用户名: 密码: 验证码:
In_2O_3/SnO_2纳米粉制备表征与表面修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题是总装备部新型无机-高分子纳米复合可视屏蔽材料项目的一个子课
    题。大课题采取无机-高分子纳米复合技术路线,研制氧化铟、氧化锡等金属氧
    化物纳米粒子/丙烯酸酯类聚合物纳米复合材料,要求高透光、高电磁屏蔽。有
    机玻璃透明性好,但为绝缘体因而不具有屏蔽效能。在有机材料中掺加导电粒子,
    由于其互相接触或处于极靠近的位置,通过空气或电解质之间的热释电子或隧道
    效应而导电,但基体中导电粒子间必须有足够的透光间隙或粒子本身比可见光波
    长小才具透明性。所以本研究的目的是利用液相法中较有前途的溶胶-凝胶法制
    备氧化铟、氧化锡及其复合氧化物(In_2O_3/SnO_2)纳米粉料,并对其进行表面修
    饰和综合表征,为大课题提供原材料并可望总结出普遍可行的纳米粒子制备、修
    饰及表征方法。
    本文第一部分对In_2O_3/SnO_2的导电机理及对In_2O_3/SnO_2纳米粉制备方法的
    研究进展进行了综合评述。
    本文第二部分详细地研究了溶胶-凝胶法制备In_2O_3/SnO_2纳米粉体的工艺条
    件及参数,还对Sn-In_2O_3(锡掺杂氧化铟)纳米粉体的导电性能进行仔细研究;并
    利用TG-DSC、FT-IR、XRD、SEM、EDS、TEM和BET等多种现代测试方法
    对所制In_2O_3/SnO_2纳米粉体的结构、粒度、形貌、成分等进行了综合表征与分析。
    在对溶胶-凝胶法制备In_2O_3/SnO_2纳米粉体的工艺研究中,研究了反应温度、
    反应pH值、煅烧制度、反应物浓度、老化制度等对In_2O_3/SnO_2纳米粉体质量的
    影响。总结出制备三种粉料的优化工艺条件为:NH_3·H_2O浓度为25-28%,反应
    温度为50-70℃,老化制度为40℃/4h左右,超声分散30min,煅烧制度为800
    ℃/1h,其中合成氧化锡前驱料,SnCl_4·5H_2O的适宜浓度为20g/100mL左右,
    反应pH值为8-11,合成氧化铟前驱料,InCl_3·4H_2O的适宜浓度为5-10g/100mL,
    反应pH值为7或10.5以上,合成锡掺杂氧化铟前驱料,InCl_3·4H_2O的适宜浓度
    为5-10g/100mL,并加入相应比例(Wt_(In2O3)/Wt_(SnO2)=9∶1)的SnCl_4·5H_2O,反应
    pH值为7或10.5以上。
    Sn-In_2O_3纳米粉体的电性能研究表明:Sn-In_2O_3前驱物在700-1000℃煅烧,
    方块电阻较低,真空条件下煅烧试样的电阻比空气条件下煅烧试样的电阻低,
    
    南京工业大学硕士学位论文
    中文摘要
    sno:掺杂10wt%左右时,试样方块电阻最低。
     通过对InZO3/S nOZ纳米粉体表征,得出InZO3/S nOZ纳米粒子多呈球形、颗粒
    均匀、分散性良好、组分均匀、纯度较高、平均粒径在4一50lun左右、比表面积
    达67一156 mZ/g;snoZ纳米粉为正四面体金红石结构,InZo3和sn一InZo3纳米粉
    为体心立方结构。
     本文第三部分,结合丙烯酸酷类单体,对Sn一InZ仇纳米微粒进行表面修饰
    研究,最后得出选用 KH一560和KH一570作表面修饰剂,添加量为0.5一lwt%左右,
    pH值为5.4左右,采用球磨72小时,辅助超声分散工艺时,Sn一In20:纳米粉的
    分散性较好,且与基体有较好的相容性。
     本文最后部分,就整个研究工作进行了总结,并得出结论。
This program is from general assembly department about new nano complex of inorganic-macromolecule shielded material. Nano indium, tin oxide etc. particles/polymer composite was studied. High transparence and electromagnetic shielded efficiency are asked. The transparency of organic glass is good, but it is nonconductor and has no shielded efficiency. When conducting particles are added to organic materials, they are conductive. But the composite must have enough pervious light gap between conducting particles, or the particle size is less than the wavelength of visible light. So preparation of indium, tin oxide (In2O3/SnO2) nano powders by promising method of sol - gel in liquid and surface modification were studied. We hope to summarize general nano preparation, modification and characterization methods.
    In the first part of the dissertation, the conducting mechanism and the current study on nano powders preparation methods of In2O3/SnO2 are reviewed.
    In the second part, the processes were studied on preparing In2O3/SnO2 nano powders in details by sol - gel method, and the electrical property was carefully studied of tin doped indium oxide (Sn-In2O3) nano powder too. The structure, morphology, particle size, specific surface area, and composition of In2O3/SnO2 nano powder were characterized by means of TG-DSC, FT-IR, XRD, SEM, EDS , TEM and BET.
    In the technology research of preparing In2O3/SnO2 nano powders, the influence factors were studied, such as reaction temperature, reaction pH value, dry technology, calcinating systems, reaction material concentration and ageing systems etc. The best technology conditions were reached finally.
    Through study on the electrical performance of Sn-In2O3 nano powder, some conclusions were drawn. When Sn-In2O3 precursor was calcinated at 700-1000 , low square resistance was got. The resistance was lower when Sn-In2O3 precursor was calcinated in vacuum than air condition. When SnO2 wt % was controlled for 10 %, the square resistance of Sn-In2O3 was minimum.
    Through the characterization of In2O3/SnO2 nano powders, some conclusions were drawn: SnO2 nano powder is rutile structure, and In2O3 and Sn-In2O3 nano powders are cubic structure. In2O3/SnO2 nano powders were well dispersing with
    
