用户名: 密码: 验证码:
变质量破碎泥岩渗透性的加速试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含陷落柱煤层开采时,由于水的溶蚀、冲蚀和磨蚀作用,陷落柱的孔隙度和渗透性参量随时间变化,常常发生水流形态的转变,引发突水灾害。变质量破碎岩体渗流研究成为陷落柱突水灾害防治的基础课题。陷落柱突水前,经历了长时间的质量流失,加速渗透试验是模拟陷落柱质量迁移和流失的有效手段。本文对质量流失过程中破碎岩体的渗透性进行加速试验研究,取得如下研究成果:
     (1)研制了能够体现溶蚀、冲蚀和磨蚀效应的变质量破碎岩石渗透试验系统,本系统由轴向加载及位移控制子系统、渗透子系统、数据采集与分析子系统和细小颗粒回收子系统构成,可满足泵站式和注射器式两种方式渗透试验的要求,两种渗透方式切换自如。
     (2)分析了溶蚀、冲蚀、磨蚀作用下破碎岩石的质量变化过程,建立了质量流失率和表观毛密度变化率的表达式,解释了破碎岩石质量迁移和流失的机理。
     (3)通过变质量破碎泥岩渗透加速试验,建立了质量流失率与孔隙度、时间的函数关系,并构造了函数形状参数的遗传算法;得到了Talbol幂指数和初始孔隙度对质量流失率的影响规律。
     (4)通过变质量破碎泥岩渗透加速试验,构建了变质量破碎泥岩渗透性参量的遗传算法,得到不同Talbol幂指数和初始孔隙度下渗透率、非Darcy流β因子和加速度系数的变化规律。
     (5)通过变质量破碎泥岩水流形态转变试验,得到了水流形态转变前质量流失时间、流失总质量与Talbol幂指数、初始孔隙度、压力梯度的关系,建立了水流形态转变条件,运用质量流失的观点解释了破碎泥岩渗流失稳机理。
     (6)考虑了加速因子对质量流失率的影响,构建了变质量破碎岩体渗流系统动力学模型,设计了系统响应计算方法,模拟了任意Talbol幂指数、任意初始孔隙度和任意压力梯度下破碎岩石质量流失率、孔隙度、渗透率、非Darcy流β因子、加速度系数、压力和渗流速度的时变过程。
When coal seams with collapse columns are mined, because of corrosion,washout and abrasive effect, porosity and permeability parameters of collapsecolumns will change with time, and water flow type always changes, which will resultin water inrush. It is now a foundation issue to study seepage of broken rock withmass loss for preventing and curing the disaster of water inrush in collapse columns.Water inrush in collapse columns will happen after a long time process of mass loss,so that the acceleration test is an effective measure to simulate the mass migration andmass loss in collapse columns. Permeability of broken mudstone with mass loss wasstudied by acceleration tests, and the main results are listed as follows.
     (1) A penetration testing system for broken rock with mass loss was developed,which could embody corrosion, washout and abrasive effect. The penetration testingsystem is constituted by the subsystem of axial loading and displacement controlling,the subsystem of penetration, the subsystem of data collection and analysis and thesubsystem of fine particles recovery, which could satisfied the requirements of bothpump station type and injection syringe type penetration tests, and these twopenetration types could be switched freely.
     (2) The process of mass changing for broken rock were analyzed under corrosion,washout and abrasive effect, the expressions of the rate of mass loss and rate ofchange of the apparent density were established, and the mechanism of massmigration and mass loss of broken rock was explained.
     (3) Based on penetration acceleration test for broken mudstone with mass loss,the function relationship among the rate of mass loss, porosity and time wasestablished, and the genetic algorithm was constructed for the shape parameters of thefunction relationship above. The rules of influence on the rate of mass loss fromTalbol power exponents and initial porosities were obtained.
     (4) Based on penetration acceleration test for broken mudstone with mass loss,the genetic algorithm was constructed for permeability parameters for brokenmudstone with mass loss, and changing rules of influence on permeability parameters(including permeability, non-Darcy flow β factor and acceleration coefficient) fromTalbol power exponents and initial porosities were obtained.
     (5) Based on the test of water flow type changing for broken rock with mass loss,relationships between duration of mass loss and Talbol power exponents, initial porosities, pressure gradients were obtained, as well as relationships between lostmass and Talbol power exponents, initial porosities, pressure gradients. Theconditions of water flow type changing were established, and the mechanism ofseepage instability of broken mudstone was explained from the viewpoint of massloss.
     (6) Considering the influence on the rate of mass loss from acceleration factor,the dynamic model of seepage system for broken rock with mass loss was constructed,and computing method of the response of the dynamic system was designed, the timechanging process of the rate of mass loss, porosity, permeability, non-Darcy flow βfactor, acceleration coefficient, pressure and seepage velocity for broken rock underkinds of Talbol power exponents, initial porosities, pressure gradients were simulated.
引文
[1]缪协兴,白海波,陈占清.煤层底板陷落柱突水的塞子模型及机理分析[A].中国力学学会学术大会’2009论文摘要集[C].北京,中国力学学会,2009,346.
    [2]钱学溥.石膏喀斯特陷落柱的形成及其水文地质意义[J].中国岩溶,1988,7(4):47-49.
