用户名: 密码: 验证码:
人体点云数据处理中若干问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三维扫描技术可以快捷便利的获取三维模型,因此在逆向工程设计、仿真、医学训练、外科手术、人体测量及服装工程等领域都有广泛的应用。随着三维扫描技术的发展掀起了对三维扫描模型点云的研究热潮。
     点云的模型表示方法具有数据结构简单、存储空间紧凑和强大复杂表面局部细节表达的优势,因此直接以点云为对象的研究引起众多研究者的兴趣。
     然而由于人体测量学以及服装工业自身性质等因素以及全三维人体数据采集上的难度问题等导致了针对人体测量学和服装工业的专用点云处理算法发展却严重滞后无法满足人体测量学、三维服装CAD的需求。
     目前三维人体点云的处理研究上多依赖于通用点云模型算法或转化为网格模型进行处理。通用的点云算法具有普适性的优点,然而却很难满足人体测量学以及服装工业的专业需求。因此对人体点云展开针对性的研究非常必要。
     本文将集中研究人体点云,主要以全三维人体扫描仪获取的3D静态人体点云数据为主要研究对象,同时也对快速动态点云人体的获得方法做了研究。主要完成了对3D静态点云数据的分析:包括针对人体测量学和服装工业的需求对三维人体扫描云的修补、简化以及点云人体骨架提取,以及对近红外连续深度图序列计算得到的动态点云人体数据做初步研究,取得了相应的成果。
     本文的研究成果和创新点主要包括以下几个方面:
     1、提出一种具有全局光滑性的人体测量学专用的漏洞修补方法。
     算法快速有效,修补的点更符合人体测量学和服装工业研究的需求。修补的点更符合真实人体曲面特性。
     2、提出了保持人体特征的点云精简算法。
     利用点云二阶微分量识别特征点,并通过设定自适应权值来达到不同层次的精简。精简中可保持人测量学的关键特征点,并且在深度精简中不会出局部细小部位的衰退而造成的拓扑丢失现象。
     3、提出了一种在边界噪音高的原始扫描人体点云上提取骨架线的方法。
     使用分片Laplace谱嵌入与三维矩相结合的骨架线提取算法,降低谱嵌入的计算代价。算法计算稳定、对噪音具有良好适应性,并且在骨架线的中心性和算法的强壮性之间取得了较好的平衡。算法对人体的体型分类分析具有重要意义。
     还利用深度摄像头得到一种低成本、快速获取动态人体点云的方法。并使用动态点云信息作为先验指导,提出了一种对光线和纹理变化不敏感的人体头部追踪方法,算法具有一定的错误检测与自我错误恢复能力,可以较好克服追踪中的纹理和光线问题。
     本文的研究成果有利于促进服装三维CAD的发展,对人体测量学的体型分析与中国人体号型普查、制作符合中国人体的标准人台、个性化的服装定制等以及基于精确人体的动态服装展示等都有重要应用价值。
3D scanning technology has found it application in inverse engineering, simulation, medical training, surgery, anthropometrics and garment engineering.3D scanned data have gain concentrate research with the development of3D scanning technology.
     Point cloud in contrasts to mesh based model have the advantage of no redundancy data gains the concentrate research. The point based3d human model is more feasible to obtain any level of anthropometrics information than the meshed one.
     There relatively fewer researches direct on point based3d scanned human body for anthropometrics which mainly relay on the general point cloud methods or turn the point cloud model to mesh for further analysis.
     Although the research on point based model had improved with the point representation geometry, there relatively few technology on point cloud of human body (HB) perfectly fulfills the needs of anthropometrics and garment industry. The research on specialized point cloud human body is lag behind. For example the customization of garment and the analysis (pressure etc.) of functional clothing on human body. virtual try on true3D human model and decimally accurate show of in3d garment designed pattern in sense of true accurate in stead of visual fidelity. The current research on point cloud is on general point cloud of garment engineer and the anthropometrics. How to adopts and improves the level-of-art methods on mesh based model or general point cloud model to scanned HB in order to meet the needs of anthropometrics or garment engineering.
     This paper is concentrated on the researches of point cloud of human body which aim to form effective specialized methods for anthropometrics or garment engineering.
     The main contributions of this work are on the followings:
     1. Presents a global smooth a filling holes strategy for HBS data. And the filled data are more faith to the real human body and could meet the need for anthropometrics.
     2. Proposes a simple and effective feature preserved simplification strategy for points cloud. It identifies feature points and then simplifies by self-adopted weight. During any level of simplification the important feature point of anthropometrics could preserved. With constraint to HBS simplification, the algorithm could preserve the anthropometrics key points effectively and efficiently even in sharp simplification rate. The simplification process is controllable and more feasible and used the feature set could extraction the longitudinal curves (in point set) of human for garment design at any level of detail with convenient, which could offer reliable data further shape analysis. The algorithms avoided the thin part attenuation which caused topological missing even in sharp simplification.
     3. Presents a skeleton curve extracted algorithm directly on scanned Human body point cloud with large boundary noises and gaps. The algorithm used the sliced embedding strategy to decrease computational costs, and it prevents the skeleton contraction off the central of model and the algorithm is insensitive to boundary noises. It is very important for analysis and classifies human body type.
