用户名: 密码: 验证码:
基于颗粒脉动参数CFD模拟的气固流化床流场性质与流动结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固流化床因其传热传质效率高、处理量大的优点而在工业领域得到了极其广泛的应用。从催化剂的开发、反应器流体力学性质的表征到工业装置的建立和改造,气固流化床一直是国内外学者研究的热点对象。作为一种典型的多相流反应器,气固流化床中存在着气泡搅动、颗粒运动及气固两相作用,是一个非线性瞬态系统,而这些复杂作用引发的各种流动参数随时间脉动是流化床最显著的特点。因此,相比于时均参数,流化床的脉动参数包含了关于流动结构和两相传递行为更加丰富的信息。对于流化床这样具有显著多尺度结构特点的化工对象,其囊括的流动结构形态多样、各具特征,常见的如气泡、涡流和颗粒聚团等,这些流动结构的行为本质和演化规律是揭示多相流动性质、解决过程强化和优化设计的瓶颈。因此,研究流化床中颗粒与气泡、局部与整体产生的脉动信号,进而对流场性质和流动结构进行刻画,对于多相流动过程流体力学性质的深刻认识以及反应器的精确设计具有重要意义。
     针对现有气固流化床中脉动信号测量技术和流动结构表征方法的不足,本研究以计算流体力学(CFD)软件Fluent为研究手段,基于湍流脉动与流化床脉动的相似性,建立了多相流场性质与流动结构的表征方法,据此开展了一系列针对流化床流体力学特性的研究。在理论研究的基础上,开发了聚乙烯多温区冷凝态工艺并进行工业试验,成效显著。本论文的主要研究成果如下:
     1.基于湍流脉动与流化床脉动的共性,提出借鉴单相湍流理论分析流化床脉动信号、揭示多相流场性质与流动结构特征的方法,包括颗粒脉动能谱分析、流场间歇性分析、相干结构表征与提取、颗粒涡多尺度演化分析以及颗粒温度分析,以实现“在信号中提取规律,向无序中寻求有序”的目标。
     2.将CFD模拟结果与实验及文献数据相比较,分别验证了单、双分散颗粒流化床的计算模型的准确性。利用CFD模拟方法采集颗粒脉动速度信号并进行频谱分析和小波分解,分别考察了单分散和双分散颗粒流化床的能谱性质和流场间歇性。颗粒脉动能谱可以划分为含能区、惯性子区和耗散区,且惯性子区符合Levy-Kolmogorov定律。采用小波平坦因子考察了流场间歇性随频率(尺度)的分布,低频段大尺度脉动的间歇性较弱,高频段小尺度脉动的间歇性较强。对于双分散颗粒流化床,两种颗粒的小波平坦因子分布趋势相同,但在高于10Hz处开始出现差别。通过空隙率脉动频谱考察了流化床中气泡的流体力学行为,且主频的模拟值与经验公式计算值吻合较好,说明CFD模拟能较为准确地反映气泡的运动特性。
     3.建立了颗粒脉动速度小波系数概率密度函数(PDF)与流化床中相干结构的关系,并对相干结构进行表征、提取,对提取前后的小波系数分别应用ESS标度律,考察了相干结构对流场性质的作用,证明了本文所采用的相干结构提取方法的有效性。采用自相关分析,研究了颗粒涡的时间尺度、多尺度形态及演化规律,发现颗粒涡的时间尺度与小波尺度呈普适关系,某些尺度的颗粒涡随时间呈规律性运动,相邻尺度的颗粒涡还会出现合并或分裂的现象。将颗粒涡的演化过程与流态化转变过程相关联。
     4.利用CFD模拟及声发射检测技术,提出颗粒温度分布表征流动模式的判据。考察了双分散颗粒流化床的层流颗粒温度和湍流颗粒温度随径向位置、轴向位置和表观气速的变化,发现在分布板附近,湍流颗粒温度突然降低的位置对应于颗粒运动的“滞留区”,且位于轻、重颗粒的分层之间的边界,随着表观气速的增大,“滞留区”的高度降低。颗粒时均速度和颗粒雷诺应力分布亦可用于分析颗粒流动模式与相间作用。
     5.以气相法聚乙烯冷凝态工艺为背景,分别建立了鼓泡流化床和中心射流床的计算模型,利用CFD模拟,考察了侧壁气流对床层流体力学性质的影响。结果表明,侧壁气流能够促进颗粒水平方向的运动,增强壁面附近的颗粒脉动活跃性,有利于减少粘壁现象的发生。侧壁气流具有稳定颗粒流型的作用,有利于流化床的平稳操作,并对颗粒涡的演化起到调制作用。研究结果为冷凝液蒸发破坏涡流热点的工艺路线提供了理论指导。
     6.在工艺理论分析的基础上,提出多温区聚乙烯冷凝态工艺的设想,并得到工业装置试验的初步证实。首先从理论研究的角度探讨了多温区聚乙烯冷凝态技术的可行性。开发了具有高分离效率、低压降的气液分离器和冷凝液喷射装置;探讨了多温区聚乙烯冷凝态技术所具有的聚合温度差异化、聚合单体浓度差异化和催化剂温度敏感性差异化的特征及其对产品性能的影响。分析表明反应器下部有利于形成支链较多的、低密度高分子量的聚乙烯,而反应器上部有利于形成支链较少、高密度低分子量的聚乙烯。该技术在天津石化12万吨/年气相法聚乙烯装置上进行工业预试验,产量提高8%以上,且成功生产出性能优良、富有特色的树脂产品。本技术被命名为“气液法流化床聚乙烯工艺成套技术”,并于2012年入选中国石化“十条龙攻关”项目。
The gas-solid fluidized beds are extremely widely applied in the industrial fields due to their high efficiency of heat and mass transfer and large handling capacity. From the development of catalyst to the description of reactor hydrodynamic characteristics and establishment of industrial plant, gas-solid fluidized beds are always the research hotspot at home and abroad. As a typical multi-phase flow reactor, there exists bubble agitation, particle motion and phase interaction in a gas-solid fluidized bed. It is a non-linear transient system, and the most significant feature of fluidized bed is the fluctuation of various flow parameters generated by the above complex phenomenon. Hence, compared to the time-averaged flow parameters, the fluctuating parameters contain much more abundant information about flow structures and phase transfer. The flow structures in a fluidized bed include bubbles, vortex and particle clusters, whose behaviors and evolution are the bottleneck of revealing multi-phase flow features and achieving process intensification and optimal design. Therefore, it is of great significance to study the local and overall fluctuating signals generated by bubbles and particles in the fluidized bed, based on which the different flow structures are described and analyzed. By this way, the multi-phase flow field characteristics can be comprehended deeply and the reactor can be designed accurately.
