用户名: 密码: 验证码:
陶瓷纳米粉体的表面修饰及其橡胶复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用性能优异的纳米材料开发特种和功能性新型的橡胶纳米复合材料已经成为橡胶研究领域的重要方向。但是由于纳米微粒具有大比表面和高表面能,容易团聚,特别是在橡胶中较在热塑性塑料中的分散更为困难,很难达到理想的分散效果,导致纳米效应难以在橡胶纳米复合材料的宏观性能上充分体现。因此目前对于橡胶纳米复合材料的研究集中在对纳米材料的表面改性方法、纳米材料在橡胶基体中的分散状态和机理、纳米材料的增强机理以及复合材料结构与性能的关系等方面。
     本论文以三类汽车用橡胶制品(橡胶减震器油封、汽车橡胶耐磨胶管、橡胶止动件)为切入点,深入研究了陶瓷纳米材料的表面修饰改性以及橡胶陶瓷纳米复合材料的制备和性能。主要包括以下几部分的内容:
     1.根据陶瓷纳米材料的基本特性,选择合肥开尔纳米材料有限公司等离子弧气相法生产的纳米非晶氮化硅和纳米六方氮化铝为研究对象,研究了这两种陶瓷纳米粉体的相关性质及其表面结构。采用FTIR和XPS分析比较了纳米氮化硅、微米氮化硅以及纳米氮化铝在潮湿的空气中不同时间下氧化、水解的情况。为进一步深入研究陶瓷纳米粉体的表面修饰改性奠定了基础。
     2.针对不同的基体橡胶和陶瓷纳米粉体复合体系,设计、合成了三种偶联剂,用于纳米Si_3N_4和纳米AlN的表面修饰改性,以提高纳米粉体与基体橡胶的相容性和纳米粉体在基体橡胶中的分散性。通过自由基溶液共聚法合成了大分子偶联剂MAA-BA-AN三元共聚物和MMA-BA-VTES三元共聚物,研究了引发剂浓度和链转移剂浓度对三元共聚物分子量的影响;在常温下通过化学沉淀法合成了纳米甲基丙烯酸锌(ZDMA)粉体,考察和研究了搅拌速率、滴加速率、溶液浓度等影响因素。通过红外、核磁、GPC、DSC和TGA等对合成的产物进行了表征。
     3.采用上述合成的偶联剂对陶瓷纳米粉体进行表面改性后通过FTIR,XPS,TGA,TEM,SEM,纳米粒度分析,沉降试验和接触角测定等研究探讨其表面改性效果。用MAA-BA-AN三元共聚物对纳米Si_3N_4进行表面修饰改性;用MMA-BA-VTES三元共聚物分别改性纳米Si_3N_4和纳米AlN;利用纳米ZDMA对纳米Si_3N_4进行直接包覆改性和原位接枝聚合改性,并进行比较。
     4.设计试制可用于工业化纳米粉体的表面改性的纳米粉体热雾化包覆处理设备——断续式纳米粉体表面改性机,使大分子偶联剂溶液能够形成亚微米级雾滴,与悬浮状态的纳米粉体充分接触,提高其包覆率,使处理后的纳米材料在橡胶基体中能够达到有效分散。
     5.改进传统的填料与橡胶混炼工艺,探讨了不同的混炼工艺条件对陶瓷纳米粉体在橡胶中分散性的影响。通过炭黑分散度测定仪、橡胶加工分析仪以及TEM研究发现,采用密炼机两段混炼工艺使陶瓷纳米粉体在橡胶基体中得到有效分散,可以充分发挥填充材料的纳米效应。
     6.设计制备三种橡胶陶瓷纳米复合材料,分别为:三元共聚物MAA-BA-AN改性纳米Si_3N_4后填充丁腈橡胶;三元共聚物MMA-BA-VTES改性纳米AlN后填充天然/丁苯橡胶;纳米ZDMA原位接枝聚合改性纳米Si_3N_4后填充三元乙丙橡胶。用二段密炼的混炼工艺研究制备上述三种橡胶陶瓷纳米复合材料,根据对橡胶陶瓷纳米复合材料力学性能、耐油性能、耐磨性能、耐老化性能等的测试结果研究探讨了大分子偶联剂的数均分子量对表面改性效果的影响,橡胶纳米复合材料凝聚态结构与性能的关系及其橡胶配件制品性能提高的机理。
     7.研究制备三种橡胶汽车配件产品。用三元共聚物MAA-BA-AN改性纳米Si_3N_4/丁腈橡胶复合材料研制汽车减震器油封;用纳米ZDMA原位接枝聚合改性纳米Si_3N_4/三元乙丙橡胶复合材料研制汽车用耐磨胶管;用三元共聚物MMA-BA-VTES改性纳米AlN/天然丁苯橡胶复合材料研制汽车橡胶止动件。对上述三种产品进行了相关性能测试和台架试验,结果均达到了国际先进水平。
     综上所述,本文创造性地将陶瓷纳米粉体(纳米Si_3N_4和纳米AlN)应用到橡胶纳米复合材料的制备,根据不同的复合体系设计合成了新型的大分子偶联剂并对陶瓷纳米粉体进行表面改性,成功实现了纳米粉体在橡胶基体中的均匀分散。结果证实纳米Si_3N_4和纳米AlN不仅能够对橡胶实现增强增韧,同时还能显著提高其他性能,如耐油、耐磨等性能。此外,首次设计试制出可用于工业化纳米粉体表面改性的纳米粉体热雾化包覆处理设备——断续式纳米粉体表面改性机。以上的论文工作为突破纳米分散的技术瓶颈,实现橡胶纳米复合材料的工业化探索出一条成功的可行之路。
Using nanomaterials with excellent performance to develop special and functional new rubber nanocomposite materials has become an important research direction in the field of rubber. But the nanoparticles are more difficult to disperse homogenously in the rubber matrix than the thermoplastics due to their high specific surface area and high surface free energy. So the research of rubber nanocomposites is focused on nanomaterials' surface modification, nanomaterials' dispersion in the rubber matrix, the strengthening mechanism of nanomaterials and the relationship between structures and properties of rubber nanocomposites, etc.
     This paper aims at three categories of automotive rubber products (oil seal of rubber shock absorbers, wear-resistant rubber hoses and rubber stopper). Surface modification of ceramic nano-materials and the preparation and performance of the rubber nanocomposites are in deep investigation. The work could be summarized as follows:
     1. The nano-sized amorphous silicon nitride and hexagonal aluminum nitride which are produced by Hefei Kaier Nanotechonlogy Development Co., Ltd. were chose as the research object and this two ceramic nanopowder's surface structure were studied. FTIR and XPS analysis were used to compare the oxidation and hydrolysis reaction of nano-silicon nitride, micro-silicon nitride and nano-aluminum nitride when open in the humid air for a certain time. of the situation. The present study may laid the foundation for a further investigation of ceramic nanopowder's surface modification.
     2. Three coupling agent which could be used for surface modification of nano-Si_3N_4 and nano-AlN were designed and synthesized for different rubber /ceramic nanocomposite system to enhance homogenous dispersion and compatibility between nanoparticles and rubber matrix. Macromolecular coupling agent MAA-BA-AN tercopolymer and MMA-BA-VTES tercopolymer were both synthesized by free radical solution copolymerization method. The impact of initiator and transfer agent's concentration on the tercopolymer's molecular weight were discussed. Nano-zinc methacrylate was synthesized at room temperature through chemical deposit method. The factors influencing the size and structure of nano-ZDMA such as stir rate, dropping rate, solution concentration were studied in detail. The structure and morphology of nano-ZDMA were characterized by FTIR, NMR, GPC, DSC and TGA.
     3. The nano-ceramic powders were modified with the coupling agent mention above. The silicon nitride nanoparticles were modified with MAA-BA-AN tercopolymer and MMA-BA-VTES tercopolymer, the aluminum nitride nanoparticles were modified with MMA-BA-VTES tercopolymer, the zinc methacrylate nanopowder were modified with direct coating method and in-situ graft polymerization method respectively. The result of surface modification were characterized by FTIR, XPS, TGA, TEM, SEM, nano-size analysis, the settlement test and contact angle determination.
     4. Design and fabricate a thermal fogging nanopowder's surface modification equipment, intermittent surface modification machine, which can be applied in industrial production. The macromolecular coupling agent solution can form sub-micron droplet with this machine, then well-mixed with nano-powder which suspended in mixing chamber, thus the coating efficiency is enhanced and the modified nanopowder could achieving homogenous dispersion in the rubber matrix.
     5. The influences of different mixing process on nanoparticles' dispersion in the rubber matrix were discussed. The two-step internal mixing process was confirmed as the effective mixing process to achieving homogenous dispersion in the rubber matrix based on Carbon Black Dispersion Analyzer, Rubber Processing Analyzer and TEM.