     Also describes a low costs method to for generating dynamical human body
     point cloud with depth serials. And finally presents human head tracking methods
     with the dynamical point cloud as Priori knowledge guided. It has the ability of
     tracking error self-detected and recovery. It is insensitive to the texture of face either
     caused by illumination and different people.
     The achievements have benefits to3D computer aided garment design, anthropometrics for analysis of human body, which are very important for analysis Chinese body shape and form standard digital mannequin for Chinese body shape and also has benefit to dynamically show on accurate3D human body.
引文
[1] http://www.tc2.com/[M].2009.
    [2] http://www.cyberware.com/products/scanners/index.html [M].2009.
    [3] http://www.vitronic.de/en [M].2009.
    [4] http://www.telmat.com/[M].2009.
    [5] Choi K J, Ko H S. Research problems in clothing simulation [J]. Computer-Aided Design,2005,37(6):585-592.
    [6] Metaaphanon N, Kanongchaiyos P. Real-time cloth simulation for garment CAD [M].Proceedings of the3rd international conference on Computer graphics and interactive techniques inAustralasia and South East Asia. Dunedin, New Zealand ACM.2005:83-89.
    [7] Volino P, Cordier F, Magnenat-Thalmann N. From early virtual garment simulation to interactivefashion design [J]. Computer-Aided Design,2005,37(6):593-608.
    [8] Volino P, Magnenat-Thalmann N, Faure F. A Simple Approach to Nonlinear Tensile Stiffness forAccurate Cloth Simulation [J]. Acm Transactions on Graphics,2009,28(4):1-16.
    [9] Harmon D, Vouga E, Tamstorf R, et al. Robust treatment of simultaneous collisions [J]. AcmTransactions on Graphics,2008,27(3):1-4.
    [10] Rohmer D, Popa T, Cani M-P, et al. Animation wrinkling: augmenting coarse cloth simulationswith realistic-looking wrinkles [J]. Acm Transactions on Graphics,2010,29(6):1-8.
    [11] Bridson R, Marino S, Fedkiw R. Simulation of clothing with folds and wrinkles [M]. ACMSIGGRAPH2005Courses. Los Angeles, California ACM.2005:3.
    [12] Hu Z H, Ding Y S, Zhang W B, et al. An interactive co-evolutionary CAD system for garmentpattern design [J]. Computer-Aided Design,2008,40(12):1094-1104.
    [13] Meng Y W, Mok P Y, Jin X G. Interactive virtual try-on clothing design systems [J].Computer-Aided Design,2010,42(4):310-321.
    [14] Baraff D, Witkin A, Kass M. Untangling cloth [J]. Acm Transactions on Graphics,2003,22(3):862-870.
    [15] White R, Crane K, Forsyth D A. Capturing and animating occluded cloth [J]. Acm Transactionson Graphics,2007,26(3):34.
    [16] Fontana M, Rizzi C, Cugini U.3D virtual apparel design for industrial applications [J].Computer-Aided Design,2005,37(6):609-622.
    [17] Luo Z G, Yuen M M F. Reactive2D/3D garment pattern design modification [J]. Computer-AidedDesign,2005,37(6):623-630.
    [18]Kim S M, Kang T J. Garment pattern generation from body scan data [J]. Computer-Aided Design,2003,35(7):611-618.
    [19] Wang C C L, Wang Y, Yuen M M F. Feature based3D garment design through2D sketches [J].Computer-Aided Design,2003,35(7):659-672.
    [20] Chittaro L, Corvaglia D.3D virtual clothing: from garment design to web3d visualization andsimulation [M]. Proceedings of the eighth international conference on3D Web technology. Saint Malo,France ACM.2003:73-ff.
    [21] Hilton A, Beresford D, Gentils T, et al. Whole-body modelling of people from multiview imagesto populate virtual worlds [J]. Visual Computer,2000,16(7):411-436.
    [22] Lee W, Gu J, Magnenat-Thalmann N. Generating Animatable3D Virtual Humans fromPhotographs [J]. Computer Graphics Forum,2000,19(3):1-10.
    [23] Pitas I. Digital image processing algorithms and applications [M]. Danvers: Wiley-interscience,2000.
    [24] Wang C C L, Wang Y, Chang T K K, et al. Virtual human modeling from photographs for garmentindustry [J]. Computer-Aided Design,2003,35(6):577-589.
    [25] Remondino F.3-D reconstruction of static human body shape from image sequence [J]. ComputerVision and Image Understanding,2004,93(1):65-85.
    [26] Menudet J E, Becker J M, Fournel T, et al. Model-based shape from silhouette-A solutioninvolving a small number of views[C].RANCHORDAS A K, ARAUJO H, VITRIA J.2nd InternationalConference on Computer Vision Theory and Applications,2007Mar08-11, Barcelona, SPAIN.Insticc-Inst Syst Technologies Information Control&Communication:379-386.
