用户名: 密码: 验证码:
微乳化甲醇柴油的理化特性与燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲醇来源丰富,且可以实现清洁燃烧,因此被认为是最具潜力的柴油机替代燃料之一。柴油机燃用甲醇最简单便捷的方法是乳化法。然而甲醇与柴油互不相溶,通常要采用添加乳化剂辅以高速搅拌或者超声振荡等手段乳化,并且所配乳化液不透明或者半透明,且保存时间短,易分层。
     本文依据微乳化理论,优化了甲醇柴油的配方,研究甲醇柴油微观特征和宏观理化性质,构建简化化学动力学模型分析甲醇柴油的燃烧特性,基于实验台架和三维数值模拟研究甲醇柴油应用于柴油机的特性。论文主要工作包括以下几个方面:
     (1)优化了甲醇柴油的配方和工艺。基于微乳化理论,实验研究了微乳化剂在不同条件下对甲醇柴油体系的乳化效率,通过均匀设计法优化甲醇柴油的配方。以油酸为主微乳化剂,异丁醇为辅助微乳化剂,并与乙酸乙酯和大豆油进行复配制备甲醇柴油。该甲醇柴油澄清透明,不分层,在室温密封的条件下可以稳定保存一年以上。制备工艺简单、不需外力辅助。
     (2)提出了基于小角X射线散射技术表征甲醇柴油微观形貌特征的方法。研究表明:甲醇柴油粒子呈球状,甲醇柴油除了散射粒子外还存在微电子密度不均匀区域,体系中存在界面层,甲醇柴油粒子具有质量分形特征。甲醇柴油的微观形貌与柴油相似。
     (3)开展了甲醇柴油的稳定性和流动性的实验研究。分析了甲醇柴油各组分含量和含水量对温度稳定性和时间稳定性的影响,甲醇柴油的各组分对粘度、凝点和冷滤点的影响特性,以及温度对粘度的影响特性。结果显示:甲醇柴油的凝点、粘度和冷滤点均低于柴油。(4)构建了新的正庚烷和甲醇耦合化学动力学模型研究甲醇柴油的燃烧特性。构建了正庚烷简化化学动力学机理模型(40/192机理模型)、甲醇简化化学动力学机理模型(18/45机理模型)、正庚烷和甲醇耦合化学动力学机理模型(35/77机理模型)。40/192机理模型可以在较大范围模拟正庚烷的滞燃期、层流火焰速度和质量流率;18/45机理模型可以在较大范围模拟甲醇的滞燃期、层流火焰速度;35/77机理模型可以模拟HCCI发动机燃用正庚烷和甲醇的燃烧特性。
     (5)在4B26增压直喷柴油机上开展了燃用甲醇柴油的实验研究和三维数值模拟研究。实验研究获得了柴油机的宏观参数,三维数值模拟研究获得了实验难于测量的微观信息。柴油机燃用甲醇柴油时的气缸压力曲线与燃用柴油时相似,气缸压力峰值比燃用M0时略低;压力升高率和压力升高加速度比燃用M0时高。柴油机燃用甲醇柴油与燃用柴油的燃烧噪声相比,低频段相差很小,中频段高出较多,高频段略高。气缸压力A声级的负荷特性变化趋势与燃用柴油时基本一致。研究了柴油机燃用甲醇柴油的燃烧放热规律,在高转速大负荷时,燃用甲醇柴油的放热规律曲线与燃用柴油时相似;在低负荷以及低转速全负荷时,甲醇柴油的滞燃期延长,放热持续期明显缩短,放热峰值随着甲醇含量的增加而升高。用三维数值模拟的方法对柴油机燃用甲醇柴油的性能和排放开展进一步分析,获得了实验难于测量的气缸内流场、温度场、油气浓度场、NO浓度场和Soot浓度场。
Methanol is considered as one of the most potential alternative fuels for diesel engine as its rich source and clean combustion. The most simple and convenient method to use methanol in diesel engine is emulsification. However, methanol and diesel can't be dissolved each other. It should be added emulsifier and stirred with high speed or applying ultrasonic oscillating. Emulsion is non-transparent or semitranslucent, easily stratified, and shorter storage.