     6. Three kinds of rubber/ ceramic nanocomposites are designed and prepared by two internal mixing process, which are as follows: nano-silicon nitride modified with tercopolymer MAA-BA-AN/ NBR nanocomposite; nano-aluminum nitride modified with tercopolymer MMA-BA-VTES / NR/SBR nanocomposite; nano-silicon nitride modified with nano-zinc methacrylate in situ graft polymerization / EPDM nanocomposite. The optimal loading of ceramic nanopowder was determined based on the results of nanocomposites' mechanical properties, oil resistance, wear resistance and anti-aging properties. The relationship between structure and properties of rubber ceramic nanocomposite was studied.
     7. Nano-silicon nitride modified with tercopolymer MAA-BA-AN / NBR nanocomposite is used to produce oil seal of automobile shock absorber; nano-silicon nitride modified with nano-zinc methacrylate in situ graft polymerization / EPDM nanocomposite is used to produce wear-resistant hose, nano-aluminum nitride modified with tercopolymer MMA-BA-VTES / NR/SBR nanocomposite is used to produce rubber stopper. The results of life test showed that these three products all reached the international advanced level.
     To sum up, the ceramic nanopowder(nano-silicon nitride and nano-aluminum nitride ) were applied to the preparation of rubber nanocomposites creatively. Novel macromolecular coupling agents for ceramic nanopowder were designed and synthesized according to different rubber nanocomposite systems. The uniform dispersion of nanopowders in the rubber matrix was realized successfully.
     The results confirmed that nano-silicon nitride and nano-aluminum nitride can not only enhance the strength and toughness of the rubber, but also improve other properties, such as oil-resistance, wear-resistance properties. Moreover, a thermal fogging nanopowder's surface modification equipment, intermittent surface modification machine was designed and fabricated for the first time. All these works above explore a successful road for breakthrough the technological bottlenecks of nanoparticles' dispersion in rubber.
引文
[1]张玉龙,李长德.纳米技术与纳米塑料[M].北京:中国轻工业出版社.2002.
    [2]严东生,冯瑞.材料新星—纳米材料科学[M].长沙:湖南科学技术出版社.1997.
    [3]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社.2001.
    [4]李强,高濂,严东生.稀土纳米材料的荧光特性.96中国材料研讨会论文集[C].北京:化学工业出版社.1997.
    [5]余云鹏,林璇英,林揆训.电子束再结晶法制备的纳米硅薄膜室温光致发光特性[J].功能材料.1999,30(1):26-28.
    [6]徐国财,马家举,邢宏龙.纳米粒子的分散及其有机复合材料的复合技术[J].中国科学基金.2001,(2):109-112.
    [7]董维国,陈岁元,张继良,等.微细银粉的制备与应用[J].材料与冶金学报.2002,1(3):171-205.
    [8]Liu,H B,Ascencio,J A,Perez-Alvarez M,et al.Melting behavior of nanometer sized gold isomers.Surface Science.2001,491(1-2):88-98.
    [9]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社.2002.
    [10]Roy R,Komarneni S,Roy D M.Multi-phasic ceramic composites made by sol-gel technique.Material Research Society Symposium Proceedings[C].Chicago:Am Mater Soc.1984,32:347-359.
    [11]华幼卿,章正熙,黄玉强.聚烯烃纳米复合材料研究进展Ⅰ.聚烯烃/粘土纳米复合材料[J].高分子材料科学与工程.2002,18(2):1-5.
    [12]Zulfiqar S,Sarwar M Y.Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials[J].Scripta Materialia.2008,59(4):436-439.
    [13]Godovsky D Y.Device applications of polymer-nanocomposites[J].Adv Polym Sci.2000,153:63-205.
    [14]Gilman J W,Jackson C L,Morgan A B.Flammability properties of polymer layered-silicate (clay) nanocomposites polypropylene,polystyrene and polyamide-6 clay nanocomposites[J].Flame Retard.2000,(9):49-68.
    [15]Carotenuto G.Polymer-based nanocomposites:New potentialities for polymers[J].Polymer News.2000,25(6):191-193.
    [16]高琼芝,周彦豪,陈福林.纳米技术在橡胶工业中应用的新进展[J].合成橡胶工业.2003,26(4):197-202.
    [17]朱军,李毕忠.聚合物/无机纳米复合材料研究进展[J].化工新型材料.2000,28(10):3-8.
    [18]王小萍,朱立新,贾德民.橡胶纳米复合材料研究进展[J].合成橡胶工业.2004,27(4):257-260
    [19]张立群,昊友平,王益庆,等.橡胶的纳米增强及纳米复合技术[J].合成橡胶工业.2000,23(2):71-77.
    [20]崔明,刘振东,李立平.橡胶纳米填料应用研究进展[J].橡胶工业.2004,51(4):249-252.
    [21]Donnet J B,Custodo E O.Ordered structures observed by scanning tunneling microscopy at atomic scale on carbon black surfaces[J].Carbon.1992,30(5):813-817.
    [22]Donnet J B.Black and white fillers and tire compound[J].Rubb Chem Technol.1998,71(3):323-348.
    [23]Li S D,Peng Z,Kong L X,et al.Thermal degradation kinetics and morphology of natural rubber/silica nanocomposites[J].J Nanosci Nanotech.2006,6(2):541-546.
    [24]段咏欣,赵素合,林勇.炭黑-白炭黑双相纳米填料及其增强SSBR性能[J].合成橡胶工业.2002,25(6):350-353.
    [25]Zhou S X,Wu L M,Sun J,et al.The change of the properties of acrylic-based polyurethane via addition of nano-silica[J].Progress in Organic Coatings[J].2002,45(1):33-42.
    [26]Garcia M,Vliet G V,Cate M,et al.Large-scale extrusion processing and characterization of hybrid nylon-6/SiO_2 nanocomposites[J].Polym Adv Technol.2004,15(4):164-172.
    [27]单薇,廖明义.纳米SiO_2的表面处理及其在聚合物基纳米复合材料中的应用进展[J].高分子通报.2006,(3):1-9.
    [28]潘伟,翟普,刘立志,等.SiO_2纳米粉对硅橡胶复合材料的压阻、阻温特性的影响[J],材料研究学报,1997,11(4):397-401.
    [29]程钢,赵国群,管延锦.纳米技术在橡胶复合材料改性中的应用[J].应用科技.2002,29(12):39-41.
    [30]王益庆,张立群.微纳米级粘土/橡胶复合材料[J].北京化工大学学报.2000,27(1):86-91.
    [31]Chang Y W,Yang Y C,Ryu S.Preparation and properties of EPDM/organomontmorillonite hybrid nanocomposites[J].Polym Inter.2002,51(3):319-324.
    [32]Pramanik M,Srivastava S K,Samantaray B K.Rubber-clay nanocomposite by solution blending[J].J Appl Polym Sci.2003,87(14):2216-2220.
    [33]高伟,汪倩,杨始燕,等.碳酸钙与碳化硅对室温硫化硅橡胶的补强作用[J].高分子学报.2000,(1):1-4.
    [34]高树峰,刘曲锋,孙凌云,等.纳米碳酸钙对共沉型聚丁二烯橡胶性能的影响[J].2006,52(2):479-481.
    [35]Jin F L,Park S J.Thermo-mechanical behaviors of butadiene rubber reinforced with nano-sized calcium carbonate[J].Mater Sci Eng.Part A:Structural Materials Properities Microstructure and Processing.2008,478(1-2):406-408.
    [36]Mishra S,Shimpi N G.Studies on mechanical,thermal,and flame retarding properties of polybutadiene rubber(PBR) nanocomposites[J].Polymer-Plastics Technology and Engineering.2008,47(1):72-81
    [37]Wang Z B,Hao W P,Zhang Z K,et al.Toughening of propylene-ethylene copolymer/calcium carbonate composites with high-density polyethylene[J].J Macro Sci.Part B:Physics.2008,47(3):576-588.
    [38]Mishra S,Shimpi N G,Patil U D.Effect of nano CaCO_3 on thermal properties of styrene butadiene rubber(SBR)[J].Journal of Polymer Research.2007,14(6):449-459.
    [39]田萌,史新妍,王声媛,等.纳米碳酸钙在氯化聚乙烯橡胶中的应用[J].橡胶工业.2006,53(8):479-481.
    [40]Chakravarty S N,Chakravarty A.Reinforcement of rubber compounds with nano-filler[J].Kgk-Kautschuk Gummi Kunststoffe.2007,60(11):619-622.
    [41]姬志田,贾盛维,李路伟.纳米碳酸钙在天然橡胶中的应用研究[J].中国橡胶.2006,22(23):36-37.
