用户名: 密码: 验证码:
钢筋混凝土框架结构抗连续性倒塌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1968年英国伦敦的Ronan Point公寓因煤气爆炸而引发的连续性倒塌事故发生以来,尤其是纽约世贸大楼在“9.11”事件中的连续性倒塌事故发生后,引起了世界各国对如何保证建筑结构在意外事件下抗连续性倒塌能力的高度重视。
     钢筋混凝土框架结构(简称为“RC框架结构”)是当前在我国应用最为广泛的结构体系之一,其安全性问题不容忽视。本文以钢筋混凝土框架结构为研究对象,在理论分析的基础上找出影响钢筋混凝土框架结构抗连续性倒塌性能的主要因素并设计算例,采用连续倒塌分析的备用荷载路径方法,考虑结构的材料非线性和几何非线性,对框架结构的连续性倒塌进行数值分析。通过研究,确定各个影响因素对框架结构抗连续性倒塌性能的影响程度和规律,给出有关提高框架结构抗连续性倒塌性能的设计建议。本文的主要研究工作如下:
     ①简要介绍了建筑结构连续倒塌的研究背景和意义,从连续性倒塌规范与指南修订情况、抗连续性倒塌性能评价研究、抗连续性倒塌设计方法研究和倒塌仿真与试验研究四个方面总结了国内外研究现状。
     ②对备用荷载路径法使用中所涉及的几个关键问题结合国外规范进行了总结和介绍,并指出了其中的注意事项,供研究和设计人员参考并为本文后续的分析工作做了铺垫。
     ③采用备用荷载路径法中的非线性静力和非线性动力分析方法,对按中国规范设计的多个无支撑RC框架结构算例进行抗连续性倒塌性能分析。考察了跨数、跨距、楼层数和抗震设防烈度的不同对无支撑RC框架结构抗连续性倒塌性能的影响。
     ④采用备用荷载路径法中的非线性动力分析方法以一幢10层RC框架结构为研究对象,对比分析水平支撑增设在不同楼层的情况下,模型结构在局部构件破坏后的抗倒塌性能。
     ⑤根据国内外抗连续性倒塌研究现状,结合我国建筑结构抗震规范中关于抗震措施的相关规定,提出了提高结构抗连续性倒塌能力的措施。
     通过以上研究,得到的主要结论如下:
     ①与移除柱子所在跨相邻的结构构件对于局部破坏发生时内力重分配的参与贡献较大,有利于提高框架结构抗连续性倒塌能力;而与移除柱子所在跨远离的结构构件对于其内力重分配的参与贡献很小,对提高框架结构抗连续性倒塌能力作用较小。
     ②框架结构的抗连续性倒塌能力随着跨距的增加而降低。
     ③楼层数的增加会提高框架结构的抗连续性倒塌能力,这个规律在低烈度区不太明显,而在高烈度区比较明显。
     ④只有当抗震设计起到控制作用时,框架结构的抗连续性倒塌能力才会随着抗震设防烈度的提高而有效提高;而当非抗震设计起到控制作用时,框架结构的抗连续性倒塌能力不会随着抗震设防烈度的提高而有效提高。
     ⑤对于位于水平支撑所在跨内柱子破坏的情况:在RC框架结构二层增设水平支撑相对于无支撑框架结构而言,可以有效减小破坏柱顶点处最大竖向位移,同时还能减小与破坏柱子邻近的柱子中的轴力峰值,从而提高其抗连续性倒塌能力。对于位于水平支撑所在跨之外柱子破坏的情况:在二层增设水平支撑对抗连续性倒塌能力没有提高作用。
     ⑥对于位于水平支撑所在跨内柱子破坏的情况:在RC框架结构二层增设水平支撑相对于在其更靠上楼层增设支撑而言,能更有效的减小破坏柱顶点处最大竖向位移,更有利于提高抗连续性倒塌性能;在RC框架结构顶层增设水平支撑相对于在其更靠下楼层增设支撑而言,能更有效加强周边构件的联系并且提高当局部构件破坏时竖向荷载重分布的能力,同样有利于提高抗连续性倒塌性能;在RC框架结构二层和顶层同时增设水平支撑可以综合体现以上两种有利作用。对于位于水平支撑所在跨之外柱子破坏的情况:不同的支撑增设情况对抗连续性倒塌性能均无提高作用。
Since the progressive collapse of the Ronan Point apartment building caused by gas explosion in London in 1968, especially after the progressive collapse of WTC buildings caused by terrorist attacks in New York City in the“9.11”event, high attention have been paid by various countries about how to guarantee the ability of the building structures to resist progressive collapse as a result of accidental events.