     In order to overcome the shortages of current fluctuating signal measuring and flow structure characterizing methods, our work employed the computational fluid dynamics (CFD) software Fluent to simulate the fluidized bed and obtain the fluctuating parameters. Based on the similarity of single-phase turbulent fluctuation and fluidized bed fluctuation, we established the characterizing method of multi-phase flow filed and flow structures. The hydrodynamic characteristics of fluidized bed were studied by this method. Besides, we developed the multiple-temperature-zone ethylene polymerization process with condensing mode and implemented the industrial test, achieving remarkable effects. The main research achievements of this paper are as follows.
     1. Based on the similarity of single-phase turbulent fluctuation and fluidized bed fluctuation, we established the analytical methods of fluidized bed fluctuating signals and the characterizing methods of multi-phase flow filed and flow structures, including the analysis of particle fluctuating energy spectrum, flow field intermittency, multi-scale evolution of particle vortex, granular temperature, and the characterization and extraction of coherent structures. The aim was to extract regularities in random signals, and to discover order in disorder.
     2. By comparing the simulated results with experimental or literature data, the CFD models of mono-dispersed and bi-dispersed fluidized bed were validated. The particle fluctuating velocity signals were monitored by CFD simulation, and analyzed by power spectrum and wavelet decomposition. According to that, the particle fluctuating energy spectrum and flow field intermittency in mono-dispersed and bi-dispersed fluidized bed was studied. The particle fluctuating energy spectrum can be divided into energy-containing region, inertial region and dissipation region. The Levy-Kolmogorov scaling law was obeyed in the inertial region. The flow field intermittency distribution with frequency was investigated by the wavelet flatness factor. The intermittency was weak in low frequency and large scale fluctuation, while it was strong in high frequency and small scale fluctuation. For bi-dispersed system, the wavelet flatness factors of the two kinds of particles showed similar distribution trend, however the differences appeared in frequency higher than10Hz. The bubble dynamics was also investigated by the voidage fluctuation spectrum. The dominant frequency agreed well with the empirical formula calculated value. That meant CFD simulation can provide accurate information of bubble motion.
     3. The relationship between probability density function (PDF) of wavelet coefficients and coherent structures was established. The coherent structure signals were extracted and the Extended Self Similarity (ESS) scaling law was applied before and after the extraction. The effects of coherent structures on the flow field property were investigated and the extracting method was validated. The time scale and multi-scale evolution of particle vortex was studied by autocorrelation analysis. The universal relation of particle vortex time scales and wavelet scales was established. The vortex at some scales moved regularly as time passed. Particle vortexes at adjacent scales merged with or separated from others. The variation of particle vortex evolution was related to the fluidization transition.
     4. The relation of CFD simulated granular temperature and experimental acoustic emission (AE) energy generated by particle impacting wall was established. The granular temperature was proved to be able to indicate the flow pattern. The radial and axial distribution of granular temperature in bi-dispersed fluidized bed was studied. Above the distributor, when turbulent granular temperature dropped suddenly, particles moved into the "stagnant" zone and lost their vitality, corresponding to the boundary of flotsam and jetsam layer. As the superficial gas velocity increased, the height of "stagnant" zone decreased. The distribution of particle time-averaged velocity and Reynolds stress was also applied to indicate the flow pattern and phase interaction.
     5. In order to study the gas phase ethylene polymerization process with condensing mode, the calculating model of bubbling fluidized bed and central jetting fluidized bed were established. The CFD simulation was used to investigate the effects of gas ejection from wall on hydrodynamic characteristics. The gas ejection promoted horizontal motion of particle phase and strengthened the particle fluctuating activity near wall, which can reduce particle agglomeration on the wall. Besides, the gas ejection can stabilize the particle flow pattern and modulate the evolution of particle vortex. The work provided a theoretical guide of condensing liquid evaporation destroying the particle vortex hotspots.