    [42]Hamed G R,Hua K C.Effect of ZnO particle size on the curing of carboxylated NBR and carboxylated SBR[J].Rubber Chem Tech.2004,77(2):214-226.
    [43]Zaborski M.Nanotechnology and polymeric nano-composites[J].Przemysl Chemiczny.2003,82(8-9):544-547.
    [44]Sahoo S,Maiti M,Ganguly A,et al.Effect of zinc oxide nanoparticles as cure activator on the properties of natural rubber and nitrile rubber[J].J Appl Polym Sci.2007,105(4):2407-2415.
    [45]Desai H,Hendrikse K G,Woolard C D.Vulcanization of polychloroprene rubber.I.A revised cationic mechanism for ZnO crosslinking[J].J Appl Polym Sci,2007,105(2):865-876.
    [46]Owczarek M,Zaborski M,Przybyszewska M.The use of aluminum oxide as a filler for elastomers[J].Przemysl Chemiczny.2006,85(8-9):965-967.
    [47]贾红兵,金志刚,吉庆敏,等.新型无机纳米填料对SBR的补强性能[J].橡胶工业,2002,47(11):647-651.
    [48]Samui A B,Dalvi V G,Chandrasekhar L,et al.Interpenetrating Polymer Networks based on Nitrile Rubber and Metal Methacrylates[J].J Appl Polym Sci.2006,99(5):2542-2548.
    [49]Peng Z L,Liang X,Zhang Y X.Reinforcement of EPDM by in-situ prepared zinc dimethacrylate[J].J Appl Polym Sci.2002,84(7):1339-1345.
    [50]Lu Y L,Liu L,Tian M,et al.Study on mechanical properties of elastomers reinforced by zinc dimethacrylate[J].Euro Polym J.2005,41:589-598.
    [51]Oh S J,Koenig J L.Studies of peroxide curing of polybutadiene/zinc diacrylate blends by fast FT-IR imaging[J].Rubber Chem Tech.2000,73(1):74-79.
    [52]刘莉,辛振祥,张波,等.用丙烯酸锌改善EPDM与金属的粘合性能[J].橡胶工业. 2004,51(4):209-212.
    [53]Huang A,Wang X,Jia D.Structure,morphology and properties of hydrogenated nitrile rubber reinforced by magnesium methacrylate[J].Acta Polymerica Sinica.2007,12(12):1154-1160.
    [54]Samui A B,Dalvi V G,Chandrasekhar L,et al.Interpenetrating polymer networks based on nitrile rubber and metal methacrylates[J].J Appl Polym Sci.2006,99(5):2542-2548.
    [55]Du A H,Peng Z L,Zhang Y,et al.Polymerization conversion and structure of magnesium methacrylate in ethylene-vinyl acetate rubber vulcanizates[J].J Appl Polym Sci.2004,93(5):2379-2384.
    [56]王聿衡,彭宗林,张勇,等.原位合成甲基丙烯酸锂增强丁腈橡胶的性能和结构[J].合成橡胶工业,2006,29(1):40-43.
    [57]Iijima S.Helical microtubes of graphitic carbon[J].Nature.1991,354(7):56-58.
    [58]Ball P.The perfect nanotube[J].Nature.1996,382(18):207-208.
    [59]Ruoff R S,Lorents D S.Mechanical and thermal properties of carbon nanotubes[J].Carbon.1995,33(7):925-930.
    [60]Tian M,Cheng L J,Liang W L,et al.Overall properties of fibrillar silicate/styrene-butadiene rubber nanocomposites[J].J Appl Polym Sci.2006,101(5):2725-2731.
    [61]陈晓红,宋怀河.多壁碳纳米管填充丁苯橡胶复合材料的研究[J].新型炭材料.2004,19(3):214-218.
    [62]Das N C,Chaki T K,Khastgir D.Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites[J].Polym Inter.2002,51(2):156-163.
    [63]Shojaei A,Fahimian M,Derakhshandeh B.Thermally conductive rubber-based composite friction materials for railroad brakes-Thermal conduction characteristics[J].Composites Sci Tech.2007,67(13):2665-2674.
    [64]Fang S L,Hu Y,Song L,et al.Mechanical properties,fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber[J].J Mater Sci.2008,43(3):1057-1062.
    [65]Gwaily S E,Badawy M M,Hassan H H,et al.Natural rubber composites as thermal neutron radiation shields B_4C/NR composites[J].Polymer Testing.2002,21(2):129-133.
    [66]Hussain M,Choa Y H,Niihara K.Ceramics on electrical resistivity of carbon filled rubber materials[J].Scripta Materialia.2001,44(8,9):1203-1206.
    [67]Kubacka A,Cerrada M L,Serran C,et al.Light-driven novel properties of TiO_2-modified polypropylene-based nanocomposite films[J].J Nanosci Nanotech.2008,8(6):3241-3246.
    [68]Sciancalepore C,Cassano T,Curri M L,et al.TiO_2 nanorods/PMMA copolymer-based nanocomposites:highly homogeneous linear and nonlinear optical material[J].Nanotechnology.2008,19(20):205705(8pp).
    [69]Gao Y,Liu H.Preparation of TiO_2/silicone rubber film by a fluidifying sedimentation method and its photocatalyticreactivities for the purification of water[J].J Mater Sci Lett.2003,22(24):1821-1823.
    [70]林桂,钱燕超,张鹏,等.纳米二氧化钛填充橡胶复合材料的分散结构与性能[J].合成橡胶工业.2005,28(2):98-104.
    [71]韩珍,张立群,田明.硅酸盐纳米纤维/氢化丁腈橡胶复合材料的性能[J].合成橡胶工业.2007,30(4):258-262.
    [72]王韶晖,赵树高,张萍.橡胶纳米复合材料制备研究进展[J].特种橡胶制品.2002,23(1):58-61.
    [73]Burnside S D,Giannelis E P.Nanostructure and properties of polysiloxane-layed silicate nanocomposites[J].J Polym Sci.Part B:Polym Phys.2000,38(12):1594-1604.
    [74]Burnside S D,Giannelis E P.Synthesis and properties of new poly(dimethylsilxane)namocomposites[J].Chemistry of Materials.1995,7(9):1597-1600.
    [75]张立群,王一中,余鼎声,等.粘土/橡胶纳米复合材料的制备方法[P].中国发明专利,申请号98 101 496.8.1998.
    [76]Wang S J,Long C F,Wang X Y,et al.Synthesis and properties of silicone rubber/organomontmorillonite hybrid nanocomposites[J].J Appl Polym Sci.1998,69(8):1557-1561.
    [77]Kohjiya S.In suit filling of silica onto “green” natural rubber by the sol-gel process[J].Rubb Chem Technol.2001,74(1):16-21.
    [78]Sugiya M,Terakawa K,Kohjiya S.Reinforcement of styrene butadiene rubber vulcanizate by in suit silica prepared by the sol-gel reaction of tetrethoxysilane[J].J.Mater Chem.1997,7(8):1497-1503.
    [79]Hashim A S,Kawabata N,Kohjiya S.Silica reinforcement of epoxidized natural rubber by the sol-gel method[J].Journal of Sol-Gel Science and Technology.1995,5(3):211-218.
    [80]张以河,付绍云,李国耀,等.聚合物基纳米复合材料的增强增韧机理[J].高技术通讯.2004,(5):99-105.
    [81]贾巧英,马晓燕.纳米材料及其在聚合物中的应用[J].塑料科技.2001,(2):6-10.
    [82]杨伏生,周安宁,葛岭梅,等.聚合物增强增韧机理研究进展[J].中国塑料.2001,15(8):6-10.
    [83]张金柱,汪信,陆路德,等.纳米无机粒子对塑料增强增韧的“裂缝与银纹相互转化”机理[J].工程塑料应用.2003,31(1):20-22.
    [84]熊传溪,闻荻江,皮正杰.超微细Al_2O_3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994(4):69-73.
    [85]曹峰,朱子康,印杰.新型光敏聚酰亚胺/SiO_2杂化材料的制备与性能研究[J].功能高分子学报.2000,13(3):325-328.
    [86]Lee J,Yee A F.Inorganic particle toughening Ⅱ:toughening mechanisms of glass bead filled epoxies[J].Polymer.2001,(42):589-597.
    [87]吴友平,贾清秀,刘力,等.橡胶增强理论[J].合成橡胶工业.2004,27(1):1-5.
    [88]江贵长,官文超.高分子基纳米复合材料的研究进展[J].化工新型材料.2004,32(2):3-7.
    [89]许荔,江晓禹.纳米复合材料特性分析及界面研究[J].材料科学与工程学报.2005,23(6):933-938.
    [90]Sen S,Mishra S K,Sagar S,et al.Preparation and characterization of PMN-PT nanocomposite[J].Indian J Eng Mater Sci.2008,15(2):111-115.