    [3]张之淦.娘子关地区马家沟灰岩岩溶[A].中国地质学会第二届岩溶学术会议论文选集[C].北京:科学出版社,1982:47-50.
    [4]王锐.华北地区岩溶陷落柱的成因探讨[J].水文地质与工程地质,1982,9(1):37-41.
    [5]赵同谦.峰峰矿区西北部岩溶陷落柱的成因及发育规律探讨[J].焦作矿业学院学报,1994,13(2):205-208.
    [6]史俊德,连冬香,杨士臣.论岩溶塌陷问题[J].华北地质矿产杂志,1998,13(3):264-267.
    [7]杨为民,周治安.岩溶陷落柱充填特征及活化导水分析[J].中国岩溶,2001,20(4):279-283.
    [8]李金凯.矿井岩溶水防治[M].北京:煤炭工业出版社,1990
    [9]徐卫国.岩溶矿区地面塌陷的形成及防治的探讨[J].矿山技术,1978,1:9-11.
    [10]徐卫国,赵桂荣.真空吸蚀作用引起的塌陷实例[J].水文地质工程地质,1988,(3):50-51.
    [11]陈尚平.河北峰峰地区岩溶陷落柱成因探讨[J].中国岩溶.1993,12(3):233-244.
    [12]董兴文.四川须家河煤组陷落柱[J].煤炭工程师,1998,2:36-38.
    [13]文朝生,宋改改.对凤凰山井田陷落柱的探讨[J].煤,2002,4:50-51.
    [14]童世杰,段中稳,张乃宏.任楼井田岩溶陷落柱成因研究[J].淮南职业技术学院学报,2004,4(1):27-29.
    [15]邱继发.层滑状态下陷落柱周围的伴生构造[J].西山科技,2001,2:20-21.
    [16]张宝柱,陈振东.华北型煤田岩溶陷落柱分布规律及其水文地质意义[J].阜新矿业学院学报,1996,15(3):295-298.
    [17]尹尚先,王尚旭,武强.陷落柱突水模式及理论判据[J].岩石力学与工程学报,2004,23(6):964-968.
    [18]尹尚先,吴文金,李永军,等.华北煤田岩溶陷落柱及其突水研究[M].北京:煤炭工业出版社,2008.
    [19]尹尚先,武强.陷落柱概化模式及突水力学判据[J].北京科技大学学报,2006,28(9):812-817.
    [20]宋彦琦,王兴雨,程鹏,等.椭圆形陷落柱厚壁筒突水模式力学判据及数值模拟[J].煤炭学报,2011,36(3):452-455.
    [21]王家臣,李见波.预测陷落柱突水灾害的物理模型及理论判据[J].北京科技大学学报,2010,32(10):1273-1247
    [22]许进鹏,宋扬,成云海,等.陷落柱柱体及其周边裂隙原始应力的理论计算及数值模拟[J].矿山压力与顶板管理,2005,22(4):118-120.
    [23]徐进鹏,孔一凡,童宏树.弱径流条件下陷落柱柱体活化导水机理及判据[J].中国岩溶,2006,25(1):35-39.
    [24] Tang Junhua, Bai Haibo, Yao Banghua,Wu Yu. Theoretical analysis on water-inrushmechanism of concealed collapse pillars in floor[J]. Mining Science and Technology,2011,21(1):57-60.
    [25]尹尚先,武强.煤层底板陷落柱突水模拟及机理分析[J].岩石力学与工程学报,2004,23(15):2551-2556.
    [26]杨天鸿,陈仕阔,朱万成,等.矿井岩体破坏突水机制及非线性渗流模型初探[J].岩石力学与工程学报,2008,27(7):1411-1416.
    [27]朱万成,魏晨慧,张福壮,等.流固耦合模型用于陷落柱突水的数值模拟研究[J].地下空间与工程学报,2009,5(5):928-933.
    [28]李连崇,唐春安,左宇军,等.煤层底板下隐伏陷落柱的滞后突水机理[J].煤炭学报,2009,34(9):1212-1216.
    [29]王家臣,杨胜利.采动影响对陷落柱活化导水机理数值模拟研究[J].采矿与安全工程学报,2009,26(2):140-144.
    [30]王家臣,李见波,徐高明.导水陷落柱突水模拟试验台研制及应用[J].采矿与安全工程学报,2010,27(3):305-309.
    [31]项远法.陷落柱突水过程的力学模型[J].煤田地质与勘探,1993,21(5):36-39.
    [32] Darcy H. Les Fontaines Publiques de la Ville de Dijon[M]. Dalmont, Paris,1856.
    [33]陆同兴.非线性物理概论[M].合肥:中国科学技术大学出版社,2002.
    [34] Lomize GM. Flow in fractured rocks[C]. Gosemergo Izdat, Moscow.1951,127-129.(inRussian)
    [35] Polubarinova-Kochina, P. Ya.. Theory of ground water motion[M]. Goss Izdat. Tekh.-Teotet.Lit, Moscow.1952.(in Russian)
    [36] Winlkins, J.K.. Flow of Water through Rockfill and its Application to the Design of Dams[C],Proc.2nd Austr. Nz. Soil Conf.,1956.
    [37] Johnson, H.A.. Flow through Rockfill Dams[J]. Proc. ASCE, J. Soil Mech. Found. Eng. Div.1971,97(SM2),329-340.