    [27] Kim Y, Lee K, Kim W. Image-based3D torso body modeling-3D female body modeling forbreast surgery simulation[C].BRAZ J, NUNE N J, PEREIRA J M.3rd International Conference onComputer Graphics Theory and Applications,2008Jan22-25, Funchal, PORTUGAL. Insticc-Inst SystTechnologies Information Control&Communication:92-98.
    [28] van den Berg E, Bronsvoort W F, Vergeest J S M. Freeform feature modelling: concepts andprospects [J]. Computers in Industry,2002,49(2):217-233.
    [29] Wang C C L, Wang Y, Yuen M M F. Design automation for customized apparel products [J].Computer-Aided Design,2005,37(7):675-691.
    [30] Allen B, Curless B, Popovi Z. The space of human body shapes: reconstruction andparameterization from range scans [J]. Acm Transactions on Graphics,2003,22(3):587-594.
    [31] Seo H, Magnenat-Thalmann N. An example-based approach to human body manipulation [J].Graphical Models,2004,66(1):1-23.
    [32] Chu C H, Séquin C H. Developable Bézier patches: properties and design [J]. Computer-AidedDesign,2002,34(7):511-527.
    [33] Aumann G. A simple algorithm for designing developable Bézier surfaces [J]. Computer AidedGeometric Design,2003,20(8):601-619.
    [34] Xu G Y, Zhang H, Wang Q. Animated face modeling and adaptation with triangularB-spline[C].CENSOR Y, DING M. Conference on Visualization and Optimization Techniques,2001Oct22-24, Wuhan, PRC. SPIE-Int Soc Optical Engineering:126-131.
    [35] Viceconti M, Zannoni C, Testi D, et al. CT data sets surface extraction for biomechanicalmodeling of long bones [J]. Computer Methods and Programs in Biomedicine,1999,59(3):159-166.
    [36] Haider A M, Kaneko T. Realistic3D head modeling from video captured images and CTdata[C].LAXMINARAYAN S. Joint Meeting of the3rd IEEE EMBS International Conference onInformation Technology Applications in Biomedicine/3rd Workshop of theInt-Telemedical-Information-Society, Nov09-10, Arlington, Va. Ieee:238-243.
    [37] de Aguiar E, Theobalt C, Magnor M, et al. M-3: Marker-free model reconstruction and motiontracking from3D voxel data[C].12th Pacific Conference on Computer Graphics and Applications (PG2004), Oct06-08, Seoul, SOUTH KOREA. Ieee Computer Soc:101-110.
    [38] Koo B K, Choi Y K, Chien S I.3D human whole body construction by contour triangulation [J].Ieice Transactions on Information and Systems,2004, E87D(1):233-243.
    [39] Ma Y Y, Zhang H, Jiang S W. Realistic modeling and animation of human body based on scanneddata [J]. Journal of Computer Science and Technology,2004,19(4):529-537.
    [40] Zhang Y, Sim T, Tan C L, et al. Adaptation-based individualized face modeling for animationusing displacement map[C].Computer Graphics International Conference (CGI2004), Jun16-19, Crete,GREECE. Ieee Computer Soc:518-521.
    [41] Quah C K, Gagalowicz A, Roussel R, et al.3D Modeling of humans with skeletons fromuncalibrated wide baseline views[C].GAGALOWICZ A, PHILIPS W.11th International Conference onComputer Analysis of Images and Patterns,2005Sep05-08, Versailles, FRANCE. Springer-VerlagBerlin:379-389.
    [42] Luo S Q. Progress in Research of Digital Human in China[C].KIM S I, SUH T S. World Congresson Medical Physics and Biomedical Engineering, Aug27-Sep01, Seoul, SOUTH KOREA.Springer-Verlag Berlin:331-334.
    [43] Seo H, Yeo Y I, Wohn K.3D body reconstruction from photos based on range scan[C].PAN Z G,DIENER H, JIN X G, et al.1st International Conference on Technologies for E-Learning and DigitalEntertainment (Edutainment2006), Apr16-19, Hangzhou, PRC. Springer-Verlag Berlin:849-860.
    [44] Shi F, Sun S, Tang M, et al. Design and application on slice server of visual human[C].PAN Y H,LIN Z K, HU Z Y, et al.7th International Conference on Computer-Aided Industrial Design andConceptual Design (CAID&CD),2006Nov17-19, Hangzhou, PRC. IEEE:636-639.
    [45] Tucker T M, Kurfess T R. Point cloud to CAD model registration methods in manufacturinginspection [J]. Journal of Computing and Information Science in Engineering,2006,6(4):418-421.
    [46] Branch J, Prieto F, Boulanger P. Automatic hole-filling of triangular meshes using local radialbasis function[C].POLLEFEYS M, DANIILIDIS K.3rd International Symposium on3D DataProcessing, Visualization and Transmission,2006Jun14-16, Chapel Hill, NC.727-734.
    [47] Guo T Q, Li J J, Weng J G, et al. Filling holes in meshes and recovering sharp edges[C].IEEEInternational Conference on Systems, Man and Cybernetics, Oct08-11, Taipei, TAIWAN.5036-5040.
