用户名: 密码: 验证码:
茉莉(Jasminum sambac L.)对低温胁迫的生理响应及离体快繁研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究选用单、双瓣茉莉2年生扦插苗为材料进行低温处理,探讨茉莉在模拟降温和自然降温过程中多个生理生化指标变化规律,旨在探讨茉莉对低温胁迫的抗性机制;应用外源物质对茉莉叶片进行预处理,研究水杨酸(SA)和脱落酸(ABA)对茉莉耐寒性的调控效果及机制;克隆与脯氨酸合成相关的△-1-吡咯琳-5-羧酸合成酶基因(P5CS),并通过半定量RT-PCR方法研究在低温胁迫条件下该基因的表达、脯氨酸含量及其相互之间的关系;并通过以带芽茎段为材料,优化茉莉的离体快繁体系。主要研究结果如下:
     1.以2年生单、双瓣茉莉扦插苗为材料,采用人工模拟低温的方法,初步研究不同温度梯度和低温处理时间对茉莉植株多个生理指标的影响。结果表明:随着温度的降低和胁迫时间的延长,低温对单、双瓣茉莉的影响逐渐加剧;3℃低温胁迫8d后,茉莉各项生理指标的变化最大。随着温度的降低,叶片相对电导率、MDA含量、脯氨酸含量、可溶性蛋白含量、POD活性逐渐升高;根系活力和叶绿素含量则逐渐下降;其他指标则在不同处理时间后的变化趋势较为复杂。单瓣茉莉叶片SOD活性在各温度处理2d和8d的情况下均呈现先升后降趋势,而双瓣SOD活性则持续增加,且比单瓣的SOD活性强。双瓣茉莉叶片可溶性糖含量在各温度处理2d和4d时随温度降低并无显著变化,而在各温度处理8d的情况下则呈显著增加的趋势。综合分析发现,双瓣茉莉的耐寒能力强于单瓣茉莉。
     2.以单、双瓣茉莉2年生扦插苗为试验材料,分析其在2009年南京地区秋冬自然降温过程中多个抗寒生理指标的特性,并比较单、双瓣茉莉间抗寒能力的差异。研究结果表明,在自然降温条件下,单、双瓣茉莉的相对电导率、MDA含量、脯氨酸含量均显著上升,可溶性蛋白含量先上升后下降,不同抗氧化酶活性表现出的趋势并不一致,根系活力呈下降趋势。综合多个生理指标分析得出:在本实验多次降温过程中双瓣茉莉的耐寒能力略强于单瓣茉莉,其中双瓣茉莉抗氧化酶活性表现最为突出。
     3.用50、100、175、250mg·L-1的SA水溶液预处理单、双瓣茉莉幼苗,并经6℃低温胁迫处理3d后,综合比较叶片相对电导率、MDA含量、脯氨酸含量、可溶性糖含量、SOD酶活性等多项指标可以得出,喷施50mg·L-1的SA对单、双瓣茉莉缓解低温胁迫均起到了较好的效果;用0.5、5、10、20mg·L-1的ABA水溶液预处理单、双瓣茉莉叶片,并经6℃低温胁迫处理3d后,综合比较叶片相对电导率、MDA含量、脯氨酸含量、可溶性糖含量、可溶性蛋白含量、POD酶活性等多项指标可以得出,喷施5mg·L-1的ABA对单、双瓣茉莉缓解低温胁迫均起到较好的效果。
     4.利用同源克隆的方法,从双瓣茉莉叶片中克隆得了脯氨酸合成路径中的关键酶基因(P5CS)片段。该基因片段大小为1205bp,编码401个氨基酸,序列分析表明该基因片段与蜡烛果、猕猴桃、烟草、番茄P5CS基因片段同源性达到75%以上。运用半定量RT-PCR方法研究该基因在低温胁迫不同时间的表达情况。研究结果表明,在3℃低温胁迫下,P5CS基因的表达量随着低温胁迫时间延长先升高后降低,高峰期是胁迫第4d,而脯氨酸含量的高峰期则为低温胁迫第6d,存在着一定的滞后性。同时,P5CS基因的转录水平到达高峰期后随着低温胁迫时间的延长而减弱,这与脯氨酸含量变化规律基本一致,这表明脯氨酸含量的增加可能与P5CS基因表达的增加存在正相关,但是这需要进一步的研究加以明确。
     5.以8年生双瓣茉莉为材料,系统研究茉莉茎段快繁体系中多个影响因素,包括消毒处理和基本培养基对外植体启动培养的影响、腋芽增殖培养的最佳配方、最佳丛生芽诱导配方以及生根诱导配方等。主要结果如下:
     (1)外植体采摘最佳时间为4-9月份(避开梅雨季节)。以当年生半木质化带腋芽的茎段为外植体,最佳消毒处理方法是先75%酒精60s,再用0.1%HgCl2消毒52min,无菌水冲洗3次。腋芽萌发的最佳基本培养基为WPM基本培养基。
     (2)在WPM基本培养基中,通过添加不同浓度生长素、细胞分裂素、赤霉素进行单因素或多因素综合试验,发现腋芽最佳伸长生长配方:WPM+2mg·L-1IBA+0.5mg·L-16-BA+0.7mg·L-1GA3。在WPM培养基中添加1mg·L-1ZT和0.5mg·L-1IBA能有效诱导丛生芽,最多可达每茎段诱导11个丛生芽。
     (3)在组培苗生根方面,本试验发现在无菌条件下,通过将芽苗浸泡在已过滤灭菌的450mg·L-1NAA溶液里10min,然后接种到1/2WPM培养基中进行生根诱导效果最好,生根率可达86.4%,且根系健壮,通过炼苗移栽组培苗成活率78%。
In this study, the physiological and biochemical characteristics of chilling stress under artificial low temperature and natural low temperature were investigated in2-year-old cuttings of two cultivars of Jasminum sambac L., single petal jasmine (SPJ) and double petal jasmine (DPJ). In order to unravel mechanism underlying the chilling tolerance of jasmine and to facilitate chilling tolerance breeding, the effect of exogenous salicylic acid (SA) and abscisic acid (ABA) on physiological and biochemical response of these two cultivars were examined. Also, the relationship between delta-1-Pyrroline-5-Carboxylate Synthetase(P5CS) gene and the proline content was studied through semi quantitative reverse transcription and polymerase chain reaction (Sq RT-PCR) under low temperature stress. Besides, the efficient in vitro micropropagation system of jasmine was developed by nodal segments with axillary buds.