     6. Based on the theoretical analysis, the scheme of multiple-temperature-zone ethylene polymerization process was proposed and was verified preliminarily in the industrial plants. The feasibility of this technique was discussed firstly. The gas-liquid separator and liquid ejecting equipment was developed. The characteristics of this technique and their effects on resin performance were analyzed, including the differences of polymerizing temperature, monomer concentration and temperature sensitivity of catalyst between the two reaction zones. The polyethylene of low density, high molecular weight and more branched chains can be produced in the lower reaction zone, while the polyethylene of high density, low molecular weight and less branched chains can be produced in the above reaction zone. The new process was tested in the120000ton/year ethylene polymerization plants of Sinopec Tianjin Company. The output was increased by8%and the resin with excellent performance and distinct characteristics was produced successfully. This process was named as "Packaged technology of gas-liquid fluidized bed ethylene polymerization" and selected as "Sinopec Ten Dragons" project in2012.
引文
[1]Lin T-J, Hung-Tzu C. Effects of macroscopic hydrodynamics on heat transfer in a three-phase fluidized bed. Catalysis Today 2003;79-80:159-167.
    [2]Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization. Chemical Engineering Science 1999;54:5809-5821.
    [3]Solimene R, Marzocchella A, Ragucci R, Salatino P. Flow structures and gas-mixing induced by bubble bursting at the surface of an incipiently gas-fluidized bed. Industrial & Engineering Chemistry Research 2004;43:5738-5753.
    [4]Hatzantonis H, Yiannoulakis H, Yiagopoulos A, Kiparissides C. Recent developments in modeling gas-phase catalyzed olefin polymerization fluidized-bed reactors:The effect of bubble size variation on the reactor's performance. Chemical Engineering Science 2000;55:3237-3259.
    [5]程易.气固两相流动数值模拟及其非线性动力学分析.北京:清华大学博士学位论文;2000.
    [6]Bi HT. A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds. Chemical Engineering Science 2007;62:3473-3493.
    [7]Davidson JF. Symposium on fluidization-discussion. Transactions of the Institution of Chemical Engineering 1961;39:230-232.
    [8]Roy R, Davidson JF. Similarity between gas-fluidized beds at elevated temperature and pressure. Fluidization VI, Engineering Foundation. New York1989.
    [9]Van der Schaaf J, Schouten J, Johnsson F, Van den Bleek C. Non-intrusive determination of bubble and slug length scales in fluidized beds by decomposition of the power spectral density of pressure time series. International Journal of Multiphase Flow 2002;28:865-880.
    [10]Zhao GB, Yang YR. Multiscale resolution of fluidized-bed pressure fluctuations. AIChE Journal 2003;49:869-882.
    [11]Wu B, Kantzas A, Bellehumeur CT, He Z, Kryuchkov S. Multiresolution analysis of pressure fluctuations in a gas-solids fluidized bed:application to glass beads and polyethylene powder systems. Chemical Engineering Journal 2007; 131:23-33.
    [12]Zhong W, Zhang M. Pressure fluctuation frequency characteristics in a spout-fluid bed by modern ARM power spectrum analysis. Powder Technology 2005;152:52-61.
    [13]Chaplin G, Pugsley T, Winters C. Application of chaos analysis to pressure fluctuation data from a fluidized bed dryer containing pharmaceutical granule. Powder Technology 2004;142:110-120.
    [14]Ozawa M, Umekawa H, Furui S, Hayashi K, Takenaka N. Bubble behavior and void fraction fluctuation in vertical tube banks immersed in a gas-solid fluidized-bed model. Experimental Thermal and Fluid Science 2002;26:643-652.
    [15]Rowe P, Masson H. Interaction of bubbles with probes in gas fluidised beds. Transactions of the Institution of Chemical Engineers 1981;59:177-185.
    [16]Barreto G, Yates J, Rowe P. The measurement of emulsion phase voidage in gas fluidized beds of fine powders. Chemical Engineering Science 1983;38:345-350.
    [17]Gidaspow D, Lin C, Seo YC. Fluidization in two-dimensional beds with a jet.1. Experimental porosity distributions. Industrial & Engineering Chemistry Fundamentals 1983;22:187-193.
    [18]Bai D, Issangya A, Grace J. Characteristics of gas-fluidized beds in different flow regimes. Industrial & Engineering Chemistry Research 1999;38:803-811.
    [19]Du B, Warsito W, Fan L-S. ECT studies of gas-solid fluidized beds of different diameters. Industrial & Engineering Chemistry Research 2005;44:5020-5030.
    [20]Chehbouni A, Chaouki J, Guy C, Klvana D. Description et moddlisation des structures globale et locale des lits fluidis6s en regime turbulent. The Chemical Engineering Journal and The Biochemical Engineering Journal 1996;61:73-82.
    [21]Mathiesen V, Solberg T, Hjertager BH. An experimental and computational study of multiphase flow behavior in a circulating fluidized bed. International Journal of Multiphase Flow 2000;26:387-419.
    [22]Drake JB, Franka NP, Heindel TJ. Developing X-Ray Particle Tracking Velocimetry for Applications in Fluidized Beds. ASME; 2008.
    [23]Stein M, Ding Y, Seville J, Parker D. Solids motion in bubbling gas fluidised beds. Chemical Engineering Science 2000;55:5291-5300.