     A formula on methanol-diesel is optimized based on microemulsion theory in this dissertation. The physical and chemical properties of methanol-diesel are studied as the formula. The chemical and dynamic model is set up to analyze combustion characteristic of methanol-diesel. The characteristic of methanol-diesel applying in diesel engine is also studied based on experimental bench and numerical simulation of three-dimension. The dissertation mainly includes the following several aspects:
     (1) It optimizes a formula and a process on methanol-diesel. The emulsification efficiency of different microemulsifier is experimentally studied under different conditions on methanol-diesel based on microemulsion theory. A methanol-diesel formula is determined by the uniform design method. It is uses oleic acid as primary emulsifier, isobutyl alcohol as auxiliary emulsifier, and mixed with ethyl acetate and soybean oil. The process is simple, it does not need any external support.
     (2) It puts forward microstructure characteristics of methanol-diesel by small angle X-ray scattering technique (SASX). Methanol-diesel particle is spherical. Besides scattering particles, it exists uneven microelectronic density area. There is interface layer in methanol-diesel. Methanol-diesel particle characterized with quality fractal. And its microstructure is similar with that of diesel.
     (3) It achieves the liquidity and stability of methanol-diesel on the formula are achieved. The influence of each component and water content on temperature stability and time stability, the influence of each component on viscosity, solidifying point and cold filtration point, and the influence of temperature on viscosity are achieved. Its solidifying point, viscosity and cold filtration point are lower than that of diesel.
     (4) It structures the chemical kinetics model of methanol-diesel. The the model of the simplified chemical kinetics mechanism of N-heptane(40/192), methanol(18/45), the coupling of N-heptane and methanol(35/77) are built. The40/192mechanism model can simulate ignition delay period, the laminar flame speed and mass flow rate of N-heptane in wide range; the18/45mechanism model can simulate ignition delay period, the laminar flame speed and mass flow rate of methanol in wide range; the35/77mechanism model can simulate the combustion characteristic of HCCI engine fueled n-heptane and methanol.
     (5) The experimental study and numerical simulation of three-dimension are conducted on4B26turbocharged direct injection diesel engine fueled with methanol-diesel. The macroscopic parameters are achieved by the experimental study and micro information is achieved by the numerical simulation. The experiment shows the cylinder pressure curve flued methanol-diesel is similar with that of diesel. is similar with that of diesel the peak cylinder pressure is slightly lower than fueled MO. The rate of and rise acceleration of the pressure rise are higher than fueled MO. Difference of combustion noise between methanol-diesel and diesel is very small at low frequency band, the former is much higher at intermediate frequency band, and slightly higher at high frequency band.
     The load characteristic fueled methanol-diesel cylinder pressure sound lever A is almost the same as that of diesel. Study on the heat release rate shows that the heat release rate fueled methanol-diesel was similar with fueled diesel under heavy load and high speed. Under low load or low speed full load, ignition delay period become longer, the duration of heat release become significantly shorter, but heat release rate increase with increase of methanol content. The performance and emissions is studied fueled methanol-diesel by three-dimensional numerical simulation. It achieves the flow field, temperature field, oil concentration, NO concentration field and Soot concentration field which is difficult to achieve by experiment.
引文
[1]全国汽车产销量[EB/OL].汽车工业协会统计信息网.http://www.auto-stats.org.cn/,2013.
    [2]《中国的能源政策(2012)》白皮书[EB/OL].中华人民共和国国务院新闻办公室,http://www.gov.cn/jrzg/2012-10/24/content_2250377.htm,2012.
    [3]全国进口重点商品量值表[EB/OL].中华人民共和国海关总署,http://www.customs.gov.cn/publish/portal0/,2013.
    [4]李莹莹.中国石油发展现状、问题与前景分析[J].中国能源,2010,32(12):18-20.
    [5]何学良,詹永厚,李疏松.内燃机燃料[M].北京:中国石化出版社,1999,344-345.