     At present, the reinforced concrete frame structure (“RC frame structure”for short) is one of the most extensive structural form in our country. Its safety problem cannot be ignored. In this study, reinforced concrete frame structure is taken as the research object. The factors influencing progressive collapse of a frame structure will be determined through theoretical analysis. Then, the examples are designed. The alternate path method will be used in the numerical simulation of the progressive collapse. The numerical simulation method will take into account of the material and geometrical nonlinear properties. Through the study, determine the factors influencing progressive collapse. Finally, the design recommendations for progressive collapse resistance of frame structures will be proposed.
     The main content herein is as follows:
     ①Briefly introduced the study background and significance of the progressive collapse of building structure, research status at home and abroad are summarized from the following four aspects: revision of the progressive collapse standards and guidelines, research on performance evaluation of resist progressive collapse, research on design method of resist progressive collapse, collapse simulation and experimental study.
     ②Several key problems concerning the use of the alternate path method are summarized and introduced with reference to the foreign codes, and the notice items is pointed out, providing some references to the study and design staff and providing a basis for subsequent analyses work of this paper.
     ③By using nonlinear static (NS) analysis and nonlinear dynamic (ND) analysis of the alternate path method, the performance of resist progressive collapse of the examples of RC frame structures without support designed by Chinese standard are analysed. The effects of the performance of resist progressive collapse of RC frame structures without support are investigated by setting different storey number, span number, span length and seismic fortification intensity.
     ④By using nonlinear dynamic (ND) analysis of the alternate path method, taking a RC frame structure of ten layers as research object, the performance of resist progressive collapse of the examples of RC frame structures for different cases for the brace-setting are compared.
     ⑤According to research status resist progressive collapse at home and abroad, combining the related provision of the aseismic measures of the Chinese Seismic Design Code, proposed some measures to enhance the resisting progressive collapses ability.
     Based on the above research, the main conclusions are as follows:
     ①The structural components which are adjacent to the bay whose column is removed have more contribution to the internal force redistribution when the local damage occurred, so those structural components can improve the ability of the RC frame structures to resist progressive collapse; The structural components which are far away to the bay whose column is removed have little contribution to the internal force redistribution when the local damage occurred, so those structural components have little effect to improve the ability of the RC frame structures to resist progressive collapse.
     ②The increase in span length results in the decrease in resistance to progressive collapse of the RC frames.
     ③The progressive collapse resisting capacity of the RC frames increases as the number of stories increases. This rule is not significant in the low seismic area, but it is more obvious in the highly seismic area.
     ④In the highly seismic area, when the contribution of the seismic load is greater than gravity load, the progressive collapse resistance of the RC frames will increases as the earthquake intensity increases. But this rule is not exist when the contribution of the gravity load is greater than seismic load.
     ⑤For the case that the horizontal brace setting in the bay which the column is removed: The maximum vertical displacement of the top of the removed column and the peak axial force of the columns which are adjacent to the removed column can be reduced effectively when the horizontal brace are setting on the second floor of the RC frame structures relative to the no braced RC frame structures. so it can improve the ability of the RC frame structures to resist progressive collapse. For the case that the horizontal brace setting in the bay which the column is not removed: it has little effect to improve the ability of the RC frame structures to resist progressive collapse when the horizontal brace are setting on the second floor of the RC frame structures.
     ⑥For the case that the horizontal brace setting in the bay which the column is removed: The maximum vertical displacement of the top of the removed column can be reduced effectively when the horizontal brace are setting on the second floor of the RC frame structures relative to the horizontal brace are setting on the top floor. So it can improve the ability of the RC frame structures to resist progressive collapse. The peak axial force of the columns which are adjacent to the removed column can be reduced more effectively when the horizontal brace are setting on the top floor of the RC frame structures relative to the horizontal brace are setting on the second floor. For the case that the horizontal brace setting in the bay which the column is not removed: it has little effect to improve the ability of the RC frame structures to resist progressive collapse when the horizontal brace are setting on the different floor of the RC frame structures.