    [91]Wang S F,Hu Y,Zong R W,et al.Preparation and characterization of flame retardant ABS/montmorillonite nanocomposite[J].Applied Clay Science.2004,25(1-2):49-55.
    [92]Eschbach J,Rouxei D,Vincent B,et al.Development and characterization of nanocomposite materials[J].Mater Sci Eng.Part C:Biomimetic and Supramolecular Systems.2007,27(5):1260-1264.
    [93]Chen G H,Weng W G,Wu D J,et al.Investigation on the nano-dispersion of graphite into polymer matrix[J].Acta Polymerica Sinica.2001,6(6):803-806.
    [94]Grecu I,Strat G,Gurlui S,et al.Structure and mechanical properties of nanocomposites based on polypropilene and polyethylene[J].Journal of Optoelectronics and Advanced Materials.2008,10(6):1408-1414.
    [95]Zulfiqar S,Sarwar M Y.Mechanical and thermal behavior of clay-reinforced aramid nanocomposite materials[J].Scripta Materialia.2008,59(4):436-439.
    [96]Anthoulis G I,Kontou E,Fainleib A,et al.Synthesis and characterization of polycyanurate/montmorillonite nanocomposites[J].J Polym Sci.Part B:Polym Phys.2008,46(11):1036-1049.
    [97]He C B,Liu T X,Tjiu W C,et al.Microdeformation and fracture mechanisms in polyamide-6/organoclay nanocomposites[J].Macromolecules.2008,41(1):193-202.
    [98]Kim Y W,Lee D K,Lee K J;et al.In situ formation of silver nanoparticles within an amphiphilic graft copolymer film[J].J.Polym.Sci.Part B:Polym Phys.2007,45(11):1283-1290.
    [99]Tsai T Y,Lu S W,Huang Y P,et al.Polymer-dispersed liquid crystal/layered double hydroxide nanocomposite:A new emerging optical application[J].J Phys Chem Solids.2006,67(5-6):938-943.
    [100]田明原,施尔畏,仲维卓,等.纳米陶瓷与纳米陶瓷粉末[J].无机材料学报.1998,13(2):129-137.
    [101]刘志强,李小斌,彭志宏,等.湿化学法制备超细粉末过程中的团聚机理及消除方法[J].化 学通报.1999,(7):54-57.
    [102]王宝利,朱振峰.无机纳米粉体的团聚与表面改性[J].陶瓷学报.2006,27(1):135-138.
    [103]刘志强,李小斌,周秋生,等.共沸蒸馏制备超细氧化铝粉[J].粉末冶金材料科学与工程.1997,(2):255-260.
    [104]童玉清,吴友平,林桂,等.纳米粉体在聚合物熔体中的分散理论[J].合成橡胶工业.2004,27(2):111-121.
    [105]于化顺,闵光辉,陈熙琛.固体粒子进入熔体的条什及影响因素[J].复合材料学报.2000,17(3):113-115.
    [106]刘吴,才庆魁,张宁,等.超细粉体的表面改性研究进展[J].沈阳大学学报.2007,19(2):16-20.
    [107]张立德.超细粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [108]李凤生.超细粉体技术[M].北京:国防工业出版社,2000.
    [109]胡晓力,陈东丹,尹红,等.表面活性剂对TiO_2粉体粒度和形貌的影响[J].中国陶瓷工业.2003,10(4):24-28.
    [110]余双平,邓淑华,周惠民等.超微粉体的表面改性技术进展[J].广东工业大学学报.2003,20(2):70-76.
    [111]张巨先,杨静漪.Al_2O_3和Y_2O_3包覆SiC复合粒子的制备[J].无机材料学报.1999,14(3):380-384.
    [112]赵心怡,叶明泉,韩爱军.无机超细粒子表面改性技术研究进展[J].塑料工业.2006,34:16-19.
    [113]王正东,胡黎明.超分散剂的作用机理及应用效果[J].精细石油化工.1996,(6):59-62.
    [114]胡圣飞,严海彪,潘国元,等.聚酯超分散剂改性纳米碳酸钙及其应用研究[J].塑料工业.2005,33(7):49-51.
    [115]刘波,庄志强,刘勇.粉体表面修饰与表面包覆方法的研究[J].中国陶瓷工业.2004,11(1):50-54.
    [116]Wang D B,Feng Y J,Han L W,et al.Effect of wet surface treated nano-SiO_2 on mechanical properties of polypropylene composite[J].Journal of Wuhan University of Technology Materials Science Edition.2008,23(3):354-357.
    [117]Wang X,Tang W,Wang L L,et al.Influence of NDZ-401 titanate coupling agent on surface properties of nano carbonate calcium[J].Rare Metal Materials and Engineering.2008,37(Suppl.2):340-343.
    [118]Yoshida K,Kamada K,Nakamura S,et al.Aluminate coupling agent for bonding in-ceram alumina to resin cements[J].Journal of Dental Research.2002,81:A78-A78.
    [119]陈均志,单世群,武丹聘.铝锆酸酯偶联剂对超微碳酸钙表面性能的影响[J].塑料工业. 2006,34(7):56-58.
    [120]杨巧珍,李峰,段雪.层状双羟基氢氧化物(LDH)的表面有机化研究[J].塑料.2003,32(6):11-14.
    [121]朱庆英,莫永才.稀土偶联剂对碳酸钙表面改性的研究[J].塑料科技.2006,34(5):48-91.
    [122]徐伟平,黄锐,蔡碧华,等.大分子偶联剂对HDPE/纳米CaCO_3复合材料性能的影响[J].中国塑料.1999,13(9):25-29.
    [123]Yamamoto M,Ohata M.New macromolecular silane coupling agents synthesized by living anionic polymerization[J].Progress in Organic Coating.1996,27(1):277-285.
    [124]Ando N,Takeuchi M.Electrical resistivity of the polymer layers with polymer grafted carbon blacks[J].Thin Solid Films.1998,334(12):182-186.
    [125]冯彩梅,王为民.粉体表面改性技术及其效果评估[J].现代技术陶瓷.2004,(2):23-26.
    [126]何涛波,陈建峰,毋伟.无机超细粒子表面聚合物包覆改性研究进展[J].高分子材料科学与工程.2004,20(3):13-16.
    [127]Tsubokawa N,Kogure A.Cationic graft polymerization from ultrafine silica initiated by acylium perchlorate groupsintroduced onto the surface[J].Polym J.1993,25(1):83-89.
    [128]汤志忠,高保娇.原子转移自由基聚合及其研究进展[J].华北工学院学报.2004,25(4):271-276.
    [129]Ejaz M,Ohno K,Tsujii Y,et al.Controlled grafting of a well-defined glycopolymerization [J].Macromolecules.2003,33(8):2870-2874.
    [130]Gu B,Sen A.Synthesis of aluminum oxide-gradient copolymer composites by atom transfer radical polymerization[J].Macromolecules.2002,35(23):8913-8916.
    [131]陈立国,石艳,付志锋.苯乙烯稳定自由基聚合过程中的热引发作用[J].北京化工大学学报.2006,33(5):53-57.
    [132]Bartholome C,Beyou E,Bourgeat-Lami E,et al.Nitroxide-mediated polymerizations from silica nanoparticle surfaces:"Graft from" polymerization of styrene using a triethoxysilylterminated alkoxyamine initiator[J].Macromolecules.2003,36(21):7946-7952.
    [133]王平华,李凤妍,唐龙祥,等.RAFT聚合方法在碳纳米管表面接枝嵌段共聚物[J].高分子材料科学与工程.2007,23(6):36-42.
    [134]何晓燕,倪刚,薄丽丽,等.可逆加成—断裂链转移(RAFT)自由基聚合法制备PMMA/SiO_2有机/无机杂化材料[J].西北师范大学学报(自然科学版).2006,42(2):68-72.
    [135]Tsubokawa N,Kogure E A.Surface grafting of polymers onto inorganic ultrafine particles reaction of functional polymers with acid anhydride groups introduced onto inorganic ultrafine particles[J].J.Polym.Sci.Part A:Polym Chem.1991,29(5):697-702.
    [136]Tsubokawa N,Yoshikawa S.Grafting of polymers with controlled molecular weight onto ultrafine silica surface[J].J.Polym.Sci.Part A:Polym Chem.1995,33(3):581-586.
    [137]Timothy V W,Timothy E P.Atom transfer radical polymerization from nanoparticles:a tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled living radical polymerizations from surfaces[J].J Am Chem Soc.2001,123(31):7497-7505.
    [138]Spange S.Silica surface modification by cationic polymerization and carbenium intermediates[J].Progress in Polym Sci.2000,25(6):781-849.