    [24]Laverman J, Fan X, Ingram A, Annaland M, Parker D, Seville J, et al. Experimental study on the influence of bed material on the scaling of solids circulation patterns in 3D bubbling gas-solid fluidized beds of glass and polyethylene using positron emission particle tracking. Powder Technology 2012;224:297-305.
    [25]Hoomans B, Kuipers J, Mohd Salleh M, Stein M, Seville J. Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using Positron Emission Particle Tracking. Powder Technology 2001;116:166-177.
    [26]Mudde R, Lee D, Reese J, Fan LS. Role of coherent structures on reynolds stresses in a 2-D bubble column. AIChE Journal 1997;43:913-926.
    [27]Cui Z, Fan L. Turbulence energy distributions in bubbling gas-liquid and gas-liquid-solid flow systems. Chemical Engineerin Science 2004;59:1755-1766.
    [28]Bokkers G, van Sint Annaland M, Kuipers J. Mixing and segregation in a bidisperse gas-solid fluidised bed:a numerical and experimental study. Powder Technology 2004;140:176-186.
    [29]Campbell CS. Rapid granular flows. Annual Review of Fluid Mechanics 1990;22:57-90. [30] Cody G, Goldfarb D, Storch Jr G, Norris A. Particle granular temperature in gas fluidized beds. Powder Technology 1996;87:211-232.
    [31]Menon N, Durian DJ. Particle motions in a gas-fluidized bed of sand. Physical Review Letters 1997;79:3407-3410.
    [32]Tartan M, Gidaspow D. Measurement of granular temperature and stresses in risers. AIChE Journal 2004;50:1760-1775.
    [33]Muller C, Holland D, Sederman A, Scott S, Dennis J, Gladden L. Granular temperature: comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology 2008;184:241-253.
    [34]Cody G, Bellows R, Goldfarb D, Wolf H, Storch Jr G A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Technology 2000;110:128-142.
    [35]Tallon SJ, Davies CE. The effect of pipeline location on acoustic measurement of gas-solid pipeline flow. Flow Measurement and Instrumentation 2000;11:165-169.
    [36]阳永荣,侯琳熙,王靖岱,胡晓萍.声波的多尺度分解与颗粒粒径分布的实验研究.自然科学进展2005;15:380-384.
    [37]赵贵兵,阳永荣,侯琳熙.流化床声发射机理及其在故障诊断中的应用.化工学报2001;52(11):941-943.
    [38]Cao Y, Wang J, He Y, Liu W, Yang Y. Agglomeration detection based on attractor comparison in horizontal stirred bed reactors by acoustic emission sensors. AIChE Journal 2009;55:3099-3108.
    [39]Chepurniy N. Kinetic theories for granular flow:inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics 1984;140:223-256.
    [40]Van Wachem B, Schouten J, Krishna R, Van den Bleek C. Eulerian simulations of bubbling behaviour in gas-solid fluidised beds. Computers & Chemical Engineering 1998;22:S299-S306.
    [41]Syamlal M. A review of granular stress constitutive relations. EG and G Washington Analytical Services Center, Inc., Morgantown, WV (USA); 1987.
    [42]Ahmadi G, Ma D. A thermodynamical formulation for dispersed multiphase turbulent flows-1: Basic theory. International Journal of Multiphase Flow 1990;16:323-340.
    [43]Gidaspow D, Bezburuah R, Ding J. Hydrodynamics of circulating fluidized beds:kinetic theory approach. Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Chemical Engineering; 1991.
    [44]Syamlal M, Rogers W, O'Brien TJ. MFIX documentation:Theory guide. Technical Note, DOE/METC-94/1004, NTIS/DE94000087, National Technical Information Service, Springfield, VA 1993.
    [45]Schaeffer DG Instability in the evolution equations describing incompressible granular flow. Journal of Differential Equations 1987;66:19-50.
    [46]Johnson PC, Jackson R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics 1987; 176:67-93.
    [47]Fluent I. "Fluent 6.3. User's Guide,". Fluent, Inc. Lebanon, NH; 2006.
    [48]Tsuo YP, Gidaspow D. Computation of flow patterns in circulating fluidized beds. AIChE Journal 1990;36:885-896.
    [49]Syamlal M, O'Brien T. Computer simulation of bubbles in a fluidized bed. AIChE Symp Ser1989;22-31.
    [50]Hosseini SH, Ahmadi G, Rahimi R, Zivdar M, Esfahany MN. CFD studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Powder Technology 2010;200:202-215.
    [51]Shi Z, Wang W, Li J. A bubble-based EMMS model for gas-solid bubbling fluidization. Chemical Engineering Science 2011;66:5541-5555.
    [52]Syamlal M. The particle-particle drag term in a multiparticle model of fluidization. Topical Report, DOE/MC/21353-2373, NTIS/DE87006500, National Technical Information Service, Springfield, VA 1987.
    [53]Chandrasekaran BK, van der Lee L, Hulme I, Kantzas A. A simulation and experimental study of the hydrodynamics of a bubbling fluidized bed of linear low density polyethylene using bubble properties and pressure fluctuations. Macromolecular Materials and Engineering 2005;290:592-609.
    [54]Hill RJ, Wilczak JM. Pressure structure functions and spectra for locally isotropic turbulence. Journal of Fluid Mechanics 1995;296:247-270.