    [38]曾康一,门福录.关于多孔介质中渗流的基本规律[J].地震工程与工程振动,1990,10(3):75-82.
    [39] Scheidegger, A. E., The Physics of Flow Through Porous Media,2nd ed.[M], University ofToronto Press, Toronto,1960.
    [40] Ergun, S., Orning, A.A., Fluid flow through randomly packed columns and fluidized beds[J].Ind. Eng. Chem.1949,41:1179-1184.
    [41] Ergun, S., Fluid flow through packed columns[J]. Chem. Eng. Prog.1952,48:89-94.
    [42] Burke, S.P., Plummer, W.B.. Gas flow through packed columns[J]. Ind. Eng. Chem.1928,20:1196-1200.
    [43] Rumer, R.R., Drinker, P.A., Resistance to laminal flow through porous media[J], Proc. Amer.Soc. Civil Eng.1966, No. Hy5,92,155-164.
    [44] Irmay, S., On the theoretical derivation of Darcy and Forchheimer formulas[J]. Transactionsof the American Geophysical Union.1958,39(4):702–707.
    [45] Irmay, S., Theoretical models of flow through porous media[C], R.I.L.E.M. Symp. Transferof Water in Porous Media, Paris,1964.
    [46] Bachmat, Y., Basic transport coefficients as aquifer characteristics[C], I.A.S.H. Symp.Hydrology of Fractured Rocks, Dubrovnik1,1965,63-76.
    [47] Blick, E.F., Capillary orifice model for high speed flow through porous media I and EC[J].Process Design and Development,1996,6(1):90-94.
    [48] Ahmad, N., Physical Properties of Porous Medium Affecting Laminar and Turbulent Flow ofWater[D], Ph. D. Thesis, Colorado State University, Fort Collins, CoIo.,1967.
    [49] Carman, P.C., Fluid flow through a granular bed[J]. Trans Inst. Chem. Eng. London1937,15:150-156.
    [50] Ward, J.C., Turbulent flow in porous media[J]. Proc. Amer. Soc. Civil Eng.1964,90(HY5):1-12.
    [51] Kogure K. Experimental study on permeability of crushed rock[J]. Memoirs of the DefenseAcademy,Japan,1976,16(4):149-154.
    [52] Zoback, Mark D., Byerlee, James D. Note on the deformational behavior and permeability ofcrushed granite[J]. International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1976,13(10):291-294.
    [53] Mc Corquodal Tohn A, Hannoura Abdel-Alim A, Nasser M Sam. Hydraulic conductivity ofrock fill[J]. Journal of Hydraulic Research,1978,16(2):123-137.
    [54] Stephenson D.堆石工程水利计算[M].北京:海洋出版社,1984.
    [55] Martins, R. Turbulent seepage flow through rockfill structures[J]. International Water Powerand Dam Construction,1990,42(3):41-42,44-45.
    [56] M. J. Nicholas, Catalino C. B.. Through-flow analysis for rockfill dam stabilityevaluations[C]. Waterpower '91: A New View of Hydro Resources,1991,1734-1743.
    [57] Leps, Thomas M. Flow Through Rockfill[J]. Embankment-Dam Eng,1973,87-107.
    [58] Kumar, Pradip G.N, Venkataraman, P. Non-Darcy converging flow through coarse granularmedia[J]. Journal of the Institution of Engineers (India): Civil Engineering Division,1995,76:6-11.
    [59] Legrand, J. Revisited analysis of pressure drop in flow through crushed rocks[J]. Journal ofHydraulic Engineering,2002,128(11):1027-1031.
    [60] Hansen, David, Garga, Vinod K., Townsend, D. Ronald. Selection and application of aone-dimensional non-Darcy flow equation for two-dimensional flow through rockfillembankments[J]. Canadian Geotechnical Journal,1995,32(2):223-232.
    [61] Izbash SV, Leleeva NM.Problems of turbulent seepage flow through rockfill[J]. GidrotekhStroit,1971,5:39-41.
    [62] Nakagawa, K., Komada, H., Kanazawa, K. Finite Element Analysis of Pore PressureBehavior Of Rockfill Dam[J]. A. A. Balkema,1985,919-926.
    [63] Mc Corquodale, J. A. Nasser, M. S. Numerical Methods For Unsteady Non-Darcy Flow[C].Bundesministerium fuer Forschung and Technologie, Forschungsbericht, TechnologischeForschung and Entwicklung,1974:545-557.
    [64] Volker, R.E, Nonlinear flow in porous media by finite element[J]. Proc ASCE,1969,95(6):2093-2114.
    [65]徐天有,张晓宏,孟向一.堆石体渗透规律的试验研究[J].水利学报,1998,29(S1):81-84.
    [66]邱贤德,阎宗岭,姚本军,等.堆石体渗透特性的试验研究[J].四川大学学报(工程科学版),2003,35(2):6-9.
    [67]邱贤德,阎宗岭,刘立,等.堆石体粒径特征对其渗透性的影响[J].岩土力学,2004,25(6):950-954.
    [68]高玉峰,王勇.饱和方式和泥岩含量对堆石料渗透系数的影响[J].岩石力学与工程学报,2007,26(S1):2959-2963.