    [6]王红民.氢气在燃油替代能源方面的应用[J].武汉理工大学学报,2006,28(2):21-26.
    [7]蒋德明,黄佐华,高剑,等.内燃机替代燃料燃烧学[M].西安:西安交通大学出版社,2007:1-27.
    [8]薛云,干斌,陆学成.燃氢发动机的爆震燃烧问题[J].可再生能源,2007,25(5):53-56.
    [9]Kapus P E, Carteuieri W P. ULEV potential of a DI/TCI diesel passenger car engine on dimethyl rther[J]. SAE,1995.
    [10]Ken F Hansen Michael Jensen. Engine operation on dimthyl enther in a naturally aspirated DI diesel engine [J]. SAE,1997.
    [11]Sorenson S C. Performance and Emission of a 0.273 Liter DI Diesel Engine Fuelled with Neat Dimethyl Ether [J]. SAE,1995.
    [12]于岩飞,井云环.车用二甲醚燃料应用研究分析[J].神华科技,2010,8(3):81-85.
    [13]谢振华,胡红.二甲醚燃料汽车的研究和应用进展[J].化肥设计,2007,(45):3-4.
    [14]孙晓轩,王晓东.世界二甲醚应用开发现状[J].中外能源,2008,13(2):16-22.
    [151黄震.二甲醚—解决中国能源安全与环境保护之路[J].能源新技术,2005,27(11):37-39.
    [16]陈健.生物柴油的发展现状及前景分析[J].科技传播,2010,18:108-109.
    [17]丁声俊.国外生物柴油的发展状况、政策及趋势[J].中国油脂,2010,7:1-4.
    [18]王汝栋,郭和军,王煊军,等.生物柴油的性能与研究进展[J].拖拉机与农用运输车,2010,5:12~16.
    [19]薛志忠,吴新海.国内外生物柴油研究进展[J].现代农业科技,2010,16:293-294.
    [20]崔心存.内燃机的代用燃料[M].北京:中国石化出版社,2007:32-37.
    [21]张登攀.柴油机进气预混甲醇的台架试验和醇气混合过程数值模拟[D].镇江:江苏大学,2011.
    [22]方显忠.柴油机掺烧含羟基液体或燃料的研究[D].长春:吉林大学,2006.
    [23]王银山.组合燃烧柴油机控制策略的研究与应用[D].天津:天津大学,2005.
    [24]程传辉.柴油/甲醇组合燃烧发动机排放及后处理技术的研究[D].天津:天津大学,2005.
    [25]姚春德,王银山,李云强,等.柴油机清洁燃用甲醇的组合燃烧法[J].农业机械学报,2005, 36(6):24-27.
    [26]姚春德,程传辉,段峰,等.柴油/甲醇的组合燃烧对废气涡轮增压柴油机排放的影响研究[J].内燃机学报,2005,23(2):119-123.
    [27]姚春德,王洪夫,宋金瓯.柴油—甲醇组合燃烧碳烟排放模型[J].天津大学学报,2008,41(3):271-275.
    [28]姚春德,朱晶宇,夏琦,等.柴油甲醇组合燃烧发动机的甲醛排放特性[J].环境科学学报,2010,30(2):287~293.
    [29]姚春德,王银山,李云强,等.柴油机清洁燃用甲醇的组合燃烧法[J].农业机械学报,2005,36(6):24-27.
    [30]宫艳峰,胡铁刚,李跟宝.甲醇柴油混合燃料对柴油机性能的影响[J].农业机械学报,2007,38(1):49-52.
    [31]Miyamoto N., Ogawa H.. Approaches to Extremely Low Emissions and Efficient Diesel Combustion with Oxygenated Fuels[J]. International Journal of Engine Research,2000,1(1): 79-85.
    [32]姚春德,杨建军,陈绪平,等.进气喷甲醇降低柴油机加速冒烟的研究[J].内燃机学报,2009,27(1):25-28.
    [33]焦纬洲,刘有智,上官民.甲醇乳化柴油分散特性的研究[J].燃料化学学报,2011,39(4):312-314.