    [55]Wang S, Liu G, Lu H, Sun L, Xu P. CFD simulation of bubbling fluidized beds using kinetic theory of rough sphere. Chemical Engineerin Science 2012;71:185-201.
    [56]Acosta-Iborra A, Sobrino C, Hernandez-Jimenez F, De Vega M. Experimental and computational study on the bubble behavior in a 3-D fluidized bed. Chemical Engineerin Science 2011;66:3499-3512.
    [57]Wang J. Flow structures inside a large-scale turbulent fluidized bed of FCC particles:Eulerian simulation with an EMMS-based sub-grid scale model. Particuology 2010;8:176-185.
    [58]Reuge N, Cadoret L, Coufort-Saudejaud C, Pannala S, Syamlal M, Caussat B. Multifluid Eulerian modeling of dense gas-solids fluidized bed hydrodynamics:Influence of the dissipation parameters. Chemical Engineerin Science 2008;63:5540-5551.
    [59]Benyahia S, Arastoopour H, Knowlton T, Massah H. Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase. Powder Technology 2000; 112:24-33.
    [60]Utikar RP, Ranade VV. Single jet fluidized beds:experiments and CFD simulations with glass and polypropylene particles. Chemical Engineerin Science 2007;62:167-183.
    [61]Khan Wardag A, Larachi F. Stability analysis of flat-and corrugated-wall bubbling fluidized beds: Differential pressure, heat transfer coefficient, digital image analysis and CFD simulations. Chemical Engineering Journal 2012; 179:349-362.
    [62]Van Wachem B, Schouten J, Krishna R, Van den Bleek C. Validation of the Eulerian simulated dynamic behaviour of gas-solid fluidised beds. Chemical Engineerin Science 1999;54:2141-2149.
    [63]Wang H, Yang W. Scale-up of an electrical capacitance tomography sensor for imaging pharmaceutical fluidized beds and validation by computational fluid dynamics. Measurement Science and Technology 2011;22:104015.
    [64]金涌.流态化工程原理.清华大学出版社;2001.
    [65]Kage H, Iwasaki N, Yamaguchi H, Matsuno Y. Frequency analysis of pressure fluctuation in fluidized bed plenum. Journal of Chemical Engineering of Japan 1991;24:76-81.
    [66]Kage H, Iwasaki N, Matsuno Y. Frequency analysis of pressure fluctuation in plenum as a diagnostic method for fluidized beds. AIChE Symposium Series:American Institute of Chemical Engineers 1993; 184.
    [67]Bai B, Gheorghiu S, Van Ommen J, Nijenhuis J, Coppens M-O. Characterization of the void size distribution in fluidized beds using statistics of pressure fluctuations. Powder Technology 2005;160:81-92.
    [68]van der Lee L, Chandrasekaran B, Hulme I, Kantzas A. A Non-Invasive Hydrodynamic Study of Gas-Solid Fluidised Bed of Linear Low Density Polyethylene. The Canadian Journal of Chemical Engineering 2005;83:119-126.
    [69]Dong S, Cao C, Si C, Guo Q. Effect of Perforated Ratios of Distributor on the Fluidization Characteristics in a Gas-Solid Fluidized Bed. Industrial & Engineering Chemistry Research 2008;48:517-527.
    [70]Kuwagi K, Horio M. A numerical study on agglomerate formation in a fluidized bed of fine cohesive particles. Chemical Engineerin Science 2002;57:4737-4744.
    [71]Vun S, Naser J, Witt P, Yang W. Measurements and numerical predictions of gas vortices formed by single bubble eruptions in the freeboard of a fluidised bed. Chemical Engineerin Science 2010;65:5808-5820.
    [72]Solimene R, Marzocchella A, Ragucci R, Salatino P. Laser diagnostics of hydrodynamics and gas-mixing induced by bubble bursting at the surface of gas-fluidized beds. Chemical Engineerin Science 2007;62:94-108.
    [73]Gamwo IK, Soong Y, Lyczkowski RW. Numerical simulation and experimental validation of solids flows in a bubbling fluidized bed. Powder Technology 1999; 103:117-129.
    [74]Lefebvre S, Chaouki J, Guy C. Solid Phase Hydrodynamics of Three-Phase Fluidized Bed Reactors-A Convective/Dispersive Phenomena. International Journal of Chemical Reactor Engineering 2007;5:1340.
    [75]Van Den Akker HE. Coherent structures in multiphase flows. Powder Technology 1998;100:123-136.
    [76]Cabezas-Gomez L, da Silva RC, Navarro HA, Milioli FE. Cluster identification and characterization in the riser of a circulating fluidized bed from numerical simulation results. Applied Mathematical Modelling 2008;32:327-340.
    [77]Hendrickson G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chemical Engineerin Science 2006;61:1041-1064.
    [78]Yoshioka S, Miyamoto T, Tomuro J, Hirato M, Kiuchi N, Ishibashi Y. Circulatory flow of particles in a 0.96 m diameter fluidized bed. International Chemical Engineering 1987;27:281-287.
    [79]Lim C, Gilbertson M, Harrison A. Bubble distribution and behaviour in bubbling fluidised beds. Chemical Engineerin Science 2007;62:56-69.
    [80]Ahuja G, Patwardhan A. CFD and experimental studies of solids hold-up distribution and circulation patterns in gas-solid fluidized beds. Chemical Engineering Journal 2008;143:147-160.