    [69] Wang, M.L., Miao, S.K., Maji, A.K.; Hwang, C.L. Effect of water on the consolidation ofcrushed rock salt[J]. Proceedings of Engineering Mechanics,1992:531-534.
    [70] Wang, Ming L., Miao, Shuke, Maji, Arup K. Deformation mechanisms of WIPP backfill[J].Radioactive Waste Management and Environmental Restoration,1996,20(2-3):191-211.
    [71]胡去劣.过水堆石体渗流及其模型相似[J].岩土工程学报,1993,15(4):47-51.
    [72]郭庆国.粗粒土的工程特性及应用[M].郑州:黄河水利出版社,1998.
    [73]李广悦,丁德馨,张志军,等.松散破碎介质中气体渗流规律试验研究[J].岩石力学与工程学报,2009,28(4):791-798.
    [74]丁德馨,李广悦,徐文平.松散破碎介质中液体饱和渗流规律研究[J].岩土工程学报,2010,32(2):180-184.
    [75]赵海斌,翦波,王思敬,等.坝基破碎岩体高压渗透变形原位试验[J].岩石力学与工程学报,2009,28(11):2295-2300.
    [76]于留谦,许国安.三维非达西渗流的有限元分析[J].水利学报,1990,20(10):49-54.
    [77] Bear J. Dynamics of fluids in porous media[M]. New York: Elsevier,1979.
    [78]刘卫群.破碎岩体的渗流理论及其应用研究[D].北京:中国矿业大学,2002.
    [79]李顺才,陈占清,缪协兴.破碎岩体渗流的试验及理论研究综述[J].山东科技大学学报(自然科学版),2008,27(3):37-43.
    [80]刘玉庆,李玉寿,孙明贵.岩石散体渗透试验新方法[J].矿山压力与顶板管理,2002,19(4):108-110.
    [81]孙明贵,李天珍,黄先伍,等.破碎岩石非Darcy流的渗透特性试验研究[J].安徽理工大学学报(自然科学版),2003,23(2):11-13.
    [82]刘卫群,缪协兴,陈占清.破碎岩石渗透性的试验测定方法[J].实验力学,2003,18(1):56-61.
    [83]马占国,缪协兴,李兴华,等.破碎页岩渗透特性[J].采矿与安全工程学报,2007,24(3):260-264.
    [84] MA Zhan-guo, MIAO Xie-xing, ZHANG Fan, et al. Experimental Study into Permeability ofBroken Mudstone[J]. Journal of China University of Mining&Technology,2007,17(2):147-151.
    [85]马占国,缪协兴,陈占清,等.破碎煤体渗透特性的试验研究[J].岩土力学,2009,30(4):985-988,996.
    [86]黄先伍,唐平,缪协兴,等.破碎砂岩渗透特性与孔隙率关系的试验研究[J].岩土力学,2005,26(9):1385-1388.
    [87]李顺才,缪协兴,陈占清,等.承压破碎岩石非Darcy渗流的渗透特性试验研究[J].工程力学,2008,25(4):85-92.
    [88]黄伟.基于流固耦合动力学的矿压显现与瓦斯涌出相关性分析[D].徐州:中国矿业大学,2011.
    [89]王路珍,陈占清,孔海陵,等.加载历程对配径碎煤渗透特性影响的试验研究[J].岩土力学,2013,34(5):1325-1331.
    [90]缪协兴,陈占清,茅献彪,等.峰后岩石非Darcy渗流的分岔行为研究[J].力学学报,2003,35(6):660-667.
    [91]李顺才.破碎岩体非Darcy渗流的非线性动力学研究[D].徐州:中国矿业大学,2006.
    [92]李天珍,马林,张连英.泥岩非Darcy流渗透特性指标正负号探讨[J].采矿与安全工程学报,2007,24(4):481-485.
    [93] Lu-zhen WANG, Zhan-qing CHEN, Hai-de SHEN. Experimental study on the type change ofliquid flow in broken coal samples[J]. Journal of coal science and engineering,2013,19(1):19-25.
    [94]白海波.奥陶系顶部岩层渗流力学特性及作为隔水关键层应用研究[D].徐州:中国矿业大学,2008.
    [95]姚邦华.破碎岩体变质量流固耦合动力学理论及应用研究[D].徐州:中国矿业大学,2012.
    [96]马丹.破碎泥岩变质量非Darcy流渗透特性试验研究[D].徐州:中国矿业大学,2013.
    [97]杜锋.破碎岩体水沙两相渗透特性试验研究[D].徐州:中国矿业大学,2013.
    [98] Logan,J.M., Blaekwell,M.I. The influence of chemically active fluids on frictional behaviorof sandstone[J]. EOS, Trans. AM. Geophy.Union,1983,64:835.
    [99]耿乃光,郝晋昇,李纪汉,等.断层泥力学性质与含水量关系初探[J].地震地质,1986,8(3):56-60.
    [100] Dyke,C.G, and Dobereiner, L. Evaluating the strength and deformability of sandstones[J].Quarterly Journal of Engineering Geology,1991,24:123-134.
    [101]陈钢林,周仁德.水对受力岩石变形破坏宏观力学效应的实验研究[J].地球物理学报,1991,34(3):335-342.
    [102] Hawkins, A.B., McConnell, B.J. Sensitivity of sandstone strength and Deformability tochanges in moisture content[J].Quarterly Journal of Engineering Geology,1992,25:115-130.