    
    spherical uniform grain, and the mean grain was 4-50 nm. The purity and composition uniformity were very high, and the specific surface area was 67-156 nm.
    In the third part, surface modification of Sn-In2O3 nano particle was studied and some conclusions were drawn finally. KH560 and KH570 were selected as surface modification agents, and the concentration of them was 0.5-1 wt %, and pH value was controlled for 5.4, and the best milled technology were 72 hours. Surface modified Sn-In2O3 nano powder was well dispersing in matrix.
    In the last part, conclusions were summarized.
引文
[1] 张立德,牟季美.纳米材料和纳米结构.[M]北京:科学出版社 2001.112-141
    [2] 郭永,巩雄,杨宏秀.纳米微粒的制备方法及其进展.化学通报,1996(3):1-4
    [3] 竺培显,韩润生,方吕昌,合成二氧化锡超微粉末新方法及产品测试研究.矿物岩石地球化学通报,1997,16(增刊):109-110
    [4] Evans C J.Many uses of tin dioxide.[J].Tin and Uses,1982,132:5-8
    [5] 刘杏芹,陶善文,沈瑜生.纳米SnO_2微粉的制备与性能.应用化学,1996,13(1):65-67
    [6] Dieguez A, Romano-Rodriguez A,Morante J R, et al. Morphological Analysis of Nanocrystalline for Gas Sensor Application [J]. Sensors and Actuators, 1996, B31:1-8
    [7] 杨桦,张丽华,王子忱等.SnO_2纳米晶的胶溶法合成及气敏性质.吉林大学自然科学学报,1998,(3):82-84
    [8] 段学臣等.超细氧化铟-氧化锡(ITO)复合粉末的研制与结构特性.稀有金属,1998,22(5):396-399
    [9] 李湘洲.前景广阔的纳米材料技术.新型碳材料,1997,12(2):66-67
    [10] Tahar R B H,Ban T, Ohya Y, etal.Tin doped indium oxide thin films:electrical properties.J Appl Phys, 1998,83(5):2631
    [11] 赵谢群.透明导电氧化物薄膜研究现状与产业化进展.电子元件与材料,2000,19(1):40-41
    [12] [日]雀部博之编.曹镛,叶成,朱道本译.导电高分子材料.[M]北京:科学出版社 1989.308-308
    [13] 徐毓龙.氧化物和化合物半导体基础.[M]北京:电子工业出版社 22-22
    [14] 范志新,陈玖琳,孙以材.二氧化锡薄膜的最佳掺杂含量理论表达式.电子器件,2001,24(2):132-135
    [15] 曲喜新,杨邦朝,姜节俭等.电子薄膜材料.[M]北京:科学出版社 1996.80-86,103-104
    [16] Fantini Mx and Torriani I.Thin Solid Films. 1986,138:255-265
    