    [341王立达,刘有智,焦纬洲,等.柴油-甲醇-水复合化燃料乳化剂的最佳HLB值研究[J].化工中间体,2009,6:32-65.
    [35]周庆辉,纪威,王冬冬.利用生物柴油制取甲醇柴油微乳液及其热力学分析[J].拖拉机与农用运输车,2007,34(2):189-19,22.
    [36]吴楚,魏建勤,史春涛.柴油-甲醇乳化燃料乳化剂的最佳HLB值及水含量的影响[J].内燃机工程,2004,25(2):40-42.
    [37]盛宏至,吴东垠,张宏策.柴油、甲醇和水三组元乳化液流变特性的研究[J].西安交通大学学报,2002,36(10):1080-1083.
    [38]盛宏至,张宏策,吴东垠.水/甲醇和柴油乳化液的黏度特性实验研究[J].燃烧科学与技术,2004,10(3):202-206.
    [39]胡福田,于新.甲醇—柴油微乳化液配方研制[J].广东化工,2007,34(9):5-8.
    [40]Huang Z H, Lu H B, Jiang D M. Combustion behaviors of compression ignition engine fuelled with diesel/methanol blends under various fuel delivery advance angle [J]. Bioresourse Technology,2004,95(3),331-341.
    [41]Cenk Sayin, Murat Ilhan, Mustafa Canakci, et al. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends[J]. Renewable Energy,2009,34: 1261-1269.
    [42]Qi D H, Chen H, Geng L M, et al. Performance and combustion characteristics of biodiesel-diesel-methanol blend fuelled engine[J]. Applied Energy,2010,87:1679-1686.
    [43]Huang Z H, Lu H B, Jiang D M. Performance and emissions of a compression ignition engine fueled with diesel/oxygenate blends for various fuel delivery advance angle[J]. Energy & Fuels, 2005,19(2):403-410.
    [44]Ch3ng C H, Cheung C S, Chan T L, et al. Experimental investigation on the performance, gaseous and particulate emissions of a methanol fumigated diesel engine[J]. Science of the Total Environment,2008,389:115-124.
    [45]Zhang Z H, Cheung C S, Chan T L, et al. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst[J]. Science of the Total Environment,2010,408:865-872.
    [46]Huang Z H, Lu H B, Jiang D M. Engine performance and emissions of a compression ignition engine operating on the diesel/methanol blends [J]. Pro Inst Mech Eng,2004,218(D4), 435-447.
    [47]Huang Z H, Lu H B, Jiang D M. Combustion Characteristics and heat release analysis of a compression ignition engine operating on the diesel/methanol blends [J]. Pro Inst Mech Eng, 2004,218(D9),1011-1024.
    [48]Cheng C H, Cheung C S, Chan T L. Comparison of emissions of a direct injection diesel engine operating on biodiesel with emulsified and fumigated methanol [J].Fuel,2008,87(10-11): 1870-1879.
    [49]Chao H R, Lin T C, Chao M R, et al. Effect of methanol containing additive on the emission of carbonyl compounds from a heavy-duty diesel engine[J]. Journal of Hazardous Materials,2000, 73(1):39-54.
    [50]谢洁,王锡斌,卢红兵,等.柴油-甲醇微乳化燃料的制各及燃烧特性研究[J].内燃机工程,2004,24(4):1-5.
    [51]Cenk Sayin, Murat Ilhan, Mustafa Canakci, et al. Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends[J]. Renewable Energy,2009,34: 1261-1269.
    [52]Tamil Porai, P. Chandrasekaran, SSubramaniyam, S. et, al. Combustion and performance of a diesel engine with oxygenated diesel blend[C]. SAE Paper No 2004-01-0082.
    [53]Hakan B. An experimental study on the performance parameters of an experimental Cl engine fueled with diesel-methanol-dodecanol blends [J]. Fuel,2008,87:158-164.
    [54]饶海生,王铁,王克亮,等.直喷式柴油机燃用甲醇-柴油微乳化燃料的试验研究[J].车用发动机,2008,5:89-92.