    [48] Wang D N, Oliveira M M. A hole-filling strategy for reconstruction of smooth surfaces in rangeimages[C].DEOLIVEIRA M C F, CESAR R M.16th Brazilian Symposium on Computer Graphics andImage Processing,2003Oct12-15, Sao Carlos, Brazil.11-18.
    [49] Dong J Y, Ma S, Li L, et al. Hole filling on three-dimensional surface texture[C].IEEEInternational Conference on Multimedia and Expo (ICME2007), Jul02-05, Beijing, PEOPLES RCHINA.1299-1302.
    [50]Werghi N. Segmentation and modeling of full human body shape from3-D scan data: A survey [J].Ieee Transactions on Systems Man and Cybernetics Part C-Applications and Reviews,2007,37(6):1122-1136.
    [51] Kim H S, Choi H K, Lee K H. Mesh simplification with vertex color[C].CHEN F, JUTTLER B.5th International Conference on Geometric Modeling and Processing (GMP2008), Apr23-25,Hangzhou, PRC. Springer-Verlag Berlin:258-271.
    [52] Luo D, Tan G X. An Improved3D Model Simplification Based on Edge Collapse[C].MAOQINGL I.3rd International Conference on Computer Science and Education,2008Jul25-27, COMP EDUC C,UNIV C N R C H U C I, CONTROL SYST CHAPTER S S I C S C, et al., Kaifeng, PRC. XiamenUniv Press:851-854.
    [53] Heckbert P S, Garland M. Optimal triangulation and quadric-based surface simplification [J].Computational Geometry-Theory and Applications,1999,14(1-3):49-65.
    [54] Sheffer A. Model simplification for meshing using face clustering [J]. Computer-Aided Design,2001,33(13):925-934.
    [55] Andujar C, Brunet P, Ayala D. Topology-reducing surface simplification using a discrete solidrepresentation [J]. Acm Transactions on Graphics,2002,21(2):88-105.
    [56] Yun I D, Choo K, Lee S U. Mesh simplification using the edge attributes [J]. Eurasip Journal onApplied Signal Processing,2002,2002(10):1102-1115.
    [57] Balmelli L, Liebling T, Vetterli M. Computational analysis of mesh simplification using globalerror [J]. Computational Geometry-Theory and Applications,2003,25(3):171-196.
    [58] Yan J Q, Shi P F, Zhang D. Mesh simplification with hierarchical shape analysis and iterative edgecontraction [J]. Ieee Transactions on Visualization and Computer Graphics,2004,10(2):142-151.
    [59] Ma J P, Luo X N, Ma S J, et al. Meshes simplification based on reverse subdivision[C].PAN Z,CHEOK A, HALLER M, et al.16th International Conference on Artificial Reality and Telexistence,2006Nov29-Dec02, VRSJ Z U T C S I, GRAPH V R C, Hangzhou, PRC. Springer-Verlag Berlin:849-860.
    [60] van Kaick O M, Pedrini H. A comparative evaluation of metrics for fast mesh simplification [J].Computer Graphics Forum,2006,25(2):197-210.
    [61] Chen H H, Luo X N, Ling R T. Surface simplification using multi-edge mesh collapse
    [M]//ZHANG Y J. Proceedings of the Fourth International Conference on Image and Graphics.2007:954-959.
    [62] Pivec B T, Domiter V. A general algorithm for triangular meshessimplification[C].MASTORAKIS N, KARTALOPOULOS S, SIMIAN D, et al.11th WSEASInternational Conference on Computers,2007Jul26-28, Crete, GREECE. World Scientific andEngineering Acad and Soc:611-615.
    [63] Chen H Y, Yin G S, Zhang J, et al. A Real Time Mesh Simplification Algorithm Based onHalf-edge Collapse[C].20th Chinese Control and Decision Conference,2008Jul02-04, Yantai, PRC.Ieee:1896-1899.
    [64] Daniels J, Silva C T, Shepherd J, et al. Quadrilateral Mesh Simplification [J]. Acm Transactionson Graphics,2008,27(5):9.
    [65] Lindstrom P, Turk G. Image-driven simplification [J]. Acm Transactions on Graphics,2000,19(3):204-241.
    [66] jianrong T, Xiaoli Y, Guodong l. Basic Principle, Method of Graphic Similarity and ItsApplication to Structure Pattern Recognition [J]. CHINESE JOURNAL OF COMPUTERS,2002,25(9.
    [67] Kim S J, Kim C H, Levin D. Surface simplification using a discrete curvature norm [J].Computers&Graphics-Uk,2002,26(5):657-663.
    [68] He T S, Hong L C, Kaufman A, et al. Voxel based object simplification[C].NIELSON G, SILVERD. Visualization '95-Proceedings, Los Alamitos. I E E E, Computer Soc Press:296-303.
    [69] Lee S H. Feature-based multiresolution modeling of solids [J]. Acm Transactions on Graphics,2005,24(4):1417-1441.
    [70] Sang Hun L. A CAD–CAE integration approach using feature-based multi-resolution andmulti-abstraction modelling techniques [J]. Computer-Aided Design,2005,37(9):941-955.