    [81]Zhang K, Pei P, Brandani S, Chen H, Yang Y. CFD simulation of flow pattern and jet penetration depth in gas-fluidized beds with single and double jets. Chemical Engineerin Science 2012;68:108-119.
    [82]张兆顺.湍流.国防工业出版社;2002.
    [83]Wilkinson D. Determination of minimum fluidization velocity by pressure fluctuation measurement. The Canadian Journal of Chemical Engineering 1995;73:562-565.
    [84]van Ommen JR, de Korte R-J, van den Bleek CM. Rapid detection of defluidization using the standard deviation of pressure fluctuations. Chemical Engineering and Processing:Process Intensification 2004;43:1329-1335.
    [85]Bi H, Ellis N, Abba I, Grace J. A state-of-the-art review of gas-solid turbulent fluidization. Chemical Engineerin Science 2000;55:4789-4825.
    [86]Davies CE, Carroll A, Flemmer R. Particle size monitoring in a fluidized bed using pressure fluctuations. Powder Technology 2008;180:307-311.
    [87]Villa Briongos J, Aragon JM, Palancar MC. Fluidised bed dynamics diagnosis from measurements of low-frequency out-bed passive acoustic emissions. Powder Technology 2006;162:145-156.
    [88]Nijenhuis J, Korbee R, Lensselink J, Kiel J, van Ommen JR. A method for agglomeration detection and control in full-scale biomass fired fluidized beds. Chemical Engineerin Science 2007;62:644-654.
    [89]Dittrich CJ, Mutsers SM. On the residence time distribution in reactors with non-uniform velocity profiles:The horizontal stirred bed reactor for polypropylene production. Chemical Engineerin Science 2007;62:5777-5793.
    [90]Li X. A brief review:acoustic emission method for tool wear monitoring during turning. International Journal of Machine Tools and Manufacture 2002;42:157-165.
    [91]Yang T-Y, Leu L-P. Multi-resolution analysis of wavelet transform on pressure fluctuations in an L-valve. International Journal of Multiphase Flow 2008;34:567-579.
    [92]Lu X, Li H. Wavelet analysis of pressure fluctuation signals in a bubbling fluidized bed. Chemical Engineering Journal 1999;75:113-119.
    [93]Seleghim Jr P, Milioli FE. Improving the determination of bubble size histograms by wavelet de-noising techniques. Powder Technology 2001;115:114-123.
    [94]Chen X, Chen D. Measuring average particle size for fluidized bed reactors by employing acoustic emission signals and neural networks. Chemical Engineering & Technology 2008;31:95-102.
    [95]任聪静,吴雪妹,王靖岱,蒋斌波.气固流化床声发射信号的多尺度解析.浙江大学学报:工学版2008;42:1255-1261.
    [96]任聪静.多相流体系临界现象的转变和调控.杭州:浙江大学博士学位论文;2010.
    [97]王靖岱,阳永荣,葛鹏飞,舒伟杰,侯琳熙.声波的多尺度分解与气固流化床流化速度的实验研究.中国科学:B辑2007;37:94-100.
    [98]李晓祥.人工神经网络及混沌理论在气固循环流化床中的应用.四川:四川大学研究生论文;2003.
    [99]Halow J, Daw C. Characterizing fluidized bed behavior by decomposition of chaotic phase space trajectories. USDOE Morgantown Energy Technology Center, WV (United States); 1993.
    [100]Bai D, Shibuya E, Masuda Y, Nakagawa N, Kato K. Flow structure in a fast fluidized bed. Chemical Engineerin Science 1996;51:957-966.
    [101]Karamavruc AI, Clark NN. Local differential pressure analysis in a slugging bed using deterministic chaos theory. Chemical Engineerin Science 1997;52:357-370.
    [102]Luewisuthichat W, Tsutsumi A, Yoshida K. Deterministic chaos analysis of particle dynamics in three-phase systems. Journal of Chemical Engineering of Japan 1996;29:675-682.
    [103]李强伟,冀海峰,黄志尧,李海青.基于分形和模糊技术的气固流化床流型辨识.化工自动化及仪表2004;31:48-49.
    [104]任聪静,王靖岱,阳永荣,张晓欢.声波测量在搅拌釜中固体颗粒临界悬浮转速测定的应用.化工学报2008;59(8):1986-1991.
    [105]钟根良,王晓萍.基于模糊信息融合的气固流化床流型及其转换的识别研究.Chinese Journal of Scientific Instrument 2007;28(3):460-465.
    [106]王晓萍,黄轶伦.气固流化床多传感器信息传输的复杂性研究.高校化学工程学报2003;17(5):585-590.
    [107]黄蓓,陈伯川,黄轶伦.算法复杂性在气固流化床动力学中的多尺度分析.化工学报2002;53:1270-1275.
    [108]夏振炎.流向狭缝周期吹吸扰动控制壁湍流相干结构的实验研究.天津:天津大学博士学位论文;2007.
    [109]Richardson LF, Chapman S. Weather prediction by numerical process:Dover publications New York; 1965.
    [110]Kolmogorov AN. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR1941;299-303.
    [111]Landahl MT. A wave-guide model for turbulent shear flow. Journal of Fluid Mechanics 1967;29:441-459.
    [112]She Z-S, Jackson E, Orszag SA. Intermittent vortex structures in homogeneous isotropic turbulence. Nature 1990;344:226-228.