    [551周庆辉,纪威,符太军.柴油机燃用甲醇-生物柴油-柴油微乳化燃料的试验研究[J].拖拉机与农用运输车,2007,34(3):4-6.
    [56]李方成,宋崇林,刘成等.柴油机燃用含甲醇的柴油混合燃料羰基污染物的排放特性[J].燃烧科学与技术,2008,14(2):157-164.
    [57]陆克久,蒋耘农,代西良.柴油机掺烧不同比例甲醇混合燃料的试验研究[J].汽车工程, 2009,31(3):205-210.
    [58]王晓燕,李芳,葛蕴珊,等.甲醇柴油与生物柴油微粒排放粒径分布特性[J].农业机械学报,2009,40(8):7-12.
    [59]崔正刚,殷福珊.微乳化技术及应用[M].北京:中国轻工出版社,1999:83-90.
    [60]Becher P. Emulsion theory and practice[M]. New York Reinhold,1966.
    [61]Sharman M K, Shah D O, Macroemulsion and microemulsion theory and application, ACS Symposium series 272, American Chemical Socioty, Washington D C 1985.
    [62]Prince L M, Microemulsions theory and practice[M]. New York:Academic Press,1977.
    [63]M.L. Robbins. Micellization, solubilization and Micro-emulsion[M]. New York:Plenum Press, 1977.
    [64]Robbins M L, Micellization, solubilization and micro-emulsion[C]. Plenum Press,1977,2:713.
    [65]Michell D J, Ninham B W, Chem J. Soc. Faraday Trans[J].1981,77(2):601.
    [66]Ivanov V M, Nefdov P I. Experimental investigation of the combustion process in natural and emulsified fuels[A]. NASA, Tech. Transl. TIF-258,1965.
    [671葛阳,傅维标.单滴乳化燃料的微爆模型[J].工程热物理学报,1998,19(2):241-246.
    [68]葛阳,傅维标.乳化液滴微爆规律的研究[J].工程热物理学报,1998,19(6):757-761.
    [69]王利坡,傅维标.乳化油微爆的统一模型[J].燃烧科学与技术,2000,6(1):6-11.
    [70]Sheng H Z, Chen Li, Wu Cheng-kang. The droplet group micro-explosions in W/O diesel fuel emulsion sprays[R]. SAE Special Publications, No.1902. Warrendale, PA:SAE Inc.1995.
    [71]Sheng H Z, An C, Chen Li. The droplet group micro-explosions in W/O diesel fuel emulsion sprays and their effects on diesel engine combustion[C]. The Combustion Institue,1994.
    [72]吴江霞.乳化柴油的制备及其在单缸柴油机上节能效果与排放特性的研究[D].镇江:江苏大学,2003.
    [73]李建彤.超声柴油微乳化研究[D].南京:南京工业大学,2004.
    [74]Valentine J. Reduetion of nitrogen nxides emissions from diesel engines,1996,07, US: 5535708.
    [75]Cemenska, RiehardA, Coleman. etal. Fuel emulsion blending system.1999,02,23, US: 5873916
    [76]许乐平,彭水生.燃用乳化柴油对减少柴油机排放的试验研究.大连海事大学学报,1997,23(2):65-67.
    [77]吴可克,王海颖.微乳柴油的制备及其性能研究.节能技术,2003,21(6):14-21.
    [781龚景松,王超,张波等.油掺混生物柴油的乳化油对柴油机的性能影响.内燃机,2006,(3):46-48
    [79]胡福田,于新.甲醇—柴油微乳化液配方研制[J].广东化工,2007,34(9):5-8.
    [80]李新学.表面活性剂混合体系的表面活性与应用性能研究[D].杭州:浙江大学,2001.
    [81]张心亚,孙志娟,黄洪,等.无皂乳液聚合技术及应用研究进展[J].中国胶粘剂,2005,14(4):43-46.
    [82]徐珊.微乳化柴油制备及其性能研究[D].上海:华东理工大学,2011.