    [139]许向阳,朱永伟,王柏春.纳米金刚石团聚体在白油介质中的解聚与分散[J].矿冶工程.2004,24(4):61-64.
    [140]安崇伟,郭艳丽,王晶禹,等.纳米氧化锌的制备和表面改性技术进展[J].应用化工.2005,34(3):141-146.
    [141]Bivolaru D,Kuo SP.Aerodynamic modification of supersonic flow around truncated cone using pulsed electrical discharges[J].AIAA Journal.2005,43(7):1482-1489.
    [142]李志强,任彦荣.微胶囊技术及其应用研究进展[J].化学推进剂与高分子材料.2004,2(6):19-23.
    [143]姚超,杨光,林西平,等.纳米技术与纳米材料(X)—纳米二氧化钛的表面处理[J].日用化学工业.2004,34(4):252-255.
    [144]刘昊,才庆魁,张宁,等.超细粉体的表面改性研究进展[J].沈阳大学学报.2007,19(2):16-20.
    [145]Wu Z S,Zhou J F.Structure Characterization and Tribological Behavior of Surface-Modification ZrO_2 Nanopaticles[J].Chem Res.2001,12(2):4-8.
    [146]李国栋,吴伯麟.超细粉体的表面改性及其对压制成型性能的影响[J].现代技术陶瓷.1998,19(1):28-31.
    [147]Tai Y L,Qian J S,Zhang Y C,et al.Study of surface modification of nano-SiO_2 with macromolecular coupling agent(LMPB-g-MAH)[J].Chem Eng J.2008,141(1-3):354-361.
    [148]王昌松,冯新,陆小华.十八烷基三氯硅烷表面改性钛酸钾晶须[J].物理化学学报.2005,21(6):586-590.
    [149]曹光明,叶菁,李冷,等.对改性重质碳酸钙粉体在液体石蜡中分散机理的探讨[J].中国粉体技术.2002,8(2):13-17.
    [150]宋晶,李友明,唐艳军.纳米碳酸钙湿法表面改性的研究[J].中国粉体技术.2007,(1):12-15.
    [151]李琪,魏取福,汪莹莹,等.锦纶6/有机蒙脱土复合纳米纤维的制备与表征[J].纺织学报.2007,28(11):1-4.
    [152]史建明,黄志明,包永忠,等.聚甲基丙烯酸甲酯包覆纳米CaCO_3改性聚氯乙烯研究[J].中国塑料.2004,18(11):39-42.
    [153]华益苗,袁骏,岳林海,等.SiO_2包覆超细CaCO_3的微晶分析和XPS研究[J].无机化学学报.2001,17(1):134-138.
    [154]魏美玲,任卫.超细陶瓷粉的表面化学包覆改性的研究[J].现代技术陶瓷.2000,(1):3-5.
    [155]朱磊,江红,王滨,等.纳米氧化锌的表面修饰及其机理的研究[J].无机材料学报.2007,22(2):219-222.
    [156]Hong R Y,Qian J Z,Cao J X.Synthesis and characterization of PMMA grafted ZnO nanoparticles[J].Powder Technology.2006,163(3):160-168.
    [157]Siwinska-Stefanska K,Krysztafkiewicz A,Jesionowski T.Modification of hydrophilic/hydrophobic character of TiO_2 surface using selected silane coupling agents[J].Physicochemical Problems of Mineral Processing.2007,(41):205-214
    [158]李艳玲,毛如增,吴立军,等.超细氢氧化镁阻粉体表面改性研究[J].中国粉体技术.2007,(1):29-32.
    [159]苏小红,周波,武七德,等.碳化硅粉体表面改性对分散性能的影响研究[J].中国粉体技术.2007,(5):27-30.
    [160]Wang T L,Ou C C,Yang C H.Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization[J].J Appl Polym Sci.2008,109(5):3421-3430.
    [161]Hong R Y,Chen L L,Li J H,et al.Preparation and application of polystyrene-grafted ZnO nanoparticles[J].Polym Adv Tech.2007,18(11):901-909.
    [162]Bhagat S D,Kim Y H,Suh K H,et al.Superhydrophobic silica aerogel powders with simultaneous surface modification,solvent exchange and sodium ion removal from hydrogels[J].Microporous and Mesoporous Materials.2008,112(1-3):504-509.
    [163]张馨桂,郭奋,陈建峰.纳米Al(OH)_3干法表面改性及其在EVA中的应用[J].北京化工大学学报.2005,32(2):17-20.
    [164]林冠发.纳米陶瓷材料及其制备与应用[J].陶瓷.2002,(5):18-21.
    [165]肖汉宁,高朋召.高性能结构陶瓷及其应用[M].北京:化学工业出版社.2006.
    [166]高濂,李蔚.纳米陶瓷[M].北京:化学工业出版社.2002.
    [167]刘红华.纳米陶瓷的特性与应用[J].佛山陶瓷.2005,(2):66-67.
    [168]陈华辉,邢建东,李卫.耐磨材料应用手册[M].北京:机械工业出版社.2006.
    [169]王卫乡.LICVD纳米硅和纳米氮化硅的制备、结构与物性研究[D].广州:华南师范大学.1995.
    [170]黄艺林.氮化硅陶瓷简介[J].佛山陶瓷.1992,(2):15-23.
    [171]刘文,王质武,杨清斗,等.硅基氮化铝薄膜的AFM和XPS分析[J].压电与声光.2007,29(6):723-725.
    [172]杜大明.不同烧结助剂对氮化硅常压烧结的影响[D].武汉:武汉理工大学.2004.
    [173]王思青.AIN粉末及陶瓷的性能、制备与应用综述[J].中国陶瓷.1995,31(5):39-42.
    [174]邹清,马鸿雁.氮化铝的研究进展[J].化学研究与应用.2004,16(1):11-14.
    [175]汪学铭.应用前景广阔的氮化铝[J].无机盐工业.1997,(6):21-22.
    [176]Lu Z J,Ai X,Zhao J.Preparation,properties and microstructure of Si_3N_4/TiC nanocomposite ceramics[J].Rare Metal Materials and Engineering.2005,34:467-470.
    [177]Zhao J,Steams L C,Harmer M P,et al.Mechanical Behavior of Alumina-Silicon Carbide Nanocomposites[J].J Am Ceram Soe.1993,76(2):503-510.
    [178]Wain N,Radaelli P G,Todd R I.In situ neutron diffraction study of residual stress development in MgO/SiC ceramic nanocomposites during thermal cycling[J].Acta Materialia.2007,55(13):4535-4544.
    [179]Jung Y S,Guo Y,Nakao W,et al.Crack-healing behaviour and resultant high-temperature fatigue strength of machined Si_3N_4/SiC composite ceramic[J].Fatigue and Fracture of Engineering Materials and Structures.2008,31(1):2-11.
    [180]李涛.纳米陶瓷粉体的应用现状与展望[J].矿产保护与利用.2004,(3):52-54.
    [181]万震,刘嵩,王靖天.功能性陶瓷纤维[J].中国陶瓷.2001,37(4):40-42.
    [182]齐鲁.含有陶瓷粉末PP纤维材料流变性能的研究[J].高分子材料科学与工程.1999,15(4):151-153.
    [183]张先禹,浦鸿汀,王莹.纳米陶瓷及其在汽车工业中的应用[J].上海汽车.2003,(9):35-37.
    [184]Goyal R K,Negi Y S,Tiwari A N.Preparation of high performance composites based on aluminum nitride/poly(ether-ether-ketone) and their properties[J].Euro Polym J.2005,41(9):2034-2044.
    [185]Kuo M C,Tsai C M,Huang J C.PEEK composites reinforced by nano-sized SiO_2 and Al_2O_3particulates[J].Mater Chem Phys.2005,90(1):185-195.
    [186]Bahadur S,Sunkara C.Effect of transfer film structure,composition and bonding on the tribological behavior of polyphenylene sulfide filled with nano particles of TiO_2,ZnO,CuO and SiC[J].Wear.2005,258(9):1411-1421.
    [187]Wang Q H,Xue Q J,Liu H W,et al.The effect of particle size of nanometer ZrO_2 on the tribological behaviour of PEEK[J].Wear.1996,198(1):216-219.
    [188]张招柱,薛群基,刘维民,等.陶瓷颗粒填充PTFE复合材料的摩擦磨损性能研究[J].高分子材料科学与工程.2001,17(2):121-124.
    [189]陈继兰.氮化硅的性能及其聚合物材料[J].高分子材料科学与工程.1996,12(6):144-147
    [190]薛福连.添加氮化硅的橡胶油封[J].天津橡胶.1999,(3):26-27.
    [191]栾道成,丁武成,李茂华.聚氨酯-Si_3N_4陶瓷复合材料浆体冲蚀磨损性能研究[J].摩擦学 学报.2004,24(3):268-271.