    [71] Yu H, Qin S, Sun G, et al. Automatic Segmentation of Scanned Human Bodies for Building LODModels [M].20086th Ieee International Conference on Industrial Informatics, Vols1-3.2008:1356-1361.
    [72] Miao Y W, Pajarola R, Feng J Q. Curvature-aware adaptive re-sampling for point-sampledgeometry [J]. Computer-Aided Design,2009,41(6):395-403.
    [73] Yu Z W, Wong H S. An efficient local clustering approach for simplification of3D point-basedcomputer graphics models[C].IEEE International Conference on Multimedia and Expo (ICME2006),Jul09-12, Toronto, CANADA. Ieee:2065-2068.
    [74] Thakur A, Banerjee A G, Gupta S K. A survey of CAD model simplification techniques forphysics-based simulation applications [J]. Computer-Aided Design,2009,41(2):65-80.
    [75] Cornea N D, Silver D, Min P. Curve-skeleton properties, applications, and algorithms [J]. IeeeTransactions on Visualization and Computer Graphics,2007,13(3):530-548.
    [76] Xie W J, Thompson R P, Perucchio R. A topology-preserving parallel3D thinning algorithm forextracting the curve skeleton [J]. Pattern Recognition,2003,36(7):1529-1544.
    [77] Ma C M, Wan S Y. Parallel thinning algorithms on3D (18,6) binary images [J]. Computer Visionand Image Understanding,2000,80(3):364-378.
    [78] Lee T C, Kashyap R L, Chu C N. BUILDING SKELETON MODELS VIA3-D MEDIALSURFACE AXIS THINNING ALGORITHMS [J]. Cvgip-Graphical Models and Image Processing,1994,56(6):462-478.
    [79] Ma C M, Sonka M. A fully parallel3D thinning algorithm and its applications [J]. ComputerVision and Image Understanding,1996,64(3):420-433.
    [80] Palagyi K, Kuba A. A parallel3D12-subiteration thinning algorithm [J]. Graphical Models andImage Processing,1999,61(4):199-221.
    [81] Amenta N, Choi S H, Kolluri R K. The power crust, unions of balls, and the medial axis transform[J]. Computational Geometry-Theory and Applications,2001,19(2-3):127-153.
    [82] Arcelli C, di Baja G S, Serino L. A parallel algorithm to skeletonize the distance transform of3Dobjects [J]. Image and Vision Computing,2009,27(6):666-672.
    [83] Bertrand G, Aktouf Z. Three-dimensional thinning algorithm using subfields [J]. SPIE VisionGeometry III,1994,2356(4):113-124.
    [84] Borgefors G, Nystr m I, Di Baja G S. Computing skeletons in three dimensions [J]. PatternRecognition,1999,32(7):1225-1236.
    [85] Zhou Y, Kaufman A, Toga A W. Three-dimensional skeleton and centerline generation based on anapproximate minimum distance field [J]. Visual Computer,1998,14(7):303-314.
    [86] Bitter I, Kaufman A E, Sato M. Penalized-distance volumetric skeleton algorithm [J]. IeeeTransactions on Visualization and Computer Graphics,2001,7(3):195-206.
    [87] Ming W, Dachille F, Kaufman A. Distance-field based skeletons for virtual navigation [M]//ERTLT, JOY K, VARSHNEY A. Visualization2001, Proceedings. New York Ieee.2001:239-245.
    [88] Le Bourgeois F, Emptoz H. Skeletonization by gradient regularization and diffusion [J].20079thInternational Conference on Document Analysis and Recognition,2007,2(1):1118-1122.
    [89] Grigorishin T, Abdel-Hamid G, Yang Y H. Skeletonisation: An electrostatic field-based approach[J]. Pattern Analysis and Applications,1998,1(3):163-177.
    [90] Cornea N D, Silver D, Yuan X S, et al. Computing hierarchical curve-skeletons of3D objects [J].Visual Computer,2005,21(11):945-955.
    [91] Chuang J H, Tsai C H, Ko M C. Skeletonization of three-dimensional object using generalizedpotential field [J]. Ieee Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1241-1251.
    [92] Brunner D, Brunnett G. Fast force field approximation and its application to skeletonization ofdiscrete3D objects [J]. Computer Graphics Forum,2008,27(2):261-270.
    [93] Brandt J W, Algazi V R. CONTINUOUS SKELETON COMPUTATION BY VORONOIDIAGRAM [J]. Cvgip-Image Understanding,1992,55(3):329-338.
    [94] Ahuja N, Chuang J H. Shape representation using a generalized potential field model [J]. IeeeTransactions on Pattern Analysis and Machine Intelligence,1997,19(2):169-176.
    [95] Abdel-Hamid G H, Yee-Hong Y. Multiresolution skeletonization an electrostatic field-basedapproach [J]. Proceedings ICIP-94(Cat No94CH35708),1994,949-953.
    [96] Ogniewicz R L, Kubler O. HIERARCHICAL VORONOI SKELETONS [J]. Pattern Recognition,1995,28(3):343-359.
    [97] Ogniewicz R, Ilg M. Voronoi skeletons: Theory and applications[C].Proc Conf on ComputerVision and Pattern Recognition, June1992, Champaign, Illinois. IEEE:63-69.