     From this research, the main results were as follows:
     1. During the artificial temperature falling experiment, the nine kinds of physiological and biochemical indexes of chilling tolerance during the low temperature stress were investigated in2-year-old cuttings of two cultivars of J. sambac, SPJ and DPJ. The results showed that the effect of low temperature stress on two cultivars intensified gradually with temperature falling and elongation of treating time. The several physiological and biochemical indexes of jasmines changed severely while they were treated under3℃for8days. The relative electrolyte leakage (REL), peroxidase (POD) activity, the content of malondialdehyde (MDA), proline and soluble protein increased gradually; while the root activity and chlorophyll content decreased by degrees; and the other physiological and biochemical indexes changed complicatedly under different low temperature and treating time. The superoxide dismutase (SOD) activity of SPJ increased firstly and then decreased when it was treated under different temperature for2days and8days. The soluble protein content of DPJ was not different remarkably under different temperature treating for2days and4days but increased significantly under different temperature treating for8days. Through comprehensive analysis of these indexes, the chilling tolerance of DPJ was betterr than that of SPJ.
     2. The chilling injury parameter and eight physiological and biochemical indexes of chilling-tolerance were investigated in2-year-old cuttings of SPJ and DPJ under the condition of natural temperature falling in2009year, Nanjing City. The results showed that the REL and the content of MDA and proline of these two cultivars increased significantly, the content of soluble protein increased at first and decreased afterwards, while the tendencies of antioxidant enzymes activity of the two cultivars were different and their root activity decreased gradually. Comprehensive assessment of those physiological indexes showed that the DPJ was a little bit more chilling-resistant than SPJ, especially the change of antioxidant enzymes activity of DPJ.
     3. These two cultivars which were pretreated with SA solution (50,100,175and250mg·L-1) or ABA solution (0.5,5,10and20mg·L-1) respectively for4days were used for detecting the physiological and biochemical responses to6℃treating for3days. The REL, the content of MDA, proline and the soluble sugar, the activity of SOD and POD of two jasmines were investigated. Comprehensively comparation of above indexes of these two cultivars, both of50mg·L-1SA solution and5mg·L-1ABA solution were the suitable pretreatment to enhance the chilling resistance of these two jasmines under6℃treating for3days.
     4. The P5CS gene segment which was concerned with proline synthesis was obtained from leaves of DPJ by method of homologous cloning. The gene segment had1205nucleotides and coded401amino acids. In comparison with the published sequences of P5CS gene by BLAST program, the P5CS gene segment of DPJ showed more than89%identity to that gene from Aegiceras corniculatum, Actinidia deliciosa, Nicotiana tabacum and Solanum lycopersicum. The P5CS gene expression during3℃was investigated through Sq RT-PCR method with the18S gene as reference gene. The results showed that the expression of P5CS was first up-regulated and then down-regulated during low temperature stress. The expressional fastigium of P5CS gene was at the fourth day of3℃treating, while the fastigium of proline content was at the sixth day of3℃treating. Although there was hysteresis phenomenon between the P5CS gene expression and proline synthesis, the trend of them was consilient. But further studies were needed to elucidate the relationship between them.
     5. The micropropagation in vitro was investigated in8-year-old cuttings of DPJ by stem segment. Several experiments were carried out to detecte the disinfection of explant, germination culture of axillary buds, the optimum formula of proliferation and induction of multiple shoots and rooting. The results were as follows:
     (1) April to September (avoiding the mould rains season) was the best period to pick the explants. The one-year-old and semi-lignification twigs with axillary buds were most suitable to be explants. The treatment with75%ethanol for1min,0.1%mercuric chloride for52mins then washing3times in aseptic water sequentially was the best disinfection method. The optimum basic medium of germination for axillary buds was WPM medium.
     (2) In order to find out the optimum formula for axillary buds elongation, the experiments with different plant growth regulators alone or in combination were carried out. The best formula for axillary buds elongation was WPM+2mg·L-1IBA+0.5mg·L-16-BA+0.7mg·L-1GA3. The optimum combination of plant growth regulators for induction of multiple shoots, with generation of11axillary shoots, was1mg·L-1ZT supplemented with0.5mg·L-1IBA,
     (3)The best rooting method was that shoots were first dipped in450mg·L-1NAA solution for10mins and cultured in the basal1/2WPM sequentially. The rooting rate was up to86.7%. In this study, the plantlets were acclimatized with78%survival rate under the suitable humidity and illumination during the initial period of acclimation.