    [192]Wang Q,Xu J,Shen W,et al.An investigation of the friction and wear properties of nanometer Si_3N_4 filled PEEK[J].Wear.1996,196(1):82-86.
    [193]Wang Q,Xu J,Liu W,et al.Tribological characteristics of nanometer Si_3N_4 filled poly(ether ether ketone) under distilled water lubrication[J].J Appl Polym Sci.2001,79(8):1394-1400.
    [194]颜红侠,宁荣昌,马晓燕,等.纳米Si_3N_4填充聚双马来酰亚胺摩擦磨损性能研究[J].摩擦学学报.2001,21(6):452-455.
    [195]Shi G,Zhang M Q,Rong M Z,et al.Friction and wear of low nanometer Si_3N_4 filled epoxy composites[J].Wear.2003,254:784-796.
    [196]尚书勇,梅丽,李兰英,等.纳米氮化铝的制备方法及其应用研究[J].广东化工.2004,(3):5-7.
    [197]刘庆华,李亚东.超细AlN填充环氧树脂热性能研究[J].传感器技术.2005,24(11):36-38.
    [198]刘庆华,李亚东.超细氮化铝颗粒改性环氧树脂冲击断口分析[J].橡塑技术与装备.2005,31(6):1-5.
    [199]刘庆华,李亚东.环氧树脂/氮化铝复合材料冲击性能的研究[J].化学推进剂与高分子材料.2005,3(2):28-31.
    [200]汪雨荻,周和平,乔梁,等.AlN/聚乙烯复合基板的导热性能[J].无机材料学报.2000,15(6):1030-1036.
    [201]张洁,王炜,曾宪华,等.氮化铝颗粒增强聚合物基板材料的制备及介电性能研究[J].航空材料学报.2006,26(3):341-342.
    [202]李亚东,闫福丰,马亿珠,等.氮化铝对ABS复合材料导热性能的影响[J].塑料工业.2006,34(11):63-65.
    [203]王家俊,益小苏.导热型高性能树脂微电子封装材料之一:封装材料的制备[J].包装工程.2003,24(3):46-48.
    [204]Yu S Z,Peter H,Xiao H.Thermal expansion behaviour of polystyrene-aluminium nitride composites.Appl Phys.2000,33:1606-1610.
    [205]Xu Y S,Chung D D L,Cathleen M.Thermally conducting aluminum nitride polymermatrix composites[J].Composites.Part A:Appl Sci Manuf.2001,32:1749-1757.
    [206]Goyal R K,Tiwari A N,Mulik U P,et al.Effect of aluminum nitride on thermomechanical properties of high performance PEEK[J].Composites.Part A:Appl Sci Manuf.2007,38(2):516-524.
    [207]Goyal R K,Negi Y S,Tiwar A N.Preparation of high performance composites based on aluminum nitride/poly(ether-ether-ketone) and their properties[J].Euro Polym J.2005,41(9):2034-2044.
    [1]张其士.Si_3N_4陶瓷材料的氧化行为及其抗氧化研究[J].陶瓷学报.2000,21(1):23-27.
    [2]黄勇,代建消,许兴利,等.氮化硅粉体的表面化学性质和水中的胶体特性[J].硅酸盐通报.2000,(2):37-42.
    [3]Jenett H,Bubert H,Grallath E.Comparative surface and bulk analysis of oxygen in Si_3N_4powders[J].Fresenius Z Anal Chem.1989,333(4-5):502-506
    [4]Busca G,Lorenzelli V,Porcile G,et ai.FT-IR study of the surface properties of Silicon Nitride[J].Mater Chem Phys.1986,14(2):123-140.
    [5]颜鲁婷,司文捷,苗赫濯.Si_3N_4粉体表面分析及偶联剂作用量的选择[J].无机材料学报.2002,17(5):973-978.
    [6]Ozawa M,Furukawa Y,Ogawa M,et al.X-ray Photoelectron Spectroscopy(XPS) study of fracture mechanism in sintered Si_3N_4[J].J Ceram Soc of Japan.2000,108(1):61-64.
    [7]Choi W K,Koh S K,Jung H J.X-ray photoelectron spectroscopy studies of modified surfaces of alpha-Al_2O_3,SiO_2,and Si_3N_4 by low energy reactive ion beam irradiation[J].J Vac Sci Tech.Part A:Vacuum Surfaces and Films.1999,17(6):3362-3367.
    [8]颜鲁婷,司文捷,苗赫濯,等.Si_3N_4粉体表面化学分析及表面改性[J].硅酸盐通报.2001,(6):24-29.
    [9]Rahaman M N,Boiteux Y,Dejonghe L C.Surface characterization of silicon nitride and silicon carbide powders[J].Am Ceram Soc Bull.1986,65(8):1171-1176.
    [10]Peuckert M,Greil P.Oxygen distribution in silicon nitride powders[J].J Mater Sci.1987,22(10):3717-3720.
    [11]Janos S,IlonaM,JenoI G.Atmospheric ageing of nanosized silicon nitride powders[J].J Mater Chem.2001,11(3):859-863.
    [12]马天,代建清等.表面水解和热氧化对氮化硅粉料表面特性及分散特性的影响[J].稀有金属材料与工程.2005,34(1):86-90.
    [13]Hien T T T,Ishizaki C,Ishizaki K.Commercial silicon nitride powders surface groups measured by diffuse reflectance infrared Fourier transform spectroscopy[M].Euro Ceramics Ⅷ,PTS 1-3(Key Engineering Materials).2004,264-268:1119-1122.
    [14]Busca G.,Lorenzelli V,Baratoon M.I.,et al.FT-IR characterization of silicon nitride Si_3N_4and silicon oxynitride Si_2N_2O surfaces[J].J.Molecular Structure,1986,143:525-532.
    [15]Nakamatsu T,Saito N,Ishizaki C.Silicon nitride and oxide powder surface characterization by TPD[J].J Euro Ceram Soc.1998,18:1273-1279.
    [16]陆忠乾,江东亮,谭寿洪.PCVD法合成的无定形Si_3N_4纳米粉末和薄膜的红外特性比较[J].无机材料学报.1997,12(3):435-439.
    [17]Bergstr(o|¨)m L,Pugh R J.Interracial Characterization of Silicon Nitride Powders.J Am Ceram Soc.1989,72(1):103-109.
    [18]HIEN T T T,Ishizaki C,Ishizaki K.Surface Structure of Commercial Si_3N_4 Powders Analyzed by X-Ray Photoelectron Spectroscopy(XPS)[J].J Ceram Soc of Japan.2005,113(1322):647-653.
    [19]徐征宙,曲选辉,段柏华.利用硅烷改善氮化铝抗水解性的研究[J].电子元件与材料.2004,23(12):7-9.
    [20]Bowen P,Highfield J G,Mocellin A,et al.Degradation of aluminum nitride powders in an aqueous environment[J].J Am Ceram Soc.1990,73(3):724-728.
    [21]Egashira E,Shimizu Y,Takatsuki S.Chemical surface treatment of aluminum nitride powder suppressing its reactivity with water[J].J Mater Letter.1991,45(10):994-996.
    [22]张宗涛,胡黎明.注浆成形AlN的抗水解表面处理[J].电子元件与材料.1996,15(5):49-52.
    [23]周灿栋,蒋国昌,尤静林.氮化铝结构的高温Raman光谱分析[J].光散射学报.2002,14(1):48-53.
    [24]曹立宏,欧阳世翕.氮化铝纳米粉末的氧化特性研究[J].硅酸盐学报.1995,23(1):50-54
    [25]尚书勇,梅丽,李兰英,等.等离子体法制备超细粉体氮化铝的研究[J].化工新型材料.2004,32(7):8-10
    [26]赵文锋,陈俊芳,吴先球,等.纳米粉体材料氮化硅的ICP制备技术和红外光学特性[J].华南师范大学学报(自然科学版).2004,(2):72-76.
    [27]Zambom L D,Mansano R D,Furlan R.Silicon nitride deposited by inductively coupled plasma using silane and nitrogen[J].Vacuum.2002,65(2):213-220.
    [28]王涛,张立德.纳米氮化硅红外吸收谱的蓝移和宽化现象[J].中国科学院研究生院学报.1993,10(4):355-359.
    [29]王颖,中德振,刘益春,等.包埋于氮化碎薄膜中的硅团簇的光致发光特性[J].发光学报.2004,25(6):705-709.
    [30]王树林,程如光.非晶氮化硅的研究[J].硅酸盐学报.1989,17(3):243-250.
    [31]王锐,李道火,黄永攀,等.纳米Si_3N_4制备及光学特性研究[J].材料科学与工艺.2004,12(5):557-560.