    [98] Schlicher M P P, Bouts E, Verbeek P W. Fast analytical medial-axis localization in convexpolyhedra [J]. Proceedings of the13th International Conference on Pattern Recognition,1996,161(1):55-61.
    [99] Leymarie F F, Kimia B B, Ieee Computer S. Computation of the shock scaffold for unorganizedpoint clouds in3D [M].2003Ieee Computer Society Conference on Computer Vision and PatternRecognition, Vol1, Proceedings.2003:821-827.
    [100] Culver T, Keyser J, Manocha D. Exact computation of the medial axis of a polyhedron [J].Computer Aided Geometric Design,2004,21(1):65-98.
    [101] Fu-Che W, Wan-Chun M, Rung-Huei L, et al. Domain connected graph: the skeleton of aclosed3D shape for animation [J]. Visual Computer,2006,22(2):117-134.
    [102] Brostow G J, Essa I, Steedly D, et al. Novel skeletal representation for articulated creatures
    [M]//PAJDLA T M J. Computer Vision-Eccv2004, Pt3.2004:66-78.
    [103] Xiao Y, Siebert P, Werghi N. A discrete Reeb graph approach for the segmentation of humanbody scans[C].Proceedings Fourth International Conference on3-D Digital Imaging and Modeling3DIM2003,17-19September2003.82-87.
    [104] Katz S, Tal A. Hierarchical mesh decomposition using fuzzy clustering and cuts [J]. AcmTransactions on Graphics,2003,22(3):954-961.
    [105] Biasotti S, Marini S, Mortara M, et al.3D shape matching through topological structures
    [M]//NYSTROM I D G S S S. Discrete Geometry for Computer Imagery, Proceedings.2003:194-203.
    [106] Attene M, Biasotti S, Spagnuolo M. Shape understanding by contour-driven retiling [J].Visual Computer,2003,19(2-3):127-138.
    [107] Hilaga M, Shinagawa Y, Kohmura T, et al. Topology Matching for fully automatic similarityestimation of3D shapes [M]. Siggraph2001Conference Proceedings.2001:203-212.
    [108] Biasotti S, Falcidieno B, Spagnuolo M. Extended Reeb graphs for surface understanding anddescription [J]. Discrete Geometry for Computer Imagery9th International Conference, DGCI2000Proceedings (Lecture Notes in Computer Science Vol1953),2000,1953(1):185–197.
    [109] Blum H. Biological shape and visual science (Part I)[J]. Journal of theoretical Biology,1973,38(2):205-287.
    [110] Che W J, Yang X N, Wang G Z. A dynamic approach to skeletonization [J]. Journal ofSoftware,2003,14(4):818-823.
    [111]Couprie M, Zrour R. Discrete bisector function and Euclidean skeleton[C]. APR13-15,2005Springer:216-227.
    [112] Bouix S, Siddiqi K. Divergence-based medial surfaces [J]. Computer Vision-ECCV2000,2000,603-618.
    [113] Reddy J M, Turkiyyah G M. Computation of3D skeletons using a generalized Delaunaytriangulation technique [J]. Computer-Aided Design,1995,27(9):677-694.
    [114] Mortara M, Patane G. Shape-covering for skeleton extraction [J]. International Journal ofShape Modeling,2002,8(2):139-158.
    [115] Yang Y, Brock O, Moll R N. Efficient and robust computation of an approximated medialaxis[C].SM '04Proceedings of the ninth ACM symposium on Solid modeling and application,2004.Eurographics Association:15-24.
    [116] Dey T K, Sun J. Defining and computing curve-skeletons with medial geodesicfunction[C].Eurographics Symposium on Geometry Processing2006. Eurographics Association:143-152.
    [117]林建忠.雷射測距技術與研究現況[J]. OPTOLINK, Jan,1999,1(19):30-33.
    [118]吴福朝.计算机视觉中的数学方法[M].北京:科学出版社,2008.
    [119] http://www.3dvzcam.com [M].2009.
    [120] http://www.primesense.com/[M].2009.
    [121] Sagawa R, Ikeuchi K. Hole filling of a3D model by flipping signs of a signed distance fieldin adaptive resolution [J]. Ieee Transactions on Pattern Analysis and Machine Intelligence,2008,30(4):686-699.
    [122] Carr J, Beatson R, J. Cherrie, et al. Reconstruction and Representation of3D Objects withRadial Basis Functions[C]. SIGGRAPH’01Proc,2001. pp.67-76.
    [123] Gopi M, Krishnan S. A Fast and Efficient Projection Based Approach for SurfaceReconstruction [J]. InternJournal of High Performance Computer Graphics, Multimedia andVisualisation,2000,1(1):1-12.
    [124] Wang J, Oliveira M. Improved Scene Reconstruction from Range Images[C].ProcEUROGRAPHICS'2002. pp.521-530.
    [125] Davis J, Marschner S, Garr M, et al. Filling Holes in Complex Surfaces using VolumetricDiffusion[C].Proc First International Symposium on3D Data Processing, Visualization, Transmission,2002.428-441.