引文
1.艾希珍,王秀峰,郭延奎,等.弱光亚适温和低温对黄瓜气孔特性及叶绿体超微结构的影响[J].中国农业科学,2006,39(10):2063-2068
    2.鲍华燕.两种蓝藻真核型Ser/Thr激酶基因功能的初步验证.[D].中国科学院海洋研究所,2009
    3.蔡汉,陈晓强,熊作明,等.茉莉离体微繁及无糖生根技术[J].江苏农业学报,2007,23(5):464-468
    4.蔡汉,李卫东,熊作明,等.低温胁迫下水杨酸预处理对茉莉幼苗活性氧及保护酶的影响[J].植物生理科学,2007,23(7):290-294
    5.陈杰忠,徐春香,梁立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58
    6.陈善娜,郭浙红,沈云光,等.在低温胁迫下外源ABA对高原水稻自由基清除系统的影响[J].云南大学学报(自然科学版),1996,18(2):167-172
    7.陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学通讯,1991,27(2):84-90
    8.陈托兄.不同生育时期紫花苜蓿秋眠型标准品种耐盐机制研究[D].北京林业大学,2009,5-20
    9.陈奕吟.沙冬青低温诱导基因转化烟草及转基因植物的抗寒性研究[D].北京林业大学,2007
    10.陈瑛,田宏武.闽东茉莉花生产现状及发展对策[J].茶叶科学技术,2001,(3):20-21
    11.陈玉珍.绵头雪莲花(Saussurea laniceps Hand.-Mazz.)组织培养及其抗寒性的生理生化基础研究[D].北京林业大学,2005
    12.陈钰,郭爱华,姚延祷.自然降温条件下杏品种蛋白质、脯氨酸含量与抗寒性的关系[J].山西农业科学,2007,35(6):53-55
    13.崔会平.茉莉主要病虫害的发生与防治[J].花木盆景(花卉园艺版),2005,12:28-29
    14.程金水,刘青林.园林植物遗传育种[M]北京:中国林业出版社,2000,360-364
    15.崔国文,马春平.紫花苜蓿叶片形态结构及其抗寒性的关系[J].草地学报,2007,15(1):70-75
    16.崔红,于晶,高秀芹,等.3个紫斑牡丹品种的抗寒生理特性研究[J].东北农业大学学报,2009,40(7):24-27
    17.邓传远,郭素枝,潘东明,等.低温胁迫下茉莉两栽培品种叶细胞自由基的产生及保护酶的变化[J].福建茶叶,2004,04:8-10
    18.邓江明,简令成.植物抗冻机理研究新进展:抗冻基因表达及其功能[J].植物学通报,2001,18(5):521-530
    19.邓晓辉.不结球白菜温敏型胞质雄性不育的分子标记和相关基因的克隆与分析表达.[D].南京农业大学,2007
    20.邓雪柯,乔代蓉,李良等.低温胁迫对紫花苜蓿生理特性影响的研究[J].四川大学学报(自然科学版),2005,42(1):190-194
    21.刁艳.外源物质对低温胁迫番茄幼苗生理指标及膜伤害的研究[D].东北农业大学,2007
    22.董霞,李文正,刘世贵.抑制消减杂交技术及其在植物基因表达研究中的应用.[J].植物生理学通讯,2006,42(3):515-516
    23.杜永吉,于磊,孙吉雄,等.结缕草3个品种抗寒性的综合评价[J].草业学报,2008,17(3):6-16
    24.范美华,董芳琴.水杨酸对玫瑰切花保险的效应[J].江苏农业科学,2008(2):193-195
    25.费松林,方精云,樊拥军,等.贵州凡经上亮叶水青冈叶片和木材的解剖学特征及其与生态因子的关系[J].植物学报,1999,41(9):1002-1009
    26.冯斌,景士西,王关林.苹果叶片不定芽的高频诱导及植株再生的研究[J].辽宁师范大学学报,1998,4(21):310-313
    27.甘霖,孙中海,邓秀新,等.柑桔体细胞杂种的抗性研究[J].园艺学报,1995,22(3):209-214
    28.高勇,毛龙生,赵红艳,等.多效唑对盆栽菊花的生理效应[J].植物生理学通讯,1991,27(3):192-194
    29.龚兰芳,陆星星,范文红.云南省茉莉花主要虫害防治策略[J].中国农学通报,2007,23(60):508-515
    30.龚明,刘友良,朱培仁.低温下稻苗叶片蛋白质及游离脯氨酸的变化[J].植物生理学通报,1989,25(4):18-22
    31.郭绍川,刘玲玉.脯氨酸含量在作物低温锻炼中的变化及同抗寒性的关系[J].西北植物研究,1984,4(1):45-50
    32.郭素枝,邓传远,张国军,等.低温对单、双瓣茉莉叶片细胞膜透性的影响[J].中国生态农业学报,2006,14(1):42-44
    33.郭卫东,张真真,蒋小韦,等.低温胁迫下佛手瓜半致死温度测定和抗寒性分析.[J].园艺学报,2009,36(1):81-86
    34.郭晓冬.低温弱光对日光温室辣椒生长及其生理功能的影响[D].西北农林科技大学,2008
    35.郭旭.罗布麻、胡杨P5CS基因的克隆及其功能初步分析[D].中国农业科学院,2007
    36.韩静.苹果离体叶片和茎段切片再生体系建立的研究[D].山西农业大学,2005
    37.郝丽娟,姚月俊,王智君,等.杏品种花器官耐寒性的研究[J].山西农业大学学报,2006,26(4):342-344
    38.何西凤,杨途熙,魏安智,等.自然越冬过程中花椒抗寒性生理指标的变化[J].东北林业大学学报,2009,37(5):67-69
    39.何跃君,薛立,任向荣,等.低温胁迫对六种苗木生理特性的影响[J].生态学杂志,2008,27(4):524-531
    40.和红云,薛琳,田丽萍,等.低温胁迫对甜瓜幼苗根系活力及渗透调节物质的影响[J].2008,26(5):253-256
    41.黄金光.棉花GHDREB1调节低温抗性与生长发育的分子机理[D].山东农业大学,2009
    42.姜卫兵,王业遴,马凯,等.渗透保护物质在无花果抗寒性发育中的作用[J].园艺学报,1992,19(4):371-372
    43.黄义江,王宗清.苹果属果树抗寒性的细胞学鉴定[J].园艺学报,1982,9(3):23-30
    44.黄永红,沈洪波,陈学森.杏树抗寒生理研究初报[J].山东农业大学学报(自然科学版),2005,36(2):191-195
    45.黄月华.五种桉树苗期耐寒性能的初步研究[D].华南热带农业大学,2003
    46.简令成.生物膜与植物寒害和抗寒性的关系[J].植物学通报,1983,(1):17-23
    47.简令成,孙德兰,施国雄,等.不同柑桔种类叶片组织的细胞结构与抗寒性的关系[J].园艺学报,1986,13(3):163-168
    48.简令成,吴素莹.植物抗寒的细胞学研究——小麦越冬过程中细胞结构形态的变化[J].植物学报,1965,13:1-15
    49.江福英,李延,翁伯琦.植物低温胁迫及其抗性生理[J].福建农业学报,2002,17(3):190-195
    50.江苏新医学院,主编.中药大辞典[M].上海:上海人民出版社,1977,297
    51.蒋丽娟,李培旺,李昌珠.PP333与CaC12对绿玉树扦插苗抗寒性的影响[J].湖南林业科技,2003,30(3):20-23
    52.蒋丽娟,周朴华,李培旺,等.绿玉树试管苗物理化学诱变及其抗寒突变体的筛选[J].植物遗传资源学报,2003,4(4):321-325
    53.金绍黑.茉莉花香精(油)的提取[J].技术与市场,2003,(3):20
    54.康国章,孙谷畴,王正询.水杨酸在植物抗环境胁迫中的作用[J].广西植物,2004,24(2):178-183
    55.康国章,欧志英,王正询.水杨酸诱导提高香蕉幼苗耐寒性的机制研究[J].园艺学报,2003,30(2):141-146
    56.赖明志.台湾种茉莉的种性与繁殖特性[J].福建农业大学学报,1995,24(3):291-294
    57.赖明志,连长伟,杨如兴.茉莉育性的研究[J]福建农业大学学报,1996,25(4):442-445
    58.雷发斌.茉莉的栽培与利用价值[J].中国土特产,2000,(6):11
    59.李波,袁成志,陈辉,等.硫酸二乙酯诱变苜蓿愈伤组织抗寒生理的研究[J].草业科学,2004,21(5):20-22
    60.李德全,赵会杰,高辉远.植物生理学[M].北京:中国农业科学技术出版社,1999
    61. Lever BG.新的广谱性植物生长阻滞剂——PP333[J].农药译丛,1985,7(4):60-63
    62.李海燕.冷激诱导玉米幼苗耐冷性的生理机制及Ca2+-CaM的调控作用[D].云南师范大学,2003
    63.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    64.李敬蕊.月季再生体系的建立及叶盘法转化月季‘萨蔓莎’的研究[D].华中农业大学,2006
    65.李浚明.植物组织培养教程[M]北京:中国农业大学出版社,2002,211-230
    66.李美茹,刘鸿先,王以柔.植物抗冷分子生物学研究进展(综述)[J].热带亚热带植物学报,2000,8(1):70-80
    67.李美茹,陈恩学,李琳,等.盐或低温胁迫对花生幼苗下胚轴ATP酶和质膜中PIP含量的影响[J].西北植物学报,1996,16:17-22
    68.李明军.多效唑——一种优良的植物生长调节剂[J].植物学通报,1995,12(2):27-31
    69.李艳军,王丽丽,蒋欣梅,等.外源水杨酸诱导对番茄幼苗抗冷性的影响[J].东北农业大学学报,2006,37(4):463-467
    70.李玉梅,陈艳秋,李梨.梨品种枝条膜透性和水分状态与抗寒性的关系[J].北方果树,2005,(1):3-5
    71.李卫,孙中海,章文才,等.柑桔原生质体辐射诱变筛选抗寒再生植株[J].植物学报,1998,40(9):827-830
    72.李兆君,马国瑞,徐建民,等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):235-238
    73.李自成.茉莉花栽培要点[J].云南农业,2000,(12):7
    74.栗本文.茶树抗寒性研究概况[J].茶叶科学简报,1991,(4):27-29
    75.林定波,颜秋生,沈德绪.柑橘抗寒细胞变异体的获得及其抗性遗传稳定性的研究[J].植物学报,1999,41(2):136-141
    76.林善枝,李雪平,张志毅.低温锻炼对毛白杨幼苗抗冻性和总可溶性蛋白质的影响[J].林业科学,2002,38(6):137-141
    77.林莺.NaCl对海滨锦葵光合作用特性的效应[D].山东师范大学,2006
    78.廖飞雄,潘瑞炽.60Co γ辐射菜心种子对苗期细胞膜及保护酶活性的影响[J].核农学报,2001,15(5):286-289
    79.缪旻珉,朱月林,张玉华.外源Ca2+和ABA对高温下黄瓜花药中Ca2+、ABA及蛋白合成的影响[J].园艺学报,2005,32(1):111-114
    80.刘娥娥,宗会,郭振飞,等.干旱、盐、低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238
    81.刘国强,吴锦程,朱颖,等.水杨酸对低温胁迫下枇杷幼果若干生理生化指标的影响.热带作物学报,2009,30(3):254-258.