    [32]B.S.Sahu,P.Srivastava,O.P,Agnihotri,et al.Effect of low temperature oxidation on dielectric properties of mercury sensitized photo-deposited silicon nitride films[J].Journal of Non-Crystalline Solids.2005,351(8-9):771-776.
    [33]Girones M,Bolhuis-Versteeg L A M,Lammertink R G H,et al.Flux stabilization of silicon nitride microsieves by backpulsing and surface modification with PEG moieties[J].Journal of Colloid and Interface Science.2006,299(2):831-840.
    [34]施锦行.氮化铝的室温热导率[J].中国陶瓷.1995,31(5):20-21.
    [35]颜国君,陈光德,吕惠民.纳米六方相氮化铝的合成和光学性能研究[J].化学学报.2006,64,(16):1688-1692.
    [36]Yan G J,Chen G D,Lu H M.Solid-state metasynthesis and characterization of AlN nanocrystals[J].International Journal of Refractory Metals and Hard Materials.2008,26(1):5-8.
    [37]Seki K,Xu X,Okabe H,et al.Halpern,Room-temperature growth of AlN thin films by laser ablation[J].Appl Phys Lett.1992,60(18):2234-2236.
    [38]Chert X,Gonsalves K E.Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process[J].J Mater Res.1997,12(5):1274-1286.
    [39]Demiryoat H,Thompson L R,Collins G L.Optical and electrical characterizations of laser-chemical-vapor-deposited aluminum oxynitride films[J].J Appl Phys.1986,59:3235-3240.
    [40]Crowell J E,Chert J G,Yates J T.Surface sensitive spectroscopic study of the interaction of oxygen with Al(111)-low temperature chemisorption and oxidation[J].Surf Sci.1986,165:37-64.
    [41]刘文,王质武,杨清斗,等.硅基氮化铝薄膜的AFM和XPS分析[J].压电与声光.2007,29(6):723-725.
    [42]Wangner C D,Passoja D E,Hillery H F,et al.Auger and photoelectron line energy relationship in aluminum-oxygen and silicon-oxygen[J].J Vac Sci Technol.1982,21:933-944.
    [43]李友胜,李凝芳.AlN微粉表面结合状态的XPS研究[J].耐火材料.2001,35(4):233-235.
    [44]夏立芳,王佐诚,孙跃,等.AlN薄膜的成分、相结构和氧化性能[J].材料研究学报.1995,9(4):361-363.
    [1]Zhou S H,Gao Y,Wang Y T,et al.Styrene/tetradecyl methyl acrylate/3-methacryloxylpropyl trimethoxyl silane triblock copolymers:Atom transfer radical polymerization synthesis and effects on the glass-fiber/polypropylene interphase properties as a macromolecular coupling agent[J].J Appl Polym Sci.2007,104(3):1661-1670.
    [2]Plentz R S,Miotto M,Schneider E E,et al.Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites[J].J Appl Polym Sci.2006,10(3):1799-1805.
    [3]张邦华,古巨明,周庆业,等.大分子偶联剂在PVC/CaCO_3复合体系中的应用[J].中国塑料.1995,9(2):67-70.
    [4]王勇,仲含芳,韦平,等.大分子偶联剂对PE/氢氧化铝阻燃复合材料性能的影响[J].中国塑料.2004,18(1):26-31.
    [5]赵若飞,刘兵,戴干策,等.一种大分子偶联剂对云母的表面处理[J].高分子材料科学与工程.2002,18(6):115-118.
    [6]Lee H,Lynden A A.Functionalizing polymer surfaces by surface migration of copolymer additives:Role of additive molecular weight[J].polymer.2002,43:20-21.
    [7]Zhang J X,Jiang D L,Tan S H,et al.Aqueous Processing of SiC Green Sheets 1:Dispersant[J].J Mater Res.2002,17(8):2012-2018.
    [8]Xia R,Zhang Y C,Zhu Q R,et al.Surface modification of nano-sized silicon nitride with BA-MAA-AN tercopolymer.J Appl Polym Sci.2008,107(1):562-570.
    [9]温晓炅,包建军,刘艳.Mg(OH)_2表面处理对LDPE力学性能及加工性的影响[J].塑料工业.2006,34(4):40-43.
    [10]Nachtigall S M B,Miotto M,Schneider E E,et al.Macromolecular coupling agents for flame retardant materials[J].Euro Polym J.2006,42(5):990-999.
    [11]Plentz R S,Miotto M,Schneider E E,et al.Effect of a macromolecular coupling agent on the properties of aluminum hydroxide/PP composites[J].J Appl Polym Sci.2006,101(3):1799-1805.
    [12]宋仁峰,杨利营,盛京,等.纳米凹凸棒土的表面修饰及表征[J].硅酸盐通报.2003,22(3):36-39.
    [13]梁淑敏.乙烯基三乙氧基硅烷改性SiO_2纳米粒子的研究[J].化学工程师.2004,(7):15-16.
    [14]周晓东,熊若华,戴干策.嵌段共聚物偶联剂的合成及其胶束化行为[J].高分子材料科学与工程.2006,22(1):20-23.
    [15]Klingender R C,Oyama M,Saito Y.High strength compound of highly saturated nitrile and its applications[J].Rubber World.1990,202(3):26-31.
    [16]Nagata N,Sato T,Fujii T.Structure and mechanical properties of hydrogenated NBR/zinc methacrylate vulcanizates[J].J Appl Polym Sci.1994,53(1):103-120.
    [17]Ikeda T,Yamada B,Tsuji M,et al.In situ copolymerization behaviour of zinc dimethacrylate and 2-(N-ethylperfluorooctanesulphonamido) ethyl acrylate in hydrogenated nitrile-butadiene rubber during peroxide crosslinking[J].Polym Inter.1999,48(6):446-454.
    [18]Samui A B,Dalvi V G,Chandrasekhar L,et al.Interpenetrating Polymer Networks based on Nitrile Rubber and Metal Methacrylates[J].J Appl Polym Sci.2006,99(5):2542-2548.
    [19]Lu Y L,Liu L,Tian M,et al.Study on mechanical properties of elastomers reinforced by zine dimethacrylate[J].Euro Polym J.2005,41(3):589-598.
    [20]王聿衡,彭宗林,张勇,等.原位合成甲基丙烯酸锌增强氢化丁腈橡胶[J].合成橡胶工业.2005,28(3):205-210.
    [21]Peng Z L,Liang X,Zhang Y X,et al.Reinforcement of EPDM by In Situ Prepared Zinc Dimethacrylate[J].J Appl Polym Sci.2002,84(7):1339-1345.
    [22]Yuan X H,Zhang Y,Zhang Y X,et al.In situ preparation of zinc salts of unsaturated carboxylic acids to reinforce NBR[J].J Appl Polym Sci.2000,77(12):2740-2748.
    [23]Lu Y L,Liu L,Cheng Y,et al.The morphology of zinc dimethacrylate reinforced elastomers investigated by SEM and TEM[J].Euro Polym J.2005,41:577-588.
    [24]Song X L,Qu P,Yang H P,et al.Synthesis of gamma-Al_2O_3.nanoparticles by chemical precipitation method[J].Journal of Central South University of Technology.2006,12(5):536-541.
    [25]张建荣,高濂.水热法合成纳米SnO_2粉体[J].无机材料学报.2004,19(5):1177-1180.
    [1]Zhang J X,Feng J J,Gao L Q.Preparation and properties of sintering additives coated Si_3N_4from heterogeneous nucleation processing[J].J Mater Sci Yech.2002,18(1):34-36
    [2]Natansohn S,Pasto A E,Rourke W J.Effect of Powder Surface Modifications on the Properties of Silicon Nitride Ceramics[J].J Am Ceram Soc.1993,76(9):2273-2284.
    [3]Carrasquero E A,Bellosi A B,Staia M H.Characterization and wear behavior of modified silicon nitride[J].Int J Refractory Met Hard Mater.2005,23(6):391-397.
    [4]Han K R,Lira C S,Hong M J,et al.Surface Modification of Silicon Nitride Powder with Aluminum.J Am Ceram Soc.1996,79(2):574-576.
    [5]Kramas T,Lange F F.Rheology and Particle Packing of Chem-and Phys-Adsorbed,Alkylated Silicon Nitride Powders[J].J Am Ceram Soe.1994,77(4):922-928.
    [6]王君,徐国财,吉小利,等.纳米氮化硅粉粒的表面改性研究[J].无机化学学报.2003,19(9):967-970.
    [7]田春艳,刘宁.纳米Si_3N_4粉末分散工艺研究[J].硅酸盐通报,2006,25(4):30-31.
    [8]Egashira M,Shimizu Y,Takatsuki S.Chemical surface treatment of aluminium nitride powder suppressing its reativity with water[J].J Mater Sci Lett.1991,10:994-996.
