground Improvement,2003,7(3):111-115.
    [295]ZHANG Meng-Xi, JAVADI A A, MIN X. Triaxial tests of sand reinforced with 3D inclusions [J]. Geotextiles and Geomembranes,2006,24:201-209.
    [296]ZHANG Meng-Xi, ZHOU H, JAVADI A A, WANG Z W. Experimental and
    theoretical investigation of strength of soil reinforced with multi-layer horizontal-vertical orthogonal elements [J]. Geotextiles and Geomembranes, 2008,26(1):1-13.
    [297]XIE Wu. Consideration for modifying reinforced retaining wall [J]. Nonferrous Mines,2003,32 (3):46-48.
    [298]ARENICZ R M, CHOUDHURY R N. Laboratory investigation of earth walls simultaneously reinforced by strips and random reinforcement [J]. Geotechnical Testing Journal,1988,11 (4):241-247.
    [299]YETIMOGLU T, SALBAS O. A study on shear strength of sands reinforced with randomly distributed discrete fibers [J]. Geotextiles and Geomembranes, 2003,21 (2):103-110.
    [300]黄仙枝,岂连生,白晓红.土工带加筋碎石垫层地基的试验研究.中国土木工程学会第九届土力学及岩土工程学术会议论文集,北京2003-10-25-28,822-855.
    [301]李晓俊,白晓红,黄仙枝.土工带加筋碎石土本构关系的三轴试验研究[J].岩土力学,2004,25(S2):57-60.
    [302]保华富,周亦唐,赵川,黄英.聚合物土工格栅加筋碎石土试验研究[J].岩土工程学报,1999,21(2):217-221.
    [303]Voottipruex P. Interaction of hexagonal wire reinforcement with silty sand backfill soil and behavior of full scale embankment reinforced with hexagonal wire [D]. Bangkok, Thailand:Asian Institute of Technology,2000.
    [304]BERGADO D T, TEERAWATTANASUK C.2D and 3D numerical simulations of reinforced embankments on soft ground [J]. Geotextiles and Geomembranes, 2008,26(1):39-55.
    [305]TEERAWATTANASUK C, BERGADO D T, KONGKITKUL W. Analytical and numerical modeling of pullout capacity and interaction between hexagonal wire mesh and silty sand backfill under an in-soil pullout test [J]. Canadian Geotechnical Journal,2003,40(5):886-899.
    [306]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1999.
    [307]中华人民共和国行业标准编写组.土工试验规程(SL237-1999)[S].北京:中国水利水电出版社,1999.
    [308]房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[J].岩石力学与工程学报,1998,6,17(3):239-247.
    [309]Manzari M T, Dafalias Y F. A critical state two-surface plasticity model for sands [J]. Geotechnique,1997,47(2):255-72.
    [310]Duncan J M. State of the art:limit equilibrium and finite-element analysis of slopes [J]. J Geotech Eng, ASCE, 1996,122(7):577-96.
    [311]HOLT R M. Particle vs. laboratory modeling of in-situ compaction [J]. Physics and Chemistry of the Earth, Part A:Solid Earth and Geodesy,2001,26(1): 89-93
    [312]Cundall P A, Strack 0 D L. A Discrete Numerical Model for Granular Assemblies [J]. Geotechnique,1979,29:47-65.
    [313]Itasca Consulting Group, Inc. PFC (Particle Flow Code), Version 3.0 [M]. Minneapolis:ICG,2004.
    [314]Chang C, Misra A. Packing structure and mechanical properties of granulates [J]. J. Eng. Mech.,1990,116(5):1077-1093.
    [315]Fazekas S, Kertesz J, Wolf DE. Computer simulation of three dimensional Shearing of granular materials:formation of shear bands [J]. Powders& grains, 2005,5:223-226.
    [316]莫介臻,何光春,汪承志,周世良.台阶式格栅加筋挡墙现场试验及数值分析[J].土木工程学报,2008,41(5):52-58.
    [317]汪承志.加筋陡坡的数值分析与试验研究[D].重庆:重庆交通学院,2005.
    [318]周世良.格栅加筋土挡墙结构特性及破坏机理研究[D].重庆:重庆大学,2005.