    [113]Benzi R, Ciliberto S, Baudet C, Chavarria GR. On the scaling of three-dimensional homogeneous and isotropic turbulence. Physica D:Nonlinear Phenomena 1995;80:385-398.
    [114]Blackwelder R, Kaplan R. On the wall structure of the turbulent boundary layer. Journal of Fluid Mechanics 1976;76:89-112.
    [115]Tiederman TLW, Luchik T. Timescale and structure of ejections and bursts in turbulent channel flows. Journal of Fluid Mechanics 1987;174:529-552.
    [116]孙葵花,舒玮.湍流猝发的检测方法.力学学报1994;26:488493.
    [117]Grossmann A, Morlet J. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis 1984;15:723-736.
    [118]Lumley JL, Tennekes H, Tennekes H. A first course in turbulence:MIT Press Massachussets and London; 1972.
    [119]Li H. Identification of Coherent Structure in Turbulent Shear Flow With Wavelet Correlation Analysis. Journal of Fluids Engineering 1998; 120:778-785.
    [120]Dracos T, Giger M, Jirka G. Plane turbulent jets in a bounded fluid layer. Journal of Fluid Mechanics 1992;241:587-614.
    [121]舒玮,姜楠.湍流中涡的尺度分析.空气动力学学报2000;18:89-95.
    [122]Reynolds O. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A 1895;186:123-164.
    [123]Li J, Cheng C, Zhang Z, Yuan J, Nemet A, Fett FN. The EMMS model-its application, development and updated concepts. Chemical Engineerin Science 1999;54:5409-5425.
    [124]Ge W, Li J. Physical mapping of fluidization regimes-the EMMS approach. Chemical Engineerin Science 2002;57:3993-4004.
    [125]Wang W, Li J. Simulation of gas-solid two-phase flow by a multi-scale CFD approach-of the EMMS model to the sub-grid level. Chemical Engineerin Science 2007;62:208-231.
    [126]葛蔚,刘新华,任瑛,徐骥,李静海.综述与专论从多尺度到介尺度一复杂化工过程模拟的新挑战.化工学报2010;61(7):1613-1620.
    [127]Cui Z, Fan L. Energy spectra for interactive turbulence fields in a bubble column. Industrial & Engineering Chemistry Research 2005;44:1150-1159.
    [128]Pan Y, Dudukovic M, Chang M. Numerical investigation of gas-driven flow in 2-D bubble columns. AIChE Journal 2000;46:434-449.
    [129]Mudde R, Groen J, Van Den Akker H. Liquid velocity field in a bubble column:LDA experiments. Chemical Engineerin Science 1997;52:4217-4224.
    [130]Jiradilok V, Gidaspow D, Damronglerd S, Koves WJ, Mostofi R. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser. Chemical Engineerin Science 2006;61:5544-5559.
    [131]van Ommen JR, Sasic S, Van der Schaaf J, Gheorghiu S, Johnsson F, Coppens M-O. Time-series analysis of pressure fluctuations in gas-solid fluidized beds-A review. International Journal of Multiphase Flow 2011;37:403-428.
    [132]Gheorghiu S, Van Ommen J, Coppens M-O. Power-law distribution of pressure fluctuations in multiphase flow. Physical Review E 2003;67:041305-041311.
    [133]Chen W, Zhou H. L6vy-Kolmogorov scaling of turbulence. arXiv preprint math-ph/0506039 2005.
    [134]Farge M. Wavelet transforms and their applications to turbulence. Annual Review of Fluid Mechanics 1992;24:395-458.
    [135]Camussi R, Guj G. Orthonormal wavelet decomposition of turbulent flows:intermittency and coherent structures. Journal of Fluid Mechanics 1997;348:177-199.
    [136]Biferale L. Leggi di scala anomale nella turbolenza sviluppata:Rome, Italy:PhD thesis, La Sapienza University; 1992.
    [137]Liandrat J, Moret-Bailly F. The wavelet transform-Some applications to fluid dynamics and turbulence. European Journal of Mechanics B Fluids 1990;9:1-19.
    [138]Collineau S, Brunet Y. Detection of turbulent coherent motions in a forest canopy part Ⅰ:Wavelet analysis. Boundary-Layer Meteorology 1993;65:357-379.
    [139]Chen J, Hu F. Coherent structures detected in atmospheric boundary-layer turbulence using wavelet transforms at Huaihe River Basin, China. Boundary-Layer Meteorology 2003;107:429-444.
    [140]Farge M, Schneider K, Kevlahan N. Non-Gaussianity and coherent vortex simulation for two-dimensional turbulence using an adaptive orthogonal wavelet basis. Physics of Fluids 1999;11:2187-2201.
    [141]Chun S, Liu YZ, Sung HJ. Wall pressure fluctuations of a turbulent separated and reattaching flow affected by an unsteady wake. Experiments in Fluids 2004;37:531-546.
    [142]Corrsin S, Kistler AL. Free-stream boundaries of turbulent flows. JOHNS HOPKINS UNTV BALTIMORE MD; 1955.
    [143]Chen X-Z, Shi D-P, Gao X, Luo Z-H. A fundamental CFD study of the gas-solid flow field in fluidized bed polymerization reactors. Powder Technology 2011;205:276-288.