引文
[1] American Society of Civil Engineers. ASCE 7-05 Minimum Design Loads for Buildings and Other Structures[S]. 2005.
    [2] Dusenberry D O. Review of existing guidelines and provisions related to progressive collapse[EB/OL]. Washington D. C.: NIBS, [2002]. http://www.nibs.org.
    [3] Ellingwood B R. Building design for abnormal loads and progressive collapse[J]. Computer-Aided Civil and Infrastructure Engineering, 2005, 20(3):194-205.
    [4] Moore D B. The UK and European regulations for accidental actions[EB/OL]. [2002]. Washington D. C.: NIBS, [2002]. http://www.nibs.org.
    [5] Mohamed O A. Progressive collapse of structures: Annotated bibliography and comparison of codes and standards[J]. Journal of Performance of Constructed Facilities, 2006, 20(4):418-425.
    [6] BRAC. Building Regulations Advisory Committee annual report 2002[R]. Office of the Deputy Prime Minister, 2003.
    [7] HMSO. The Building Regulations 2000: Approved document A - Structure[S]. Norwich: The Stationery Office, 2004.
    [8] CEN. EN 1991-1-7 Eurocode 1-Actions on structures Part 1.7: General Actions-Accidental actions due to impact and explosions[S]. Brussels, 2006.
    [9] Smith J L. Anti-terrorism: criterial, tools & technology[R]. Vicksburg: Applied Research Associates, Inc. 2003.
    [10] U.S. General Services Administration. Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects[S]. 2003.
    [11] U.S. Department of Defense. UFC 4-023-03 Design of Buildings to Resist Progressive Collapse[S]. 2005.
    [12] U.S. Department of Defense. UFC 4-023-03 Design of Buildings to Resist Progressive Collapse[S]. 2009.
    [13] ACI. ACI 318-05 Building code requirements for structural concrete[S]. 2005.
    [14] AISC. ANSI/AISC 360-05 Specification for structural steel buildings[S]. 2005.
    [15] Japanese Society of Steel Construction & Council on Tall Buildings and Urban Habitat. Guidelines for Collapse Control Design-Construction of Steel Buildings with High Redundancy[S]. 2004.
    [16]日本钢结构协会,美国高层建筑和城市住宅理事会著;陈以一,赵宪忠,译.高冗余度钢结构倒塌控制设计指南[M].上海:同济大学出版社, 2007, 8.
    [17] Akira Wada,Kenichi Ohi,Hirouki Suzuki,et al. A study on the collapse control design method for high-rise steel buildings[J]. Structural Engineering International ,2006,Vol.2:137-140.
    [18]胡晓斌,钱嫁茹.结构连续倒塌分析改变路径法研究[J].四川建筑科学研究,2008,vol.34(4):8-13.
    [19]江晓峰.大跨桁梁结构体系的连续性倒塌机理与抗倒塌设计研究[D].同济大学工学博士学位论文,2008.
    [20]李航.钢结构高塔的连续性倒塌分析[D].申请同济大学工学硕士学位论文,2008.
    [21]姜长生,孙隆和,吴庆宪等.系统理论与鲁棒控制[M].北京,北京航空航天出版社,1998.
    [22] Marc A Maes,Kathleen E Fritzsons,Simon Glowienka. Structural robustness in the light of risk and consequence analysis[J]. Structural Engineering International,2006,Vol.2:101-107.
    [23] Jitendra Agarwal,Juan England,David Blockley. Vulnerability analysis of structures[J]. Structural Engineering International,2006,Vol.2:124-128.
    [24] Dimitri V Val. Robustness of frame structures[J]. Structural Engineering International ,2006,Vol.2:108-112.
    [25] Nethercot D A,Izzuddin B A,Elghazouli A Y. Aligning progressive collapse withconventional structural design[C]. 5th International Conference on Advances in Steel Structures,2007.
    [26] George E Blandford. Review of progressive collapse analysis for truss structures[J]. Journal of Structural Engineering,Vol.123(2):122-129.
    [27] John William. Structural robustness analysis and the fast fracture analogy[J]. Structural Engineering International,2006,Vol.2:118-123.
    [28] Working groups on concepts and techniques, safety evaluation, design and optimization and code implementation. Research needs in structural reliability[C]. Structural Safety, 1990, 7:299-309.