    [103]康红普.水对岩石的损伤[J].水文地质工程地质,1994,20(3):39-41.
    [104]李炳乾.地下水对岩石的物理作用[J].地震地质译从,1995,17(5):32-37.
    [105]喻学文,吴永锋.长江三峡巴东县城区三道沟滑坡成因研究[J].工程地质学报,1996,4(l):1-7.
    [106] V. I. Pen'kovskii. Capillary pressure and the gravity and dynamic phase distribution in awater-oil-gas-rock system,Journal of Applied Mechanics and Technical Physics,1996,37(6):845-849.
    [107]周翠英,邓毅梅,谭祥韶,等.软岩在饱水过程中微观结构变化规律研究[J].中山大学学报(自然科学版),2003,42(4):98-102.
    [108]周翠英,邓毅梅,谭祥韶,等.饱水软岩力学性质软化的试验研究与应用[J].岩石力学与工程学报,2005,24(1):33-38.
    [109]周翠英,谭祥韶,邓毅梅,等.特殊软岩软化的微观机制研究[J].岩石力学与工程学报,2005,24(3):394-400.
    [110]周翠英,张乐民.软岩与水相互作用的非线性动力学过程分析[J].岩石力学与工程学报,2005,24(22):4036-4041.
    [111]冒海军,杨春和,黄小兰,等.不同含水条件下板岩力学实验研究与理论分析[J].岩土力学,2006,27(9):1637-1642.
    [112]郭富利,张顶立,苏洁,等.地下水和围压对软岩力学性质影响的试验研究[J].岩石力学与工程学报,2007,26(11):2324-2332.
    [113]许模,张衡.地下水对某边坡岩体物理软化作用的研究[J].四川水利,2008,15(4):20-22.
    [114] Z.A. Erguler, R. Ulusay,,Water-induced variations in mechanical properties of clay-bearingrocks[J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(2):355–370.
    [115]张雯,曹平,张向阳,等.金川矿区岩石的膨胀和软化特性试验及分析[J].中南大学学报(自然科学版),2010,41(5):1913-1917.
    [116]汪亦显,曹平,黄永恒,等.水作用下软岩软化与损伤断裂效应的时间相依性[J].四川大学学报(工程科学版),2010,42(4):55-62.
    [117]朱敏,邓华锋,周时,等.水岩作用下砂岩断裂韧度及抗拉强度的试验研究[J].三峡大学学报(自然科学版),2012,34(5):34-38,51.
    [118] D.S. Yang, M. Bornert, S. Chanchole, H. Gharbi, P. Valli, B. Gatmiri,Dependence of elasticproperties of argillaceous rocks on moisture content investigated with optical full-field strainmeasurement techniques[J]. International Journal of Rock Mechanics and Mining Sciences,2012,53:45-55.
    [119] E.M. Ván Eeckhout. The mechanisms of strength reduction due to moisture in coal mineshales[J]. Int J Rock Mech Min Sci,1976,13:61–67.
    [120] Kramadibrata S, Rai MA, Simangunsong GM, Arif I. The influence of water content onstrength characteristic of sandstone subject to triaxial test[Z]. Minergy News2004,http://www.minergynews.com/opinion/morgan.shtml
    [121] B. Vásárhelyi, Some observations regarding the strength and deformability of sandstones incase of dry and saturated conditions[J]. Bull Eng. Geol. Environ,2003,62:245-249.
    [122] B. Vásárhelyi, Statistical analysis of the influence of water content on the strength of theMiocene limestone[J]. Rock Mech. Rock Eng.,2005,38:69-76.
    [123] Van Asch,Th.WJ.,Hendriks,M.,Hessel,R.,and etal. Hydrologieal triggering Conditions oflandslides in varved clays in the French Alps[J]. Enginering Geology,1996,42(4):239-251.
    [124]刘文平,时卫民,孔位学,等.水对三峡库区碎石土的弱化作用[J].岩土力学,2005,26(11):166-170.
    [125]董云,柴贺军,杨慧丽.土石混填路基原位直剪与室内大型直剪试验比较[J].岩土工程学报,2005,27(2):235-238.
    [126]李维树,邬爱清,丁秀丽.三峡库区滑带土抗剪强度参数的影响因素研究[J].岩土力学,2006,27(l):56-60.
    [127]李维树,夏晔,乐俊义.水对三峡库区滑带(体)土直剪强度参数的弱化规律研究[J].岩土力学,2006,27(S2):1170-1174.
    [128]李维树,丁秀丽,邬爱清,等.蓄水对三峡库区土石混合体直剪强度参数的弱化程度研究[J].岩土力学,2007,28(7):1338-1342.
    [129]赵青,黄质宏,孔思丽,等.土质边坡抗剪强度试验结果分析[J].贵州工业大学学报(自然科学版),2003,32(2):92-97.
    [130]孔位学,郑颖人.三峡库区饱和碎石土地基承载力研究[J].工业建筑,2005,35(4):62-64.
    [131]赵川,石晋旭,唐红梅.三峡库区土石比对土体强度参数影响规律的试验研究[J].公路,2006,35(11):32-35.
    [132]唐晓松,邓楚键,郑颖人,等.三峡库区碎石土地基浸水试验研究[J].地下空间与工程学报,2008,4(2):226-229.