    [126] Jun Y. A piecewise hole filling algorithm in reverse engineering [J]. Computer-Aided Design,2005,37(2):263-270.
    [127] Yang Y J, Yong J H, Zhang H, et al. A rational extension of Piegl's method for filling n-sidedholes [J]. Computer-Aided Design,2006,38(11):1166-1178.
    [128]施法中.计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS)[M].北京北京高等教育出版社.2001:400-445.
    [129] Dey S, Shephard M S, Georges M K. Elimination of the adverse effects of small modelfeatures by the local modification of automatically generated meshes [J]. Engineering with Computers,1997,13(3):134-152.
    [130] Cignoni P, Montani C, Scopigno R. A comparison of mesh simplification algorithm [J].Computers&Graphics-Uk,1998,22(1):37-54.
    [131]王丽辉,袁保宗.三维散乱点云模型的特征点检测[J].信号处理,2011,27(6):
    [132] Wang L, Chen J, Yuan B. Simplified RePresentation for3D Point Cloud Data[C].10thInternational Conference on Signal Processing Proceedings (ICSP2010), Beijing, China. IEEE:1271-1274.
    [133] Yu H, Qin S F, Wight D K, et al. Generation of3D human models with different levels ofdetail through point-based simplification[C].International Conference on Computer as a Tool(EUROCON2007), Sep09-12, Warsaw, POLAND. Ieee:1915-1919.
    [134]陈省身,陈维桓.微分几何讲义[M].第2版ed.北京:北京大学出版社,2001.
    [135]中泽愈(著),袁观洛(译).人体与服装[M].北京:中国纺织出版社,2000.
    [136] Svensson S, Nystrom I, di Baja G S. Curve skeletonization of surface-like objects in3Dimages guided by voxel classification [J]. Pattern Recognition Letters,2002,23(12):1419-1426.
    [137] Au O K C, Tai C L, Chu H K, et al. Skeleton extraction by mesh contraction [J]. AcmTransactions on Graphics,2008,27(3):1-10.
    [138] Cao J, Tagliasacchi A, Olson M, et al. Point Cloud Skeletons via Laplacian BasedContraction [J]. Proceedings of the Shape Modeling International (SMI2010),2010,187-197.
    [139] Tagliasacchi A, Zhang H, Cohen-Or D. Curve Skeleton Extraction from Incomplete PointCloud [J]. Acm Transactions on Graphics,2009,28(3):1-9.
    [140]徐森林.近代微分几何:谱理论与等谱问题,曲率与拓扑不变量[M].北京:中国科学技术大学出版社,2009.
    [141] Reuter M, Wolter F E, Peinecke N. Laplace–Beltrami spectra as ‘Shape-DNA’of surfacesand solids [J]. Computer-Aided Design,2006,38(4):342-366.
    [142] Rosenberg S. The Laplacian on a Riemannian manifold: an introduction to analysis onmanifolds [M]. Cambridge Univ Pr,1997.
    [143] Dong S, Bremer P T, Garland M, et al. Spectral surface quadrangulation[C]. ACM,25:1057-1066.
    [144] Desbrun M, Meyer M, Schrder P, et al. Implicit fairing of irregular meshes using diffusionand curvature flow [M]. Proceedings of the26th annual conference on Computer graphics andinteractive techniques. ACM Press/Addison-Wesley Publishing Co.1999:317-324.
    [145] Mayer U. Numerical solutions for the surface diffusion flow in three space dimensions [J].Computational and Applied Mathematics,2001,20(3):361-379.
    [146] Pinkall U, Polthier K. Computing discrete minimal surfaces and their conjugates [J].Experimental mathematics,1993,2(1):15-36.
    [147] Luo C, Safa I, Wang Y. Approximating Gradients for Meshes and Point Clouds via DiffusionMetric [J]. Computer Graphics Forum,2009,28(5):1497-1508.
    [148] Pauly M. Point primitives for interactive modeling and processing of3D geometry [D].Diplom Federal Institute of Technology(ETH) of Zurich,2003.
    [149] Kuang W T, Morris A S. Combined time-of-flight and Doppler ultrasonic tracking system forbetter performance in robot tracking [J]. Science, Measurement and Technology, IEE Proceedings-,2000,147(5):213-218.
    [150] Gokturk S B, Yalcin H, Bamji C. A Time-Of-Flight Depth Sensor-System Description,Issues and Solutions[C].Computer Vision and Pattern Recognition Workshop,2004CVPRW '04Conference on,27-02June2004.35-35.
    [151] B hme M, Haker M, Martinetz T, et al. Shading constraint improves accuracy oftime-of-flight measurements [J]. Computer Vision and Image Understanding,2010,114(12):1329-1335.
    [152] Nichau M, Blanz V. Pose-insensitive nose detection in TOF-scans [J]. Computer Vision andImage Understanding,2010,114(12):1346-1352.
    [153] Falie D, Buzuloiu V, Ieee. Noise characteristics of3D time-of-flight cameras[C].ISSCS2007:International Symposium on Signals, Circuits and Systems, Vols1and2, Jul12-13,2007.229-232.