    82.刘海洋,倪伟,袁敏惠,等.茉莉花的化学成分[J].云南植物研究,2004,26(6):687-690
    83.刘慧英,朱祝军,吕国华.低温胁迫对嫁接西瓜耐冷性和活性氧清除系统的影响[J].应用生态学报,2004,15(4):659-662
    84.刘鸿先,曾韶西,王以柔,等.低温对不同耐寒力的黄瓜幼苗子叶各细胞器中超氧化物歧化酶(SOD)的影响[J].植物生理学报,1985,11(1):48-57
    85.刘鸿先,曾韶西,李平,等.零上低温对不同抗冷力的亚热带植物过氧化物酶与酯酶同工酶的影响[J].植物生理与分子生物学学报,1981,(7):337-344
    86.刘建东.小麦春化与抗寒相关性蛋白质研究[D].山西农业大学,2003
    87.刘庆昌,吴国良.植物细胞组织培养[M].北京:中国农业大学出版社,2010,13
    88.刘炜.水杨酸和钙对黄瓜幼苗低温弱光耐性的影响[D].山东农业大学,2009
    89.刘忠.植物抗冷性研究进展[J].广西农业科学,2006,37(6):667-670
    90.刘祖棋,张石城.植物抗性生理学[M].北京:中国农业出版社,1994,8-83
    91.龙旭.多效唑的作用机理及其在农业生产上的应用[J].植物医生,2002,15(1):4-6
    92.卢存福,王红,简令成,等.植物抗冻蛋白研究进展[J]].生物化学与生物物理进展,1998,25(3):210-216
    93.路芳,殷华,曹文钟,等.玉米幼苗冷袭敏感性的初步研究[J].植物研究,2002,22(4):463-466
    94.吕军芳,郁继华.水杨酸对西瓜抗冷性生理指标的影响[J].甘肃农业大学学报,2004,39(1):62-65
    95.吕芝香,王正刚.盐胁迫下小麦苗叶片吡咯-5-羧酸还原酶活性和游离脯氨酸积累.[J].植物生理学报,1993,19(2):1111-1114
    96.罗凡,王云.茉莉花茶的产品创新及分类探析[J].中国茶叶,2005,(2):28
    97.马红群,梁丽娇,周忆堂,等.低温胁迫对小麦黄化苗转绿过程中生理生化指标的动力学研究[J].西南大学学报(自然科学版),2007,29(10):71-75
    98.马艳青,戴雄泽.低温胁迫对辣椒抗寒性相关生理指标的影响[J].湖南农业大学学报(自然科学版),2000,26(6):461-462
    99.梅俊学.逆境下发菜脯氨酸含量及质膜透性的变化与含水量的关系[J].山东师范大学(自 然科学版),2000,15(2):178-181
    100.明茗.福建茉莉花茶学术研讨会在宁德召开[J].茶叶科学技术,1986,(4):34-35
    101.孟祥静,何丽斯,夏冰,谭国华,汪仁.我国茉莉的研究现状及进展[J].安徽农业科学,2009,37(21):9946-9947,9998
    102.牛力文,赵剑波.PP333诱导植物抗寒性的研究[J].北京农业科学,2002,1:15-17
    103.庞金安,马德华,霍振荣,等.水杨酸预处理对提高黄瓜幼苗耐低温能力的影响[J].华北农学院,2002,15(1):112-115
    104.庞士栓.植物逆境生理学基础[M].哈尔滨:东北林业大学出版社,1990,54-71
    105.彭伟秀,杨建民,张芹,等.不同抗寒性的杏品种叶片组织结构比较[J].河北林果研究,2001,6(2):145-147
    106.齐代华.长叶竹柏(Podocarpus fleuryi Hickel)幼苗对低温胁迫的生理生态响应[D].西南师范大学,2002
    107.秦玲,李明,王永熙,等.根瘤农杆菌介导苹果遗传转化研究进展[J].西北农林科技大学学报(自然科学版),2002,30(4):135-140
    108.秦玲.苹果(Malus domestica Borkh.)遗传转化体系的建立及ipt基因的导入[D].西北农林科技大学,2002
    109.姚元干,石雷晖,杨建国,等.辣椒耐热性与叶片质膜透性及几种生化物质含量的关系[J].湖南农业大学学报,2000,26(2):97-99
    110.任桂芳,王建红,冯慧,等.现代月季(Rosa hybrida)叶片植株再生体系的建立[J].园艺学报,2004,31(4):533-536
    111.任旭琴.辣椒(Capsicum annuum L)耐冷性鉴定与冷适应生理机制研究[D].扬州大学,2008
    112.邵建柱,马宝焜.转基因苹果研究进展[J].果树学报,2003,20(1):49-53
    113.师校欣,杜国强,高仪,等.苹果离体叶片高效再生不定芽技术研究[J].果树科学,1999,16(4):255-258
    114.施征.三个枣品种抗寒生理特性的研究[D].河北农业大学,2003
    115.沈漫,王明庥,黄敏仁.植物抗寒机理研究进展[J].植物学通报,1997,14(2):1-8
    116.孙大业,郭艳林,马力耕.细胞信号传导(第三版)[M].北京:科学技术出版社,2001
    117.孙磊,陈国祥,程嘉翎,等.低聚壳聚糖处理对低温胁迫下水稻幼苗类囊体膜特性的影响.[J].南京师大学报(自然科学版),2009,32(2):93-97
    118.孙清荣,孙洪雁.不同倍性苹果叶片不定植株再生研究[J].落叶果树,20002,(2):9-11
    119.孙艳,王鹏.水杨酸对黄瓜幼苗抗高温胁迫能力的影响[J].西北植物学报,2003,23(11):2011-2013
    120.孙艳妮,汤访评,房伟民,等.茉莉离体快繁体系的建立[J].浙江农业学报,2009,21(4):390-394
    121.覃丽萍.广西茉莉花病害调查及主要病害的病原生物学特性和防治技术研究[D].广西大学,2005
    122.唐艳梅.拟南芥抗寒基因Kin1表达载体的构建及四季桔再生体系建立的研究[D].山东农业大学,2006.