    [83]黄淼淼,宋冬灵.微乳液技术及其在制备纳米颗粒上的应用[J].河南科技上半月,2011,(2):62~63.
    [84]肖维兵.有机硅改性丙烯酸酯微乳液的制备、表征及应用[D].成都:成都理工大学,2007.
    [85]佘锦锦.超声及表面活性剂对柴油微乳化的影响[D].南京:南京工业大学,2005.
    [86]Markus Appel, Tinka Luise Spehr, Robert Wipf, etal. Water-aot-alkylbenzene microemulsions: Influence of alkyl chain length on structure and percolation behavior[J]. Journal of Colloid and Interface Science,2012,376:140-145.
    [87]Matija Tomsic, Marija Bester-Rogac, Andrej Jamnik. Ternary systems of nonionic surfactant Brij 35, water and various simple alcohols:Structural investigations by small-angle X-ray scattering and dynamic light scattering[J]. Journal of Colloid and Interface Science,2006, 294:194-211.
    [88]李志宏,孙继红,赵军平,等.用小角x射线散射法研究溶胶结构[J].物理学报,2000(49):775—779
    [89]G. Beaucage,H. K. Kammler,S E. Pratsinis.Particle size distributions from small-angle scattering using global scattering functions[J].Journal of Applied Crystallography,2004,37(4):523-525.
    [90]孟昭富.小角X射线散射理论及应用[M].长春:吉林科学技术出版社,1996.
    [911庄文吕,陈晓,赵继宽,等.胶体分散体系与有序分子组合体的小角X射线散射研究[J].化学进展,2005,17(5):881~888.
    [92]夏庆中.TATB和镁、铝合金材料微观结构的小角散射研究[D].绵阳:中国工程热物理研究院,2006.
    [93]李志宏,孙继红,赵军平,等.用小角X射线散射法研究溶胶结构[J].物理学报,2000,49(4):775~780.
    [94]荣利霞,解立平,董宝中,等.同步辐射小角X射线散射方法研究由城市固体垃圾制备的活性炭[J].物理学报,2003,52(3):630~634.
    [95]中华人民共和国质量技术监督局.GB/T265-2000石油产品运动粘度测定法和动力粘度计算法[S].
    [96]中华人民共和国质量技术监督局.GB/T510-2000石油产品凝点测定法[S].
    [97]中华人民共和国质量技术监督局.SH/T0248-2000馏分燃料冷滤点测定法[S].
    [98]Curran H J, Gaffuri P, Pitz W G, et al. A comprehensive modeling study of n-heptane oxidation [J]. Combustion and Flame,1998,114:149-177.
    [99]Thomas Zeuch, Gladys Moreac, Syed Sayeed, et al. A comprehensive skeletal mechanism for the oxidation of n-heptane generated by chemistry-guided reduction[J]. Combustion and Flame, 2008,155:651-674.
    [100]郑朝蕾,尧命发.分层充量压燃简化动力学模型及燃烧机理[J].燃烧科学与技术,2011,17(2):133-141.
    [101]J M. Smith, J M. Simmie, H. J. Curran. Autoignition of heptanes; experiments and modeling[J]. International Journal of Chemical Kinetics[J].2005,37(12):728-736
    [102]A J. Smallbone, W. Liu, C K. Law. Experimental and modeling study of laminar flame speed and non-premixed counterflow ignition of n-heptane[J]. Proceedings of the Combustion Institute 2009(32):1245-1252.
    [103]S G. Davis, C K. Law. Laminar flame speeds and oxidation kinetics of iso-octane-air and n-heptane-air flames[J]. Symposium (International) on Combustion,27(1),1998:521-527.
    [104]T J. Held, F L. Dryer. A comprehensive mechanism for methanol oxidation[J]. International Journal of Chemical Kinetics,1998,30(11):805-830.
    [105]J Li, Z W Zhao, K Andrei, et al.. A Comprehensive Kinetic Mechanism for CO, CH2O, and CH30H Combustion[J].International Journal of Chemical Kinetics,2007,39:109-136.