    [9]黄河激,周和平,汪雨荻.红外光谱分析在AlN流延浆料分散性能测试中的应用[J].无机材料学报.2002,17(2):380-384.
    [10]徐征宙,曲选辉,段伯华.利用硅烷改善氮化铝粉末抗水解性的研究[J].电子元件与材料.2004,23(12):7-9.
    [11]马文石,董安辉.纳米氮化铝粉末表面修饰的研究[J].电子元件与材料.2006,25(5):62-64.
    [12]马文石,董安辉.KH570/聚苯乙烯双重改性纳米氮化铝粉末的研究[J].材料工程.2007,(9):23-25.
    [13]张洁,王炜,曾宪华,等.氮化铝颗粒增强聚合物基板材料的制备及介电性能研究[J].航空材料学报.2006,26(3):341-342.
    [14]Xu Y S,Chung D D L,Mroz C.Thermally conducting aluminum nitride polymer-matrix composites[J].Composites:Part A.2001,32(12):1749-1757.
    [15]Lee G W,Park M,Kim J,et al.Enhanced thermal conductivity of polymer composites filled with hybrid filler[J].Composites:Part A.2006,37(5):727-734.
    [16]刘庆华,李亚东.超细AlN填充环氧树脂热性能研究[J].传感器技术.2005,24(11):36-38.
    [17]李亚东,闫福丰,马亿珠,等.氮化铝对ABS复合材料导热性能的影响[J].塑料工业.2006,34(11):63-65.
    [18]Castanho S M,Moreno R,Fierro J L G.Influence of Process Conditions on the Surface Oxidation of Silicon Nitride Green Compacts[J].J Mater Sci.1997,32(1):157-162
    [19]HIEN T T T,Ishizaki C,Ishizaki K.Surface Structure of Commercial Si_3N_4 Powders Analyzed by X-Ray Photoelectron Spectroscopy(XPS)[J].J Ceram Soc of Japan.2005,113(1322):647-653.
    [20]Thunemann A F,Kubowicz S,Pietsch U.Ultrathin solid polyelectrolyte-surfactant complex films:Structure and wetting[J].Langmuir.2000,16(23):8562-8567.
    [21]Ozcan C,Hasirci N.Evaluation of surface free energy for PMMA films[J].J Appl Polym Sci.2008,108(1):438-446.
    [22]loan S,Cosutchi A I,Hulubei C,et al.Surface and interfacial properties of poly(amic acid)s and polyimides.[J]Polym Eng Sci.2007,47(4):381-389.
    [23]何慧,沈家瑞.用接触角法测量聚合物共混体系的表面性能[J].合成材料老化与应用.2002,(1):1-3.
    [24]余钢,王志贤.用接触角法估算复合材料的表(界)面特性[J].分析与测试.2000,21(5):29-32.
    [1]约翰S.迪克主编.橡胶技术配合与性能[M].北京:化学工业出版社.2005.
    [2]Yang H,Tian M,Jia Q X,et al.Improved mechanical and functional properties of elastomer/graphite nanocomposites prepared by latex compounding[J].Acta Materialia.2007,55(18):6372-6382.
    [3]Zhao X Y,Xiang P,Tian M,et al.Nitrile butadiene rubber/hindered phenol nanocomposites with improved strength and high damping performance[J].Polymer.2007,48(20):6056-6063.
    [4]Lapa V L C,Suarez J C M,Visconte L L Y,et al.Fracture behavior of nitrile rubber-cellulose Ⅱ nanocomposites[J].J Mater Sci.2007,42(24):9934-9939
    [5]Ye L Z,Zhang Y H,Wang Z B.Mechanical properties and microstructure of acrylonitrile-butadiene rubber vulcanizates reinforced by in situ polymerized phenolic resin[J].J Appl Polym Sci.2007,105(6):3851-3857.
    [6]Shen F,Yuan X F,Guo W H,et al.Coordination crosslinking of nitrile rubber filled with copper sulfate particles[J].Chin J Polym Sci.2007,25(5):447-459.
    [7]Rahmatpour A,Abdollahi M,Shojaee M.Structure and mechanical properties of 50/50NR/SBR blend/pristine clay nanocomposites[J].J Macro Sci.Part B:Physics.2008,47(3):523-531.
    [8]Zoromba M S,Belal A A M,Ali A E M,et al.Preparation and characterization of some NR and SBR formulations containing different modified kaolinite[J].Polymer-Plastics Technology and Engineering.2007,46(5):529-535.
    [9]Felhos D,Karger-Kocsis J.Tribological testing of peroxide-cured EPDM rubbers with different carbon black contents under dry sliding conditions against steel[J].Triblolgy International.2008,41(5):404-415.
    [10]Karger-Kocsis J,Mousa A,Major Z,et al.Dry friction and sliding wear of EPDM rubbers against steel as a function of carbon black content[J].Wear.2008,264(3-4):357-365.
    [11]Lonkar S P,Kumar A P,Singh R P.Photo-stabilization of EPDM-clay nanocomposites:effect of antioxidant on the preparation and durability[J].Polym Adv Tech.2007,18(11):891-900.
    [12]Mohammadpour Y,Katbab A A.Effects of the ethylene-propylene-diene monomer microstructural parameters and interfacial compatibilizer upon the EPDM/Montmorillonite nanocomposites microstructure:Rheology/permeability correlation[J].J Appl Polym Sci.2007,106(6):4209-4218.
    [13]张琦,田明,吴友平,等.纳米氢氧化镁橡胶复合材料的分散特性及分散机理[J].复合材料学报.2003,20(4):88-95.
    [14]Wu G,Asai S,Sumita M.Estimation of flocculation structure in filled polymer composites by dynamic rheological measurements[J].Colloid Polym Sci.2000,278(3):220-228.
    [15]Payne A R,Whittaker R E.Low strain dynamic properties of filled rubber[J].Rubber Chem Technol.1994,44(3):440-478.
    [16]Giannia C,Jean P,Penny M,et al.n-Alkane Profiles of Engine Lubricating Oil and Particulate Matter by Molecular Sieve Extraction[J].Environ Sci Technol.2007,41:3697-3701.
    [17]Ghorbani M,Mazaheri M,Afshar A,et al.Wear and friction characteristics of electrodeposited graphite-bronze composite coatings[J].Surface & Coatings Technology.2005,190:32-38.
    [18]Prasad B K.Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions[J].Wear.2007,262:262-273.
    [19]乔玉林,徐滨士.纳米微粒作为润滑油脂添加剂的现状与发展趋势[J].化工进展.2005,24(3):256-259.
    [20]方芬,颜红侠,张军平.纳米粒子在润滑材料中的应用进展[J].材料保护.2006,39(12):32-36.
    [21]Savan A,Pfluger E,Gooler R,et al.Use of nanoscaled mutilayer and compound films to realize a soft lubrication phase within a hard,wear-resistant matrix[J].Surf Coat Technol.2000,126(2):159-165.
    [22]Tahsov S.Study of Friction by Nanocopper Addictives to Motor Oil[J].Wear.2002,252:63-69.
    [23]杨汉民.纳米润滑材料在润滑油中的应用研究[J].武汉工业学院学报.2004,23(3):44-47.
    [24]Zhang P Y,Xue Q J,Du Z L,et al.The tribological behavior of LB films of fatty acids and nanoparticles[J].Wear,2000,242(1-2):147-151.
    [25]王君,徐国财,吉小利,等.纳米氮化硅粉粒的表面改性研究[J].无机化学学报.2003,19(9):967-970.
    [26]王作龄.丁腈橡胶和氢化丁腈橡胶(二)[J].世界橡胶工业.2005,32(10):17-22
    [27]王作龄.丁腈橡胶和氢化丁腈橡胶(三)[J].世界橡胶工业.2005,32(11):5-10
    [28]Liu W,Duda J L,Klaus E E.Wear property of silicon nitride in steel-on-Si_3N_4 systems[J].Wear.1996,199(2):217-221.
    [29]王勇,仲含芳,韦平,等.大分子偶联剂对PE/氢氧化铝阻燃复合材料性能的影响[J].中国塑料.2004,18(1):67-70
    [30]王正辉,萧翼之.BA/AN/MA三元乳液聚合及表征[J].高分子材料科学与工程.2003,19(5):46-49.
    [31]徐文总,郝文涛,马德柱,等.丁苯橡胶/天然橡胶复合体系动态力学性能[J].应用化学.2001,18(1):44-47
    [32]高乃奎,彭宗仁,谢恒,等.EPDM/Al(ON)_3复合材料动态力学性能的研究[J].高分子材料科 学与工程.2001,17(1):90-92
    [33]隋刚,杨小平,梁吉,等.碳纳米管/天然橡胶复合材料的制备及性能[J].复合材料学报.2005,22(5):72-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700