    123.田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344
    124.佟友丽.露地菊耐低温特性研究及遗传转化体系的构建[D].东北林业大学,2008
    125.王爱芳.温度和光周期对樟子松实生苗抗寒性的影响[D].河北农业大学,2007
    126.王爱国,邵从本,罗广华.丙二醛作为植物脂质过氧化指标的探讨[J].植物生理学通讯,1986,(2):575-579
    127.王成章,潘晓建,张春梅,等.外源ABA对不同秋眠型苜蓿品种植物激素含量的影响[J].草业学报,2006,15(2):30-36
    128.王冬梅,黄学林,黄上志.细胞分裂素类物质在植物组织培养中的作用机制[J].植物生理学通讯,1996,32(5):373-377
    129.王飞,王华,陈登文,等.杏品种花器官耐寒性研究[J].园艺学报,1999,26(6):356-359
    130.王关林,刘秀梅,方宏筠,等.蝶形花亚科8种槐树的组织培养及再生能力的基因型效应[J].园艺学报,2005年,32(5):844-848
    131.王丽雪,李荣富,马兰青,等.葡萄枝条中淀粉、还原糖及脂类物质变化与抗寒性的关系[J].内蒙古农牧学院学报,1994,15(4):1-7
    132.王利军,站吉成,黄卫东.水杨酸与植物抗逆性[J].植物生理学通讯,2002,38(6):619-624
    133.王连敏,王立志,张国民,等.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响[J].中国农业气象,1999,20(2):28-31
    134.王明启,张银慧,陈宝晶.蔷薇属植物抗寒性指标的研究[J].吉林林学院学报,1993,9(1):52-58
    135.王宁,曹敏建,于佳林,等.NaCl胁迫对不同耐盐性玉米幼苗膜质过氧化及保护酶活性的影响[J].江苏农业科学,2009,4:101-104
    136.王荣富.植物抗寒指标的种类及其应用[J].植物生理学通报,1987,(3):49-55
    137.王荣,李红菊.半定量RT-PCR法在检测基因表达水平中的应用[J].阜阳师范学院学报(自然科学版),2007,24(1):49-52
    138.王瑞.春玉米苗期抗冷性鉴定及其生理生化基础研究[D].东北农业大学,2007
    139.王瑞,马凤鸣,李彩凤,等.低温胁迫对玉米幼苗脯氨酸、丙二醛含量及电导率的影响[J]. 东北农业大学学报,2008,39(5):20-23
    140.王善广,郭郑.生物膜与果树抗寒性[J].天津农业科学,2000,6(1):37-40
    141.王淑杰.氧化酶活性与葡萄抗寒性关系的研究[J].吉林农业大学学报,1996,18(2):35-38
    142.万琳琛,肖尊安,王英典,等.猕猴桃种间体细胞杂种的抗寒性遗传的初步分析[J].北京师范大学学报(自然科学版),2001a,37(1):100-104
    143.万琳琛,肖尊安,王英典,等.猕猴桃属种间体细胞杂种试管苗的抗寒性[J].果树学报,2001b,18(3):148-151
    144.魏安智.仁用杏抗寒机理研究与抗寒物质筛选[D].西北农业科技大学,2006
    145.文斌,蔡汉,黄法就,等.冷锻炼对低温胁迫下茉莉幼苗细胞膜稳定性的影响[J].安徽农业通报,2008,14(5):35-36
    146.乌凤章,王柏臣,刘桂丰,等.低温胁迫对白桦幼苗生长和生理的影响[J].东北林业大学学报,2008,36(9):8-10
    147.吴楚,王政权.脱落酸及其类似物与植物抗寒性之间的关系[J].植物生理学通讯,2000,36(6):562-567
    148.吴广霞,唐龙,杨德光,等.植物低温胁迫生理研究进展[J].作物杂志,2008,3:17-19
    149.吴康.中国野生葡萄抗白粉病新基因遗传转化及检测方法研究[D].西北农林科技大学,2007
    150.武雁军.厚皮甜瓜抗寒生理生化特性及其外源物质处理效益研究[D].西北农林科技大学,2007
    151.武雁军,刘建辉.低温胁迫对厚片甜瓜幼苗抗寒生理生化指标的影响[J].西北农林科技大学学报(自然科学版),2007,35(3):139-143.
    152.许瑛,陈煜,陈发棣,等.菊花耐寒特性分析及其评价指标的确定[J].中国农业科学,2009,42(3):974-981
    153.许玲,张维一,田允温.低温冷害对哈密瓜外部形态细胞结构的影响[J].植物学报,1990,32(10):772-776
    154.许玲,包海青.冷温对甜椒果实外部形态及组织结构的影响[J].八一农学院学报,1993,16(1):69-72
    155.许楠,孙广玉.低温锻炼后桑树幼苗光合作用和抗氧化酶对冷胁迫的响应.[J].应用生态学报,2009,20(4):761-766
    156.徐凌飞.梨离体再生和遗传转化的研究[D].西北农林科技大学,2005
    157.徐中霞,徐春霞,王桐卿,等.茉莉的栽培技术[J].安徽农学通报,2007,13(13):102-103
    158.闫世江.黄瓜耐低温性的遗传及生理生化特性的研究[D].沈阳农业大学,2008
    159.杨德浩,杨敏生,王进茂,等.欧洲白桦苗期低温胁迫时膜系统的变化[J].东北林业大学学 报,2004,32(6):13-15
    160.杨凤仙,董俊梅,杨晓霞.低温胁迫下棉叶叶绿体、液泡超微结构的变化[J].山西农业大学学报,2001,(2):116-117
    161.杨雷.低聚岩藻多糖的制备及抗寒诱导效益研究[D].辽宁师范大学,2003
    162.杨青川,孙彦,康俊梅.紫花苜蓿耐盐相关基因克隆研究进展[J].草地学报,2005,13(3):253-256
    163.由继红,杨文杰,李淑云.不同品种紫花苜蓿抗寒性的研究[J].东北师大学报(自然科学版),1995,(2):102-105
    164.于世彬.如何识别三种茉莉花[J].中国花卉盆景,2006,(12):23
    165.曾韶西,王以柔.水稻幼苗的低温伤害与膜脂过氧化[J].植物学报,1987,29(5):506-512
    166.赵昶灵,武绍波,杜孝宇,等.人工低温条件下滇中砀山酥梨休眠花芽及其着生处枝条中糖类含量的变化[J].植物生理学通讯,2000,36(5):414-417
    167.赵丽辉,黄国辉,聂小兰,等.不同沙棘品种的抗逆性与形态特性研究[J].东北师范大学学报(自然科学版),2002,34(4):70-74
    168.张德岭,方文惠,张宝珍,等.温度变化对番茄幼苗抗寒性的影响[J].华北农学报,1999,14(3):75-78
    169.张国增,白玲,宋纯鹏.低温胁迫下拟南芥CBF1超表达突变体胞质中Ca2+浓度的变化[J].植物学报,2009,44(3):283-289
    170.张军科,桑春果.杏品种资源抗寒性主成分分析[J].西北农业大学学报,1999,27(6):79-84
    171.张蜀宁,张振超,张红亮,等.低温胁迫对不同倍性不结球白菜生长及生理生化特征的影响.[J].西北植物学报,2008,28(1):0109-0112
    172.张永侠,于晶,赵丽群,等.四种抗寒性不同的紫斑牡丹品种越冬期间的枝条和生理生化变化[J].东北农业大学学报,2009,40(4):56-59
    173.张委.两种不同加工工艺对茉莉花茶香气成分及多酚类的影响[D].西南农业大学,2003
    174.张晓军.茉莉离体器官发生及建立植株再生体系的研究[J].牡丹江师范学院学报(自然科学版),2000,(1):6-7
    175.张治安,陈展宇,主编.植物生理学试验技术[M].吉林:吉林大学出版社,2008:60-61
    176.郑东虎,王兴国.电导法在植物抗寒性研究中的应用[J].延边大学农学学报,1998,20(2):73-78
    177.郑乃辉.福建茉莉花茶生产技术的历史沿革[J].茶叶科学技术,2001,(3):4-6
    178.周丽英,杨丽涛,郑坚瑜.植物抗寒冻基因工程研究进展[J].植物学通报,2001,18(3):325-331
    179.周建,尤扬,袁德义.低温胁迫对广玉兰生理特性的影响[J].西北林学院学报,2008,23(6):38-24.