    [29] Jinkoo Kim, Taewan Kim. Assessment of progressive collapse-resisting capacity of steel moment frames[J]. Journal of Constructional Steel Research 65(2009):169-179.
    [30]马人乐,林国铎,陈俊岭,等.水平分布柱间支撑对多高层钢框架连续倒塌性能的影响[J].东南大学学报(自然科学版). 2009, 39(6).
    [31]钱嫁茹,胡晓斌.多层钢框架连续倒塌动力效应分析.地震工程与工程振动[J],2008,Vol..28(2):8-14.
    [32]胡晓斌,钱嫁茹.单层平面钢框架连续倒塌动力效应分析.工程力学[J],2008,Vol.25(6):43.
    [33] Buscemi N,Majanishvili S. SDOF model for progressive collapse analysis [C]. Structures 2005,ASCE. New York: 2005.
    [34] Kim HyunSu,Kim Jinkoo,An Da Woon. Development of integrated system for progressive collapse analysis of building structures considering dynamic effects[J]. Advances inEngineering Software,2009,Vol.40:1-8.
    [35] Ruth Peter,Marchand Kirk A,Williamson Eric B,et al. Static equivalency in progressive collapse alternate path analysis: reducing conservatism while retaining structural integrity[J]. Journal of Performance of Constructed Facilities,2006,Vol.20(4):349-364.
    [36] Fu Feng. Progressive collapse analysis of high-rise building with 3-D finite element modeling method. Journal of Constructional Steel Research,2009,Vol.65:1269-1278.
    [37]李忠献,刘志侠,Hao Hong.爆炸荷载作用下钢结构的动力反应分析[J].建筑结构增刊,2006,Vol.36:98-101.
    [38]李国强,孙建运,王开强.爆炸冲击荷载作用下框架柱简化分析模型研究[J].振动与冲击,2007,Vol.26(1):8-11.
    [39]师燕超,李忠献,郝洪.爆炸荷载作用下钢筋混凝土框架结构的连续倒塌分析[J].解放军理工大学学报(自然科学版),2007,Vol.8(6):652-658.
    [40]唐献述,龙源,王希之等.钢排架结构物线性聚能爆破失稳倒塌过程动力学分析[J].工程爆破,2004,Vol.10(4):8-12.
    [41] Colin Gurley. Progressive collapse and earthquake resistance[J]. Practice Periodical on Structural Design and Construction,2008,Vol.13(1):19-23.
    [42] Mohammed Ettouney,Robert Smilowitz,Margaret Tang,et al. Global system consideration for progressive collapse with extensions to other natural and man-made hazards[J]. Journal of Performance of Constructed Facilities,2006,Vol.20(4):403-417.
    [43] Zhou Qing,Yu T X. Use of high-efficiency energy absorbing device to arrest progressive collapse of tall building[J]. Engineering Fracture Mechani,2004,Vol.130(10):1177-1187.
    [44] Eriling Murtha. Alternate path analysis of space truss for progressive collapse[J]. Journal of Structural Engineering,1988,Vol.114(9):1978-1999.
    [45] Mohammed Ettouney,Tod Rittenhouse. Blast resistant design of commercial building[J]. Practice Periodical on Structural Design and Construction. 1996,Vol.1(1):31-39.
    [46] Anatol Longinow,Mniszewski Kim R. Protecting building against vehicle bomb attacks[J]. Practice Periodical on Structural Design and Construction. 1996,Vol.1(1):51-54.
    [47] Leyendechker E V, Ellingwood B R. Design methods for reducing the risk of progressive collapse in buildings[R]. Washington: National Bureau of Standards, 1977.
    [48] BSI. BS 8110-1:1997 Structural use of concrete– Part 1: Code of practice for design and construction[S]. London, 2002.
    [49] BSI. BS 5950-1:2000 Structural use of steelwork in building– Part 1: Code of practice for design– Rolled and welded sections[S]. London, 2001.
    [50]陆新征,李易,叶列平,等.钢筋混凝土框架结构抗连续倒塌设计方法的研究[J].工程力学, 2008, 25(增刊Ⅱ).
    [51] Abruzzo John, Matta Alain, Panariello Gary. Study of Mitigation Strategies for Progressive Collapse of a Reinforced Concrete Commercial Building. Journal of Performance of Constructed Facilities, 20(4):384-390.