    [319]Karpurapu R G, Bathurst R J. Behaviour of geosynthetic reinforced soil retaining walls using the finite element method[J].Computers and Geotechnics, 1995,17(3):279-299.
    [320]Kerry R R, Skinner G D. Numerical analysis of geosynthetic reinforced retaining wall constructed on a layered soil foundation [J]. Geotextiles and Geomembranes,2001,19 (7):387-412.
    [321]黄文熙.土的工程性质[M].北京:水利水电出版社,1983.
    [322]Sandri D. Retaining walls stand up to the Northridge earthquake [J]. Geotechnical Fabrics Report,1994,12(4):30-31.
    [323]Nishimura J, Hirai T, Iwasaki K, Saito Y, Morikshima M. Earthquake resistance of geogrid reinforced soil walls based on a study conducted following the southern Hyogo earthquake [A]. In:Proceedings of International Symposium on Earth Reinforcement Practices [C]. The Netherlands, Rotterdam:Balkema,1996,102-106.
    [324]袁捷,曾四平,祝云琪,凌建明.地震作用下加筋土路基力学行为的弹塑性分析[J].同济大学学报(自然科学版),2008,36(4):483-487.
    [325]李 昀,杨果林,林宇亮.加筋格宾挡墙地震反应与动士压力分析[J].四川大学学报(工程科学版),2009,41(4):63-69.
    [326]Kuhlemeyer R L, Lysmer J. Finite Element Method Accuracy for Wave Propagation Problems [J]. J. Soil Mech.& Foundations, Div. ASCE,1973, 99(SM5):421-427.
    [327]中国建筑科学研究院.GB 50011-2001建筑抗震设计规范(2008年版)[S].北京:中国建筑工业出版社,2008.
    [328]Christopher B R, Gill S A, Giroud J P, et al. Mechanically Stabilized Earth Walls and Reinforced Soil Slopes Design& Construction Guidelines [R]. Washington, D.C.:U.S. Department of Transportation and Federal Highway Administration,2001.
    [329]Okabe S. General theory of earth pressure [J]. Journal of the Japanese society of civil engineers,1926,12(1):1277-1323.
    [330]Segrestin P, Bastick M. Seismic design of reinforced earth retaining walls-the contribution of finite element analysis [A]. Proceedings of the international geotechnical symposium on theory and practice of earth reinforcement [C]. Fukuoka, Japan,1988,577-582.
    [331]Steedman R S. Zeng X. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall [J]. Geotechnique,40(1): 101-112.
    [332]姚令侃,冯俊德,杨 明.汶川地震路基震害分析及对抗震规范改进的启示[J].西南交通大学学报,2009,44(3):301-311.
    [333]张建经,冯君,肖世国,刘昌清.支挡结构抗震设计的2个关键技术问题.西南交通大学学报,2009,44(3):321-326.
    [334]Lo S C R, Xu D W. A Strain Based Design Method for the Collapse Limit State of Reinforced Soil Walls and Slopes [J]. Canadian Geotechnical Journal,1992, 29(8):832-842.
    [335]蒋建清,邹银生.复杂动力作用下加筋土挡墙内部稳定性分析[J].中南公路工程:2007,32(1):51-54.
    [336]杨有海.地震作用下加筋土挡土墙稳定性分析[J].兰州铁道学院学报:自然科学版,2002,21(4):9-11.
    [337]高江平,俞茂宏,胡长顺,等.加筋土挡墙土压力及土压力系数分布规律 研究[J].岩土工程学报:2003,25(5):582-584.
    [338]杨果林,肖宏彬,王永和.加筋土挡墙动变形特性试验与疲劳损伤分析[J].振动工程学报,2008,15(2):173-177.
    [339]Sabermahani M, Ghalandarzadeh A, Fakher A. Experimental study on seismic deformation modes of reinforced-soil walls [J]. Geotextiles and Geomembranes,2009,27(2):121-136.
    [340]范影乐,杨胜天.MATLAB仿真应用详解[M].北京:人民邮电出版社,2001.
    [341]徐家蓓.控制系统数字仿真[M].北京:北京理工大学出版社,1998.
    [342]Cundall P A. Theory and Background-Interface [M]. Minneapolis, USA:Itasca Consulting Group Inc,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700