    [106]J Y. Chen. Reduced reaction mechanisms for methanol air diffusion flames [J]. Combustion Science and Technology,1991,78(1):127-145.
    [107]R P. Lindstedt, M P. Meyer. A dimensionally reduced reaction mechanism for methanol oxidation[C].Proceedings of the Combustion Institute Sapporo, Japan:The Combustion Institue,2002,29:1395-1402
    [108]C T. Bowman. A shock-tube investigation of the high-temperature oxidation of methanol[J]. Combustion and Flame,1975,25:343-354.
    [109]F N. Egolfopoulos, D X. Du, C K. Law. A comprehensive study of methanol kinetics in freely-propagating and burner:Stabilized flames, flow and static reactors, and shock tubes. Combustion Science and Technology,1992,83 (1):33-75.
    [110]王刚,廖世勇,刘训标.甲醇—异辛烷/正庚烷混合燃料滞燃期特性的数值研究[J].车用发动机,2009,15(4):7-15.
    [111]吕兴才,吉丽斌,侯玉春,等.甲醇/正庚烷双燃料均质充量压缩着火燃烧[J].上海交通大学学报,2007,41(2):310-314.
    [112]许汉君,姚春德,徐广兰,等.正庚烷-甲醇二元燃料着火的23步反应模型[J].内燃机学报,2011,29(5):391-397.
    [113]周龙保,刘忠长,高宗英.内燃机学[M].北京:机械工业出版社,2010.
    [1141张志华,周松,黎苏.内燃机排放与噪声控制[M1.哈尔滨:哈尔滨工程大学出版社,2003,11:140-149.
    [115]钱人一.汽车发动机噪声控制[M].上海:同济大学出版社,1997.
    [116]杨庆佛.内燃机噪声控制[M].太原:山西人民出版社,1985.
    [117]贺启环.环境噪声控制工程[M].北京:清华大学出版社,2011,2:35-48.
    [118]袁银南,罗福强,梁昱,等.生物制气-柴油双燃料发动机燃烧噪声分析[J].农业机械学报,2008,39(5):18-21,25.
    [119]汤东,罗福强,梁昱,等.柴油机燃烧噪声的频谱特性[J].农业机械学报,2007,38(10)186-189.
    [120]袁兆成,方华,王天灵,等.车用柴油机气缸压力升高率与燃烧噪声的关系[J].燃烧科学与技术,2006,12(1):11-14.
    [121]汤东,来超峰,胡正权,等.生物制气-柴油双燃料发动机的燃烧噪声[J].江苏大学学报:自然科学版,2006,27(5):409-412.
    [122]卫海桥,舒歌群.内燃机燃烧噪声的研究与发展[J].小型内燃机与摩托车,2003,32(6):26-31.
    [123]尧命发,段家修,覃军,等.双燃料发动机燃烧放热规律分析及燃烧特性研究[J].内燃机学报,2002,20(4):6-9.
    [124]王利军,刘圣华,邹洪波,等.高比例甲醇柴油双燃料发动机燃烧与排放特性的研究[J].西安交通大学学报,2007,41(1):14-18.
    [125]Qi D H, Chen H, Geng L M, et al. Performance and combustion characteristics of biodiesel-diesel-methanol blend fuelled engine[J]. Applied Energy,2010,87:1679-1686.
    [126]陆文霞,孙平,缪岳川,等.螺旋进气道制造偏差对气道性能影响的研究[J].拖拉机与农用运输车,2010,37(3):64-67.
    [127]AVL FIER v2008气缸内计算控制参数说明.
    [128]梅德清.柴油机燃用生物柴油的燃烧过程和排放特性研究[D].镇江:江苏大学,2005.
    [129]Shayler P J, Ng H K. Simulation studies of the effect of fuel injection pattern on NO and soot formation in diesel engines[J]. SAE paper. No.2004-01-0116.
    [130]Chikahisa T, Konno M, Murayama T. Analysis of NO formation characteristics and control concepts in diesel engine from NO reaction-kinetic considerations[J]. SAE paper. No.950215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700