    180.周建,杨立峰,郝峰鸽,等.低温胁迫对广玉兰幼苗光合及叶绿素荧光特性的影响[J].西北植物学报,2009,29(1):136-142
    181.朱丽丽.柑橘应答低温胁迫的生理生化变化.[D].华中农业大学,2008
    182.朱志玉.沙引发及抗寒剂处理对水稻种子发芽及幼苗抗寒性的影响[D].浙江大学,2002
    183. Abu-Qaoud H, Skirvin RM, Below FE. Influence of nitrogen form and (NH4/NO3) ratios on adventitious shoot formation from pear (Pyrus communis) leave explant in vitro [J]. Plant Cell, Tissue and Organ Culture,1991,27(3):315-319
    184. Agarval M, Hao Y, Kapoor A, et al. A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance [J] Journal of Biological Chemistry, 2006,281:37636-37645
    185. Agnihotri K and Ansari SA. Adventitious rhizogenesis in relation to seasonal variation, size of culm branch cuttings and IAA treatment in bamboos [J]. Indian Forester,2000,126:971-984
    186. Allen RD. Dissection of oxidative stress tolerance using transgenic plants [J]. Plant Physiology, 1995,107:1049-1054
    187. Al-Juboory KH, Skirvin RM, Williams DJ. Callus induction and adventitious shoot regeneration of gardenia(Gardenia jasminodies Ellis) leaf explants [J]. Scientia Hoticulturae,1998,27: 171-178
    188. Al-Zadjali AD, Natsuaki T, Okuda S. Detection, Identification and molecular characterization of a phytoplasma associated with Arabian jasmine(Jasminum sambac L.) witches'broom in Oman [J]. Journal of Phytopathology,2007,155:211-219
    189. Artus NN, Uemura M, Steponkus PL. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affect sbOthchloro plast and protoplast freezing tolerance [J]. Proceedings of the National Academy of Sciences,1996,93:13404-13409
    190. Bi JH, Liu YL, Asghar S. In Vitro Organogenesis and Plant Regeneration from Leaf Explants of Actinidia latifolia [J]. Journal of Fruit Science,2005,22(4):405-408
    191. Bowler C, Slooten L, Vandenbranden S, et al. Manganses superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants [J]. European Molecular Biology Organisation Journal,1991,10:1723-1732
    192. Brian DP, Linda AP, Chen YZ, et al. An inhibitor of catalase induced by cold in chilling-sensitive plants [J]. Plant Physiology,1984,76:1014-1018
    193. Burke MJ, Gusta LV, Quamme HA. Freezing and injury in plants [J]. Annual Review Plant Physiology.1976,27:507-528
    194. Cai H, Biswas DK, Shang AQ, et al. Photosynthetic response to water stress and changes in metabolites in Jsaminum sambac [J]. Photosynthetica,45(4):503-509
    195. Chen HH, Li PH, Brenner ML. Involvement of abscisic acid in potato cold acclimation [J]. Plant Physiology,1983,71:362-365
    196. Chen SY. Injury of membrane lipid peroxidation to plant cell [J]. Plant Physiology cummunications,1991,24(2):84-90
    197. Chen THH, Gusta LV. Abscisic acid-induced freezing resistance in cultured plants cell [J]. Plant Physiology,1983,73:71-75
    198. Chimmusamy V, Zhu J, Zhu JK. Gene regulation during cold acclimation in plants [J]. Physiologia Plantarum,2006,126(1):52-61
    199. Chimmusamy V, Zhu JH and Zhu JK. Cold stress regulation of gene expression in plants [J]. Trends in Plant Science,2007,12(10):444-451
    200. Chritel TH, Robert TH. Influence of TDZ ad BA on adventitious shoot regeneration from apple leaves [J]. Acta Horticulturae,1990,280:195-199
    201. Delauney AJ and Verma DPS. Proline biosynthesis and osmoregulation in plants [J]. The Plant Journal,1993,4(2):215-223
    202. Ding CK, Wang CY, Gross KC, et al. Reduction of chilling injury and transcript accumulation of heat shock proteins in tomato fruit by methyl-jasmonate and methyl salicylate [J]. Plant Science, 2001,161:1153-1159
    203. Dubois LAM, De Vries DP. The direct regeneration of adventitious bud on leaf explants of glass house-grown cut rose cultivars [J]. Acta Horticulturae,1995,424:327-331
    204. Escalettes V and Dosba F.In vitro adventitious shoot regeneration from leaves of Prunus spp. [J]. Plant Science,1993,90(2):201-209.