    [133]王光进,杨春和,张超,等.粗粒含量对散体岩土颗粒破碎及强度特性试验研究[J].岩土力学,2009,30(12):3649-3654.
    [134] В.И.Кузъкин,赵惠珍,译.负载状态下溶解作用对不同成因岩石强度的影响[J].地质科技译丛,1997,14(2):61-64.
    [135] Dunning, J., Douglas,B., Miller, M., et al. The role of the chemical environment in frictionaldeformation: stress corrosion cracking and comminution[J]. Pure Applied Geophysics,1994,43(l-3):151-178.
    [136] Feucht, L.J., Logan, J.M. Effects of chemically active solutions on shearing behavior of asandstone[J]. TectonoPhysics,1990,175:159-176.
    [137]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展,1999,14(5):433-439.
    [138]汤连生,王思敬.岩石水化学损伤的机理及量化方法探讨[J].岩石力学与工程学报,2002,21(3):314-319.
    [139]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.
    [140]冯夏庭,赖户政宏.化学环境侵蚀下的岩石破裂特性——第一部分:试验研究[J].岩石力学与工程学报,2000,19(4):403-407.
    [141]王泳嘉,冯夏庭.化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析[J].岩石力学与工程学报,2000,19(5):551-556.
    [142]陈四利,冯夏庭,李邵军.化学腐蚀对黄河小浪底砂岩力学特性的影响[J].岩土力学,2002,23(3):284-287,296.
    [143]丁梧秀,冯夏庭.化学腐蚀下灰岩力学效应的试验研究[J].岩石力学与工程学报,2004,23(21):3571-3576.
    [144]霍润科,李宁,刘汉东.受酸腐蚀砂岩的统计本构模型[J].岩石力学与工程学报,2005,24(11):1852-1856.
    [145] Li,N., Zhu,YM., Su,B., et al. A chemical damage model of sandstone in Acid solution[J].Int.J. Rock Mech.Min.Sei.,2003,40(2):243-249.
    [146]张信贵,吴恒,方崇,等.水土化学体系中钙镁对土体结构强度贡献的试验研究[J].地球与环境,2005,33(4):62-68.
    [147]姜立春,陈嘉生. AMD蚀化砂岩的性征及其机理研究[J].矿业研究与开发,2006,26(6):27-31.
    [148] Atkinson B K, Meredith P.G. Stress corrosion cracking of quartz: a note on the influence ofchemical environment[J]. Tectonophysics,1981,77:1-11.
    [149] Karfakis MG, Askram M. Effects of chemical solutions on rock fracturing[J]. Int. J. RockMech. Min. Sci.&Geomech. Abstr.,1993,37(7):1253-1259.
    [150] Hutchinson A.J., Johnson J.B. Stone degradation due to wet deposition of pollutants[J].Corrosion science,1993,34:1881-1898.
    [151] M. Seto, V.S. Vutukuri, D.K. Nag, et al. The effect of chemical additives on strength ofrock[J]. Proc Civ Eng,1998,603(III-44):157–166.
    [152] T. Heggheim, M.V. Madland, R. Risnes, et al. A chemical induced enhanced weakening ofchalk by seawater[J]. Journal of Petroleum Science and Engineering.2005,46(3):171-184.
    [153] Sausse J, Jacquot E, Fritz B, et al. Evolution of crack permeability during fluid-rockinteraction: example of the Brézouard granite[J]. Tectonophysics,2001,336:199-214.
    [154] Su K, Hoteit N, Ozanam O. Effects of desiccation and rehumidification on thethermo-hydro-mechanical behaviour of the Callovo-Oxfordianargillaceous rock[A]. In:StepanssonO, Jing L, Hudson J A. ed. Proceedings of the International Conference GeoProc[C]. Stockholm,Sweden:[s. n.],2003.415-420.
    [155] Polak A., Elsworth D., Yasuhara H., et al. Permeability reduction of a natural fracture undernet dissolution by hydrothermal fluids[J]. Geophys. Res. Lett.,2003,30(20):2020-2030.
    [156] Polak A, Elsworth D, Liu J, et al. Spontaneous switching ofpermeability changes in alimestone fracture with net dissolution[J]. Water Resour Res,2004,40: W03502.
    [157] Yasuhara H, Elsworth D, Polak A. The evolution of permeability in a natural fracture: thesignificant role of pressure solution[J]. Geophys Res.2004,109: B03204.
    [158] Yasuhara H., Polak A.. Evolution of fracture permeability through fluid–rock reaction underhydrothermal conditions[J]. Earth and Planetary Science Letters.2006,244:186-200.
    [159] Jishan Liu, Jinchang Sheng. A fully-coupled hydrological–mechanical–chemical model forfracture sealing and preferential opening[J]. International Journal of Rock Mechanics and MiningSciences.2006,43:23-36.
    [160]周翠英,彭泽英,尚伟,等.论岩土工程中水岩相互作用研究的焦点问题——特殊软岩的力学变异性[J].岩土力学,2002,23(1):124-128.
    [161] Ta-gen Dai, Li Gu, Dong-sheng Qiu, et al. Experiment study on water-rock interaction aboutgold activation and migration in different solutions[J]. Journal of Central South University ofTechnology (English Edition),2001,8(2):105-107.