    [154] Oprisescu S, Falie D, Ciuc M, et al. Measurements with ToF cameras and their necessarycorrections[C].ISSCS2007: International Symposium on Signals, Circuits and Systems, Vols1and2.221-224.
    [155] Baker M, Bohme M, Martinetz T, et al. Self-Organizing Maps for Pose Estimation with aTime-of-Flight Camera [M]//KOLB A, KOCH R. Dynamic3d Imaging, Proceedings.2009:142-153.
    [156] Bianchi L, Gatti R, Lombardi L, et al. Tracking without Background Model forTime-of-Flight Cameras [M]//WADA T, HUANG F, LIN S. Advances in Image and Video Technology,Proceedings.2009:726-737.
    [157] Bohme M, Haker M, Riemer K, et al. Face Detection Using a Time-of-Flight Camera
    [M]//KOLB A, KOCH R. Dynamic3d Imaging, Proceedings.2009:167-176.
    [158] Demirdjian D, Varri C, Ieee. Driver Pose Estimation with3D Time-of-FlightSensor[C].Civvs:2009Ieee Workshop on Computational Intelligence in Vehicles and VehicularSystems.16-22.
    [159] Feulner J, Penne J, Kollorz E, et al. Robust Real-Time3D Modeling of Static Scenes UsingSolely a Time-of-Flight Sensor [M].2009Ieee Computer Society Conference on Computer Vision andPattern Recognition Workshops.2009:340-347.
    [160] Jensen R R, Paulsen R R, Larsen R. Analysis of Gait Using a Treadmill and a Time-of-FlightCamera [M]//KOLB A, KOCH R. Dynamic3d Imaging, Proceedings.2009:154-166.
    [161] Gokturk S B, Tomasi C.3D head tracking based on recognition and interpolation using atime-of-flight depth sensor[C].Computer Vision and Pattern Recognition,2004CVPR2004Proceedings of the2004IEEE Computer Society Conference on,27June-2July2004.2: II-211-II-217Vol.212.
    [162] Beymer D. Face Recognition Under Varying Pose[C].IEEE Conf Computer Vision andPattern Recognition,1994.756-761.
    [163] Niyogi S, Freeman W. Example-Based Head Tracking[C].IEEE Intl Conf Automatic Faceand Gesture Recognition,1996.374-378.
    [164] Gary R. Bradski, S. C. Computer vision face tracking for use in a perceptual user interface[J]. Intelligence Technology Journal,1998,2:1-15.
    [165] H. Sidenbladh, Black M J. Learning image statistics for Bayesian tracking[C].InternationalConference on Computer Vision,2001July9-12, Vancouver,Canada.2:709-716.
    [166] J. Sherrah, S. Gong, Ong E-J. Face Distributions in Similarity Space under Varying HeadPose [J]. Image and Vision Computing,2001,19(12):807-819.
    [167] Cucchiara R, Grana C, Piccardi M, et al. Detecting moving objects, ghosts, and shadows invideo streams [J]. Ieee Transactions on Pattern Analysis and Machine Intelligence,2003,25(10):1337-1342.
    [168] Moeslund T B, Hilton A, Kruger V. A survey of advances in vision-based human motioncapture and analysis [J]. Computer Vision and Image Understanding,2006,104(2-3):90-126.
    [169] Eng H L, Toh K A, Kam A H, et al. An automatic drowning detection surveillance system forchallenging outdoor pool environments[C].Ninth Ieee International Conference on Computer Vision,Vols I and Ii, Proceedings,2003.532-539.
    [170] Gloyer B, Aghajan H K, Siu K Y, et al. VIDEO-BASED FREEWAY MONITORINGSYSTEM USING RECURSIVE VEHICLE TRACKING [M]//STEVENSON R L, RAJALA S A.Image and Video Processing Iii.1995:172-180.
    [171] Ivanov Y, Bobick A. Fast lighting independent background subtraction [J]. InternationalJournal of Computer Vision,2000,37(2):199-207.
    [172] Haritaoglu I, Harwood D, Davis L S. W-4: Real-time surveillance of people and theiractivities [J]. Ieee Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):809-830.
    [173] Wang W H. The Approach of Real-time Monitoring Based on BackgroundSubtraction[C].LUO Q.2009International Symposium on Intelligent Ubiquitous Computing andEducation,2009, Los Alamitos. Ieee Computer Soc:46-49.
    [174] Tian G D, Men A D. An Improved Texture-Based Method for Background Subtraction UsingLocal Binary Patterns[C].QIU P H, YIU C, ZHANG H, et al. Proceedings of the20092nd InternationalCongress on Image and Signal Processing, Vols1-9,2009.1984-1987.
    [175] Schuon S, Theobalt C, Davis J, et al. High-Quality Scanning Using Time-Of-Flight DepthSuperresolution [M].2008IEEE Computer Society Conference on Computer Vision and PatternRecognition Workshops, Vols1-3.2008:1596-1602.
    [176] http://www.sae.org/technicalcommittees/caesarhome.htm [M].2009.
    [177] http://www.iso.org/iso/home.html [M].2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700