    205. Fasolo F, Zimmeman RH, Fordham I. Adventitious shoot formation on excised leaves of in vitro grown shoots of apple cultivars [J]. Plant Cell, Tissue and Organ Culture,1989,16:75-87
    206. Faria JLC and Segura J. Micropropagation of yellow passion fruit by axillary bud proliferation [J]. HortScience,1997,32:1276-1277
    207. Fridovich I. Superoxide dismutase [J]. Annual Review of Biochemistry.1975,44:147-159
    208. Gamborg OL, Miller RA, and Ojima K. Nutrient requirements of suspension cultures of soybean root cells [J]. Experimental Cell Research,1968,50(1):151-158
    209. Gent MPN. Paclobutrazol or uniconazol applied early in the previous season promotes flowering of field grown Rhododendron and Kalmia [J]. Journal of Plant Growth Regulation,1995, 14(4):205-210
    210. Gilmour SJ, Zauka DG, Stockinger EJ, et al. Low temperature regulation of the Arabidopsos CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression [J]. The Plant Journal,1998,16(4):433-442
    211. Gilmour SJ, Sebolt AM, Salazar MP, et al. Overexpression of the Arabiopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation [J]. Plant Physiology,2000,124(4):1854-1865
    212. Griffith M, Ala P, Yang DSC, et al. Antifreeze protein produced endogenously in winter rye leaves [J]. Plant Physiology,1992,100(2):593-596
    213. Guy CL. Cold acclimation and freezing stress tolerance:role of protein metabolism [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:187-223
    214. Huang T.K., Z.Z. Ding, S.X. Zhao. The compendium of modern material medica (1st Ed) [M].The Medicine Science and Technology Press, Beijing,2001
    215. Ingram J and Bartels D. The molecular basis of dehydration tolerance in plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:337-403
    216. Isutsa DK. Rapid micropropagation of passion fruit (Passiflora edulis Sims.) varieties [J]-Scientia Horticulteuae,2004,99:395-400
    217. Janda T, Szalai G, Tari I, et al. Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea ymays L.) [J]. Planta,1999,208:175-180
    218. Jian LC, Li JH, Chen WP, et al. Cytochemical localization of calcium and Ca2+-ATPase activity in plant cell under chilling stress:a comparative study between the chilling-sensitive Maize and the chilling-insensitive winterwheat[J]. Plant cell physiology,1999,40(10):1061-1071
    219. Jin H, Kim HR, Plaha P, et al. Expression profiling of the genes induced by Na2CO3 and NaCl stresses in leaves and roots of Leymus chinensis [J]. Plant Science,2008,175:784-792
    220. Kang GZ, Wang CH, Sun GC, et al. Salicylic acid change activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings [J]. Environmental and Experimental Botany,2003,50:9-15
    221. Kane ME. Propagation from preexisting meristems. In:Trigiano R.N., Gray D.J. (Ed.), Plant tissue culture concepts and laboratory exercises [M]. CRC Press, New York,1996, pp.61-71
    222. Kavi Kishor PB, Hong ZL, Miao GH, et al. Overexpression of △-1-Pyrroline-5-Carboxylate Synthetase increases proline and confers osmotolerance in transgenic plants. [J]. Plant Phsiology, 1995,108:1387-1394
    223. Kawada K, Wheaton TA, Purvis AC, et al. Levels of growth regulators and reducing sugars of 'Marsh'grapefruit peel as related to seasonal resistance to chilling injury [J]. HortScience,1979, 14:446-451
    224. Kerdnaimongkol K and Woodson WR. Inhibition of catalase by antisense RNA increases susceptibility to oxidative stress and chilling injury in transgenic tomato plants [J]. Journal American Society for Horticultural Science.1999,124(4):330-336
    225. Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, et al. A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but down regulated by degydration in Arabidopsis [J]. Plant Cell,1996,8(8):1323-1335
    226. Knight H, Trewavras AJ, Knight MR. Cold-calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation [J]. The Plant Cell,1996, 8(3):489-503
    227. Kobayashi F, Takumi S, Nakamura C. Increased freezing tolerance in an BAB-hypersensitive mutant of common wheat [J]. Jouranl of Plant Physiology,2008,165:224-232
    228. Kratsch HA and Wise RR. The ultrastructure of chilling stress [J]. Plant, Cell and Environment, 2000,23(4):337-350
    229. Kuroda K, Inoue N, Ito Y, et al. Sedative effects of the jasmine tea odor and (R)-(-)-linalool, one of its major odor components, on autonomic nerve activity mood states [J]. European Journal of Appllied Physiology,2005,95:107-114
    230. Larcher W. Physiological Plant Ecology:Ecophysiology and stress physiology of functional groups [M]. Spring (on line google book),2003,347-358.
    231. Lee BM, Lee DC, Noh KA, et al. Study on the low temperature stress of rice seedlings as affected by abscisic acid [J]. Research Reports of the Rural Development of Rice,1991,33:3,87-90
    232. Leonhardt KW and Teves GI. Pikake:a fragrant-flowered plant for landscapes and lei production. Ornamentals and Flowers [J]. University of Hawaii,2002,29:1-4
    233. Liu Q, Kasuga M, Sakuma Y, et al. Tow transcription factors:DREB1 and DREB2, with an EREBP/AP2 DNA bindling domain, separate two cellular signal transduction pathways in drought-and low temperature-responsive gene expression, respectively, in Arabidopsis [J]. Plant Cell,1998,10:1392-1406
    234. Lloyd G and McCown B. Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot tip culture [J]. Combined Proceedings-International Plant Propagators' Society,1980,30:421-427
    235. Lucchesini M and Mensuali-Sodi A. Influence of medium composition and vessel ventilation on in vitro propagation of Phillyrea latifolia L. [J]. Scientia Horticulturae,2004,100:117-125
    236. Ma YJ, Costa ME, Ojeda SR. Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques. [J]. Neuroendocrinology,1994,60(4):346-359
    237. Mahoney SR, Ghosh S, Penrson D, et al. Paclobutrazol affects the resistance of black spruce to high light and thermal stress [J]. Tree Physiology,1998,18(2):121-127
    238. Mckersie BD, Bowley SR, Jones KS. Winter survival of transgenic Alfalfa overexpressing superoxide diamutase [J]. Plant Physiology,1999,119:839-847
    239. Mckersie BD, Murnaghan J, Jones KS, et al. Iron-superoxide dismutase expression in transgenic Alfalfa increase winter survival without a detectable increace in photosynthetic oxidative stress tolerance [J]. Plant Physiology,2000,122:1427-1437
    240. Mercado JA, Reid MS, Valpuesta V, et al. Metabolic changes and susceptibility to chilling stress in Capsicum annuum plants grown at suboptimal temperature [J]. Australian Journal of Plant Physiology,1997,24(6):759-767
    241. Meyer K, Keil M, Naldrett MJ. A leucine-rich repeat protein of carrot that exhibits antifreeze activity [J]. Federation of European Biochemical Societies Letters,1999,447(2):171-178
    242. Minorsky PV. A heuristic hypothesis of chilling in plants:a role for calcium as primary physiological transducer of injury [J]. Plant Cell Environment,1985,8:77-94