    [162]谭卓英,刘文静,闭历平,等.岩石强度损伤及其环境效应实验模拟研究[J].中国矿业,2001,10(4):52-55.
    [163]姚华彦.化学溶液及其水压作用下灰岩破裂过程宏细观力学试验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
    [164]姚华彦,冯夏庭,崔强,等.化学侵蚀下硬脆性灰岩变形和强度特性的试验研究[J].岩土力学,2009,30(2):338-344.
    [165]施锡林,李银平,杨春和,等.卤水浸泡对泥质夹层抗拉强度影响的试验研究[J].岩石力学与工程学报,2009,28(11):2301-2308.
    [166]梁卫国,张传达,高红波,等.盐水浸泡作用下石膏岩力学特性试验研究[J].岩石力学与工程学报,2010,29(6):1156-1163.
    [167] Weiguo Liang, Xiaoqin Yang, Hongbo Gao. Experimental study of mechanical properties ofgypsum soaked in brine[J]. International Journal of Rock Mechanics and Mining Sciences,2012,53:142–150.
    [168]高红波,梁卫国,杨晓琴,等.高温盐溶液浸泡作用下石膏岩力学特性试验研究[J].岩石力学与工程学报,2011,30(5):935-943.
    [169]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报,2002,21(6):822-827.
    [170]汤连生,王思敬.工程地质地球化学的发展前景及研究内容和思维方法[J].大自然探索,1999,18(2):35-39,44.
    [171]汤连生,张鹏程,王洋,等.水溶液对砼土剪切强度力学效应的实验研究[J].中山大学学报,2002,41(2):89-92.
    [172] Xia-Ting Feng, Shaojun Li, Sili Chen. Effect of water chemical corrosion on strength andcracking characteristics of rocks-a review[J]. Key Engineering Materials,2004.261-263:1355-1360.
    [173] X.-T.Feng, C.Sili, S.Li. Study on nonlinear damage localization process of rocks underwater chemical corrosion[A].10th Congress of the International Society Rock Mechanics[C].South Africa: Technology Roadmap for Rock Mechanics,2003.
    [174]冯夏庭,王川婴,陈四利.受环境侵蚀的岩石细观破裂过程试验与实时观测[J].岩石力学与工程学报,2002,21(7):935-939.
    [175] Xia-Ting Feng, Sili Chen, Shaojun Li. Effects of water chemistry on microcracking andcompressive strength of granite[J]. Int. J. Rock Mech. Min. Sci.,2001,38(4):557-568.
    [176] Xia-Ting Feng, Sili Chen, Hui Zhou. Real-time computerized tomography(CT) experimentson sandstone damage evolution during triaxial compression with chemical corrosion[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(2):181-192.
    [177]陈四利,冯夏庭,周辉.化学腐蚀下砂岩三轴细观损伤机理及损伤变量分析[J].岩土力学,2004,25(9):1363-1367.
    [178]陈四利,冯夏庭,李邵军.岩石单轴抗压强度与破裂特征的化学腐蚀效应[J].岩石力学与工程学报,2003,22(4):547-551.
    [179]陈四利.化学腐蚀下岩石细观损伤破裂机理及本构模型[D].沈阳:东北大学,2003.
    [180]李宁,朱运明,张平,等.酸性环境中钙质胶结砂岩的化学损伤模型[J].岩土工程学报,2003,25(4):395-399.
    [181]丁梧秀,冯夏庭.灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨[J].岩石力学与工程学报,2005,24(8):1283-1288.
    [182]丁梧秀.水化学作用下岩石变形破裂全过程实验与理论分析[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2005.
    [183] Yu Chen, Ping Cao, Rui Chen. Effect of water–rock interaction on the morphology of a rocksurface[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47(5):816–822.
    [184]杨慧,曹平,江学良.水-岩化学作用下岩体裂纹应力强度因子的计算及分析[J].南华大学学报(自然科学版),2009,23(2):14-17.
    [185]杨慧,曹平,江学良.水-岩化学作用等效裂纹扩展细观力学模型[J].岩土力学,2010,31(7):2104-2110.
    [186] Handin,J., hager,R.V., et al. Experimental deformation of sedimentary rocks under confiningpressure: pore pressure effects[J]. Bull.Am.Assoc, Petrol,Geol,1963,47:717-755.
    [187]李建国,何昌荣.空隙水压力对房山大理岩破坏和失稳形式影响的实验研究[A].国家地震局地质研究所编:现今地球动力学研究及其应用[C].北京:地震出版社,1994:336-343.
    [188]邢福东,朱珍德,刘汉龙,等.高围压高水压作用下脆性岩石强度变形特性试验研究[J].河海大学学报(自然科学版),2004,32(2):184-187.
    [189] Chandong Chang, Haimson B. Effect of fluid pressure on rock compressive failure in anearly impermeable crystalline rock: Implication on mechanism of borehole breakouts[J].Engineering Geology,2007,89:230–242.
    [190] S. Okubo, K. Fukui, K. Hashiba. Development of a transparent triaxial cell and observationof rock deformation in compression and creep tests[J]. International Journal of Rock Mechanicsand Mining Sciences,2008,45(3):351–361.
    [191]李道娟,许江,杨红伟,等.循环孔隙水压力作用下砂岩变形特性实验研究[J].地下空间与工程学报,2010,6(2):290-294,305.