    [52] BSI. BS 6399-1:1996 Loading for buildings– Part 1: Code of practice for dead and imposed loads[S]. London, 2002.
    [53] Ettouney M, Smilowitz R, Rittenhouse T. Blast resistant design of commercial buildings[J]. Practice Periodical on Structural Design and Construction, 1996, 1(1):31-39.
    [54] Salim H, Dinan R, Townsend P T. Analysis and experimental evaluation of in-fill steel-stud wall systems under blast loading[J]. Journal of Structural engineering, 2005, 131(8):1216-1225.
    [55] Goode M G. Fire protection of structural steel in high-rise buildings[R]. Reston: National Institute of Standards and Technology, July 2004.
    [56]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析[J].土木工程学报,2001,Vol.34(6):8-10.
    [57]梁益,陆新征,李易,等.国外RC框架抗连续倒塌设计方法的检验与分析[J].建筑结构, 2010. 40(2): 8-12.
    [58]李海旺,李彦君.爆炸荷载作用下空间钢框架破坏过程分析[J].太原理工大学学报,2007,Vol.38(3):259-282.
    [59]胡晓斌,钱嫁茹.多层平面钢框架连续倒塌仿真分析[J].力学与实践,2008,Vol.30(4):54-57.
    [60] Kaewkulchai G,Williamson E B. Modeling the impact of failed members for progressive collapse analysis of frame structures[J]. Journal of Performance of Constructed Facilities. 2006,Vol.20(4):375-383.
    [61]张雷明,刘西拉.钢筋混凝土结构倒塌分析的前沿研究[J].地震工程与工程振动,2003,Vol.23(3):47-51.
    [62] Mehrdad Sasani,Serkan Sagiroglu. Progressive collapse resistance of hotel San Diego[J]. Journal of Structural Engineering,2008,Vol.134(3):478-488.
    [63] Astaneh-Asl A. Progressive collapse prevention in new and existing buildings[J]. Emerging Technologies in Structural Engineering,2003:1001-1008.
    [64] Astaneh-Asl A,Madsen E A,Noble C,et al. Use of catenary cables to prevent progressive collapse of buildings[R]. Report Number UCB/CEE-Steel-2001/02,Dept. of Civil and Env.Engrg. ,Univ. of Calif. ,Berkeley,2002.
    [65] Astaneh-Asl A,Jones B,Zhao Y,et al. Progressive collapse resistance of steel buldingfloors[R]. Report Number UCB/CEE-STEEL-2001/03,Dept. of Civil and Environmental Engineering,University of California,Berkeley.
    [66]易伟建,何庆锋,肖岩.钢筋混凝土框架结构抗倒塌性能的试验研究[J].建筑结构学报,2007,Vol.28(5):104-109.
    [67] G. Powell. Progressive collapse: Case studies using nonlinear analysis[C]. Structures 2005, ASCE. New York:2005
    [68] Federal Emergency Management Agency (FEMA 356), 2000. Prestandard and Commentary for the Seismic Rehabilitation of Buildings. Washington D. C.
    [69]结构平面计算机辅助设计软件PMCAD用户手册及技术条件.中国建筑科学研究院PKPM CAD工程部, 2002, 9.
    [70]多层及高层建筑结构空间有限元分析与设计软件SATWE用户手册及技术条件.中国建筑科学研究院PKPM CAD工程部, 2002, 9.
    [71] GB60010-2002:混凝土结构设计规范[s].北京:中国建筑工业出版社。
    [72] GB50068-2001:建筑结构可靠度设计统一标准[s].北京:中国建筑工业出版社.
    [73] GB50009-2001:建筑结构荷载规范[s].北京:中国建筑工业出版社.
    [74] JGJ3-2002:高层建筑混凝土结构技术规程.北京:中国建筑工业出版社.
    [75] GB50011-2001:建筑抗震设计规范.北京:中国建筑工业出版社.
    [76] SAP2000 software. Computers and structures-Inc. Berkeley, CA.
    [77]金土木技术有限公司和中国建筑标准设计研究院. SAP2000中文版使用指南[M].北京:人民交通出版社, 2006.
    [78] GB50011-2010:建筑抗震设计规范.北京:中国建筑工业出版社.
    [79]叶列平,陆新征,李易,梁益,马一飞等.混凝土框架结构的抗连续性倒塌设计方法[J].建筑结构, 2010. 40(2): 1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700