    [144]Olivieri G, Marzocchella A, Salatino P. Segregation of fluidized binary mixtures of granular solids. AIChE Journal 2004;50:3095-3106.
    [145]Coroneo M, Mazzei L, Lettieri P, Paglianti A, Montante G. CFD prediction of segregating fluidized bidisperse mixtures of particles differing in size and density in gas-solid fluidized beds. Chemical Engineerin Science 2011;66:2317-2327.
    [146]Jung J, Gidaspow D, Gamwo IK. Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. Industrial & Engineering Chemistry Research 2005;44:1329-1341.
    [147]Kashyap M, Gidaspow D. Computation and measurements of mass transfer and dispersion coefficients in fluidized beds. Powder Technology 2010;203:40-56.
    [148]Gidaspow D, Huilin L, Mostofi R. Large scale oscillations or gravity waves in risers and bubbling beds. Fluidization 2001; 10:317-323.
    [149]Taghipour F, Ellis N, Wong C. Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chemical Engineerin Science 2005;60:6857-6867.
    [150]Ruiz-Chavarria G, Ciliberto S, Baudet C, Leveque E. Scaling properties of the streamwise component of velocity in a turbulent boundary layer. Physica D:Nonlinear Phenomena 2000;141:183-198.
    [151]Onorato M, Camussi R, Iuso G. Small scale intermittency and bursting in a turbulent channel flow. Physical Review E 2000;61:1447-1454.
    [152]Toschi F, Amati G, Succi S, Benzi R, Piva R. Intermittency and structure functions in channel flow turbulence. Physical Review Letters 1999;82:5044-5047.
    [153]Ruckenstein E. Homogeneous fluidization. Industrial & Engineering Chemistry Fundamentals 1964;3:260-268.
    [154]Jingdai W, Congjing R, Yongrong Y. Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas-solid fluidized bed. AIChE Journal 2010;56:1173-1183.
    [155]Miller A, Gidaspow D. Dense, vertical gas-solid flow in a pipe. AIChE Journal 1992;38:1801-1815.
    [156]Chen R, Chou I. Wake structure of a single bubble rising in a two-dimensional column. Experimental Thermal and Fluid Science 1998;17:165-178.
    [157]Huilin L, Yunhua Z, Ding J, Gidaspow D, Wei L. Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds. Chemical Engineerin Science 2007;62:301-317.
    [158]Gidaspow D, Jung J, Singh RK. Hydrodynamics of fluidization using kinetic theory:an emerging paradigm:2002 Flour-Daniel lecture. Powder Technology 2004;148:123-141.
    [159]Gao J, Lan X, Fan Y, Chang J, Wang G, Lu C, et al. Hydrodynamics of gas-solid fluidized bed of disparately sized binary particles. Chemical Engineerin Science 2009;64:4302-4316.
    [160]Chalermsinsuwan B, Gidaspow D, Piumsomboon P. Two-and three-dimensional CFD modeling of Geldart A particles in a thin bubbling fluidized bed:Comparison of turbulence and dispersion coefficients. Chemical Engineering Journal 2011;171:301-313.
    [161]Sun J, Zhou Y, Ren C, Wang J, Yang Y. CFD simulation and experiments of dynamic parameters in gas-solid fluidized bed. Chemical Engineerin Science 2011;66:4972-4982.
    [162]Wang JD, Ren CJ, Yang YR, Hou LX. Characterization of particle fluidization pattern in a gas solid fluidized bed by based on acoustic emission (AE) measurement. Industrial & Engineering Chemistry Research 2009;48(18):8508-8514.
    [163]Chinh J-C, Filippelli MCH, Newton D, Power MB. Polymerization process. BP Chemicals Limited,1996,5541270.
    [164]Olson RD, Howley TJ. Polyolefin production using condensing mode in fluidized beds, with liquid phase enrichment and bed injection. The Dow Chemical Company,2001,2001/0024625 A1.
    [165]阳永荣,孙婧元,楼佳明,王靖岱,骆广海,吴文清,蒋斌波,黄正梁,朱子川.一种气相法聚乙烯工艺中旋流板的使用方法.中国石油化工集团公司,中国石化工程建设公司,浙江大学,2010,201010617116.1.
    [166]王靖岱,阳永荣,吴文清,骆广海,孙婧元,黄正梁,韩国栋,张瑞祺,王树芳,杜焕军,蒋斌波,廖祖维,楼佳明,张擎,王宇良.气液分离装置.中国石油化工股份有限公司,浙江大学,中国石化工程建设公司,2012,201210061004.1.
    [167]Bergstra MF; Weickert G. Ethylene polymerization kinetics with a heterogeneous metallocene catalyst-Comparison of gas and slurry phases. Macromolecular Materials and Engineering 2005;290(6):610-620.
    [168]Wu Q, Wang HH; Lin SG. Gas-phase versus slurry copolymerization of ethylene with 1-butene over MgCl2-supported titanium catalysts after prepolymerization. Macromolecular Chemistry and Physics 1996;197(1):155-163.
    [169]阳永荣,吴文清,骆广海,王靖岱,孙婧元,韩国栋,张瑞祺,黄正梁,王树芳,杜焕军,蒋斌波,廖祖维,楼佳明,张擎,王宇良.烯烃聚合装置和烯烃聚合方法.中国石油化工股份有限公司,浙江大学,中国石化工程建设公司,2012,201210060969.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700