    [192]许江,杨红伟,彭守建,等.孔隙水压力与恒定时间对砂岩变形的实验研究[J].土木建筑与环境工程,2010,32(2):19-25.
    [193]许江,杨红伟,彭守建,等.孔隙水压力-围压作用下砂岩力学特性的试验研究[J].岩石力学与工程学报,2010,29(8):1618-1623.
    [194] Sergei Stanchits, Sibylle Mayr, Serge Shapiro, et al. Fracturing of porous rock induced byfluid injection[J]. Tectonophysics,2011,503(1-2):129-145.
    [195]李术才,李树忱,朱维申,等.裂隙水对节理岩体裂隙扩展影响的CT实时扫描实验研究[J].岩石力学与工程学报,2004,23(21):3584-3590.
    [196]简浩,李术才,朱维申,等.含裂隙水脆性材料单轴压缩CT分析[J].岩土力学,2002,23(5):587-591.
    [197] F. Cappa, Y. Guglielmia, P. Fénart, et al. Hydromechanical interactions in a fracturedcarbonate reservoir inferred from hydraulic and mechanical measurements[J]. InternationalJournal of Rock Mechanics and Mining Sciences,2005,42(2):287-306.
    [198] K. Matsuki, Y. Kimura, K. Sakaguchi, A. Kizaki, A.A. Giwelli, Effect of shear displacementon the hydraulic conductivity of a fracture[J]. International Journal of Rock Mechanics andMining Sciences,2010,47(3):436–449.
    [199] M. Mohajerani, P. Delage, J. Sulem, et al. A laboratory investigation of thermally inducedpore pressures in the Callovo-Oxfordian claystone[J]. International Journal of Rock Mechanicsand Mining Sciences,2012,52:112–121.
    [200] Hae-sik Jeong, Seong-seung Kang, Yuzo Obara, Influence of surrounding environments andstrain rates on the strength of rocks subjected to uniaxial compression[J]. International Journal ofRock Mechanics and Mining Sciences,2007,44(3):321–331.
    [201] Xia-Ting Feng, Wuxiu Ding, Dongxiao Zhang. Multi-crack interaction in limestone subjectto stress and flow of chemical solutions[J]. International Journal of Rock Mechanics and MiningSciences,2009,46(1):159–171.
    [202]申林方,冯夏庭,潘鹏志,等.单裂隙花岗岩在应力-渗流-化学耦合作用下的试验研究[J].岩石力学与工程学报,2010,29(7):1379-1388.
    [203]刘琦,卢耀如,张凤娥,等.动水压力作用下碳酸盐岩溶蚀作用模拟实验研究[J].岩土力学,2010,31(S1):96-101.
    [204] S. Cariou, F. Skoczylas, L. Dormieux. Experimental measurements and water transfermodels for the drying of argillite[J]. International Journal of Rock Mechanics and MiningSciences,2012,54:56–69.
    [205]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社,1993.
    [206] A.W. Momber. Wear of rocks by water flow[J]. International Journal of Rock Mechanics andMining Sciences,2004,41(1):51–68.
    [207]邓军,许唯临,曲景学,等.基岩冲刷破坏特征分析[J].四川大学学报(工程科学版),2002,34(6):32-35.
    [208]沈水进,孙红月,尚岳全,等.降雨作用下路堤边坡的冲刷-渗透耦合分析[J].岩石力学与工程学报,2011,30(12):2456-2462.
    [209]王芝银,郭书太,李云鹏.等效连续岩体流固耦合流变分析模型[J].岩土力学,2006,27(12):2122-2126.
    [210]吴秀仪刘长武沈荣喜等水压与外力共同作用下岩石蠕变模型研究[J].西南交通大学学报,2007,42(6):720–725
    [211]沈荣喜,刘长武,刘晓斐.压力水作用下碳质页岩三轴流变特征及模型研究[J].岩土工程学报,2010,32(7):1031-1134.
    [212]崔强.化学溶液流动-应力耦合作用下砂岩的孔隙结构演化与蠕变特征研究[D].沈阳:东北大学,2009.
    [213]阎岩,王恩志,王思敬.渗流场中岩石流变特性的数值模拟[J].岩土力学,2010,31(6):1943-1949.
    [214]阎岩,王恩志,王思敬,等.岩石渗流-流变耦合的试验研究[J].岩土力学,2010,31(7):2095-2103.
    [215]陈占清,李顺才,茅献彪,等.饱和含水石灰岩散体蠕变过程中孔隙度变化规律的试验[J].煤炭学报,2006,31(1):26-30.
    [216]李顺才,陈占清,缪协兴,等.饱和破碎砂岩随时间变形-渗流特性试验研究[J].采矿与安全工程学报,2011,28(4):542-547.
    [217]何俊杰,王明伟,王廷国.地下水动力学[M].北京:地质出版社,2009.
    [218]刘成禹,李宏松.岩石溶蚀的表现特征及其对物理力学性质的影响[J].地球与环境,2012,40(2):255-260.
    [219]赵会友,李国华.材料摩擦磨损[M].北京:煤炭工业出版社,2005.
    [220]缪协兴,刘卫群,陈占清.采动岩体渗流理论[M].北京:科学出版社,2003.
    [221]孔祥言.高等渗流力学[M].合肥:中国科学技术大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700