    
    [17] 范志新.ITO薄膜载流子浓度的理论上限.现代显示,2000,25(3):18-22
    [18] T. Karasawa, Y. Miyata. Electrical and Optical Properties of Indium Tin Oxide Thin Films deposited on Unheated Substrates by D.C.Reactive Sputtering. Thin Solid Films, 1993,223:135-139
    [19] H. L. Ma, D. H. Zhang, P. Ma, S. Z. Win, S. Y, Li. Preparation and Properties of Transparent Conducting Indium Tin Oxide Films deposited by Reactive Evaporation. Thin Solid Films, 1995, 263: 105-110
    [20] Masato Sawada, Masatoshi Higuchi.electrical properties of ITO Films Preparated by Tin Ion Implantation in In_2O_3 Films. Thin Solid Films, 1998, 317:157-160
    [21] A.Salehi. The Effects of deposition Rate and Substrate Temperature of ITO Thin Films on electrical and Optical Properties.Thin Solid Films, 1998, 324:214-218
    [22] Kentaro Utsumi,Osamu Matsunaga,Tsutomu Takahata. Low Resistivity ITO Films Preparated Using the Ultra High Density ITO Target. Thin Solid Films, 1998, 334:30-34
    [23] I.Baia,M.Quintela, L.Mendes,P. Nunes,R.Martins. Performances Exhibited by Large Area ITO Layers Produced by R.F. Magnetron Sputtering. Thin Solid Films, 1999, 337:171-175
    [24] 陈猛,裴志亮,白雪东等.ITO薄膜的PS和AES研究.材料研究学报,2000,14(2):173-178
    [25] 陈祖耀,胡俊宝.低温等离子体化学法制备SnO_2超微粒子粉末.硅酸盐学报,1986,14(3):326-331
    [26] Cricenti A, Cenerosi R, Scarselli MA, etal. J. Vac. Sci. Technol., B,1996,14(2): 1527-1530
    [27] 加藤昭夫等.日化,1984,23:800
    [28] Javer F, etal. J. Mater. Chem.,1997,7(8):1421-1427
    [29] Gleiter H,progress in Mater. Sci., 1989, 33: 323
    [30] 林光明,唐振方,刘文浩.材料科学与工程,1995,13(3):52-54
    [31] Jinkawa T, Sakai G,Tamaki J,etal.J.of Mol. Catal.A:Chem.,2000,155:193-196
    [32] Eric A.Gulliver, John W. Grvey, Teresa A.Wark,Mark J.Hampden-Smith,and
    
    Abhaya. Datye, "Hydrolytic condensation of Tin(Ⅳ)Alkoxide Compounds to Form particles with Well-defined Morphology,"J.Am. Ceram.soc., 1991, 74(5): 1091-94
    [33] 宋伟明,周惠良,胡奇林等.铟锡氧化物纳米晶的溶胶凝胶法合成.宁夏大学学报(自然科学版),2000,21(4):339-341
    [34] 王建,李敦钫,管洪涛.纳米SnO_2粉体的制备方法及其进展.云南冶金,2001,30(6):40-54
    [35] Milan,Johann Schwuger and Katrin stickdom,Microemulsions in Technical processes[J].Chem. Rev.,1995,95:849-864
    [36] 潘庆谊,徐甲强,刘宏民等.微乳液法纳米SnO_2材料的合成、结构与气敏性能.无机材料学报.1999,14(1):83-89
    [37] 苏品书.超微粒子材料.[M]台南市:复汉出版社 1989.
    [38] 刘伯元,黄锐,赵安赤.非金属纳米材料.中国粉体技术,2001,7(1):2-18
    [39] Lindackers D,Janzen C,Rellinghaus B,etal.Nanostructured Materials, 1998, 10(8): 1247
    [40] 陈世柱,尹志民,黄伯云等.用喷雾燃烧法制备ITO纳米级粉末的研究.有色金属,2000,59(2):88-90
    [41] 李风光等.化学液相共沉淀法制备纳米级In_2O_3(SnO_2)粉体.粉末冶金工业,1999,9(5):22-24
    [42] Kistler.Chem Abstr.1940,34:3890;US Patent,2188007.
    [43] 八木秀明.J Cera soc.,Japan.1992,100:1158-1161
    [44] TORVELA H.J Electron Mater,1986,15(1):7-10
    [45] 段学臣,甘亮珠.纳米氧化锡的制备与结构特性.湖南大学学报,1999,26(4):54-62
    [46] 徐甲强,王国庆,等.硝酸氧化法氧化锡陶瓷材料的制备,掺杂与气敏特性.中国陶瓷,1999,35(1):9-12
    [47] 段学臣,黄蔚庄.超细氧化锡粉末的研制.中南工业大学学报,1999,30(2):176-178
    [48] 张立德.纳米材料.[M]北京:化学工业出版社 2000.
    [49] 张立德,都有为.超微粉体材料制备和应用技术.[M]北京:中国石油化工
    
    出版社 2001.
    [50] 李泉,曾广赋,席时权.表面修饰的二氧化锡纳米粒子的制备及微结构表征.高等学校化学学报,1995,16(9):1339-1343
    [51] 姜妍彦,刘洪珠,王承遇等.Cu~+离子注入对ITO薄膜玻璃进行表面改性的研究.玻璃与搪瓷,1999,27(3):18-43
    [52] 吴柏源,伍建新,江美玉等.无团聚纳米级SnO_2粉末及其气敏元件的制备.电子元件与材料,1996,15(5):24-28
    [53] 杨林宏,张建成,沈悦.分散剂对纳米相二氧化锡制备的影响.上海大学学报,2002,8(3):209-212

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700