    243. Miura K, Jin JB, Lee J, et al., SIZ1-mediated sumoylation of ICE 1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis [J]. Plant Cell,2007,19:1403-1414
    244. Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol [J]. Physiologia Plantarum,1962,15:473-497
    245. Parvanova D, Ivanov S, Konstantinova T, et al. Transgentic tobacco plants accumulating osmolytes show reuduced oxidative damage under freezing stress [J]. Plant Physiology and Biochemistry,2004,42:57-63
    246. Perl A, Perl-treves R, Galili S, et al. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu, Zn superoxide dismutases [J]. Theoretical Applied Genetics,1993,85: 568-576
    247. Preil W, Engelhardt M, Walther F. Breeding of low temperature tolerant Poinsettia(Euphorbia pulcherrima) and Chrysanthemum by means of mutation induction in in vitro culture [J]. Acta Horticulturae,1983,131:354-351
    248. Purohit SS. Hormonal regulation of plant growth and development [J]. Agro-Botanical publishers(lndia),1986,3:311-331
    249. Quraishi A, Koche V, Mishra SK. In vitro micropropagation from nodal segments of Cleistanthus collinus [J]. Plant Cell Tissue and Organ Culture,1996,45:87-91
    250. Ramakrishna N, Lacey J, Smith JE. Effect of surface sterilization, fumigation and gamma irradiation of the microflora and germination of barley seeds [J]. International Journal of Food Microbiology,1991,13:47-54
    251. Ramanayake SMSD and Yakandawala K. Micropropagation of giant bamboo(Dendrocalamus giganteus Munro) from nodal explants of field grown culms [J]. Plant Science,1997, 129(2):213-223
    252. Raskin I. Salicylic acid a new plant hormone [J]. Plant Physiology,1992,99:799-803
    253. Roxas VP, Smith RK, Allen ER, et al. Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress [J]. Nature Biotechnology,1997,15:988-991
    254. Ruiz JM, Sanchez E, Garcia PC, Lopez-Lefebre LR, et al. Proline metabolism and NAD kinase activity in greenbean plans subjected to cold-shock [J]. Phytochemistry,2002,59:473-478
    255. Saneoka H, Yang WJ, Premachandra GS, et al. Salt tolerance of glycinebetaine-deficient and-containing maize line [J]. Plant Physiology,1995,107:631-638
    256. Saxena S and Dhawan V. Regeneration and large-scale propagation of bamboo(Dendrocalamus strictus Nees) through somatic embryogenesis [J]. Plant Cell Reports,1999,18:438-443
    257. Sghir S, Chatelet PH, Ouazzani N, Dosba F, Belkoura I. Micropropagation of eight Moroccan and French olive cultivars [J]. HortScience,2005,10:193-196
    258. Shanks JB. Chemical dwarfing of several ornamental greenhouse crops with PP333 [C]. Proc Plant Growth Regulator Working. Group,1980,7:46-51
    259. Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation [J]. New Phytologist,1993,125:27-58
    260. Somerville C. Direct tests of the role membrane lipid composition in low-temperature-induced photoinhibition and chilling sensitivity in plants and cyanobacteria [J]. Proceedings of National Academy Sciences of USA,1995,92:6215-6218
    261. Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cisacting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proceedings of National Academy Sciences of USA,1997,94:1035-1040
    262. Sukumaran NP and Weiser CJ. An excised leaflet test for evaluating potato frost tolerance [J]. HortScience,1972,7:467-468
    263. Taji T, Ohsumi C, Hchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana [J]. Plant Journal,2002, 29(4):417-426
    264. Thomashow MF. So what's new in the field of plant cold acclimation? Lost! [J]. Plant Physiology, 2001,125:89-93
    265. Tian N, Xu ZQ, He JG. Establishment of High Frequency and Direct Regeneration System of Kiwi fruit (Acitinidia deliciosa) [J]. Journal of Wuhan Botanical Research,2007,25(1):79-83
    266. Urrutia ME, Duman JG, Knight CA. Plant thermal hysteresis proteins [J]. Biochimca et Biophysica Acta,1992,1121:199-206
    267. Ursini F, Maiorino M, Brigelius-Flohe R, et al. Diversity of glutathione peroxidases [J]. Methods in enzmology,1995,252:38-53
    268. Vijaya Chitra DS and Padmaja G. Clonal propagation of mulberry (Morus indica L. cultivar M-5) through in vitro culture of nodal explants [J]. Scientia Horticulturae,1999,80:289-298
    269. Viswanathan C, Masaru O, Siddhartha K. ICE1:a regulator of cold induced transcription and freezing tolerance in Arabidopsis [J]. Genes Development,2003,17:1043-1054
    270. Walender M. Plant regeneration from leaf and stem segment of shoots raised in vitro from mature apple tree [J].Journal of Plant Physiology,1988,132:738-744
    271. Wang LJ and Li SH. Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants [J]. Plant Science,2006,170:685-694
    272. Wang L, Chen SJ, Kong WF, et al. Salicylic acid pretreatmnent alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage [J]. Poshtharvest Biology and Technology,2006,41:244-251
    273. Wang SY, Jiao HJ. Changes on superoxide dismutase activity during thidiazuron-induced lateral bud break of apple [J]. Hort-science,1991,26 (9):1202-1204
    274. Wen-li Xu, Mei-qin Liu, Xin Shen, et al. Expression of a carrot 36 kD antifreeze protein gene improves cold stress tolerance in transgenic tobacco [J]. Forestry studies in China,2005,7(4): 11-15
    275. Worral D, Elias L, A shford D, et al. A carrot L eucine-rich repeat protein that inhibits ice recrystallization [J]. Science,1998,282(5386):115-117
    276. Xiong LM, Shumaker KS, Zhu JK. Cell signaling during cold, drought and salt stresses [J]. Plant Cell,2002,14:S165-S168
    277. Yancey, PH. Living with water stress [J]. Science,1982,217:1214-1222
    278. Yang JH, Gao Y, Li YM, et al. Salicylic acid-induced enhancemen of cold tolerance through activation of antioxidative capacity in watermelon [J]. Scientia Horticulturae,2008,118:200-205
    279. Yoshimura K, Miyao K, Gaber A, et al. Enhancement of stress tolerance in transgenic tobacco plants overexpressing Chlamydomonas glutathione peroxidase in chloroplasts or cytosol [J]. The Plant Journal,2004,37(1):21-33
    280. Fei YB, Wei LB, Gao SQ, et al. Isolation, purification and characterization of secondary structure of antifreeze protein from Ammopoptanthus mongolicus [J]. Chinese Science Bulletin,2001, 46(6):495-498
    281. Zabotin A, Barisheva TS, Trofimova OI, et al. Oligasccharin and ABA synergistically affect the acquisition of freezing tolerance in winter wheat [J]. Plant Physiology and Biochemistry,2009, 47:854-858
    282. Zhang JZ, Creelman RA, Zhu JK. Using information from Arabidopsis to engineer salt, cold and drought tolerance in crop [J]. Plant Physiology,2004,135:615-621
    283. Zhang YJ, Liu YQ, Pu XY, et al. Iridoidal glycosides from Jasminum sambac [J]. Phytochemistry, 1995,38:899-903
    284. Zheng Z, Zhang FR, Ma FY, et al. Spatiotemporal changes in soil salinity in a drip-irrigated field [J]. Geoderma,2009,149:243-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700