用户名: 密码: 验证码:
高强度截齿钢组织与性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过热处理试验、光学金相显微组织观察、透射电镜分析、扫描电镜观察、力学性能试验、室温冲击试验、磨料磨损试验等研究不同热处理工艺对一种新型截齿用钢组织和性能的影响,并制定截齿的生产工艺,进行了截齿的生产,研究了生产截齿和商用截齿的组织、力学性能及其耐磨性能。
     试验结果表明,硬度法测定35SiMnMo钢的相变转变点温度范围分别是:Ac1为690~700℃,AC3为790~800℃。在不同温度下淬火,随淬火温度的提高,试验材料的硬度、延伸率、断面收缩率呈下降的趋势,抗拉强度在880℃时达到最大值,并具有良好冲击韧度值。试验材料在不同奥氏体化温度下淬火的组织均为板条马氏体和残余奥氏体,残余奥氏体分布在马氏体板条上或板条之间。880℃淬火200℃~250℃回火、回火时间在1~2h,试验材料具有良好力学性能配合,冲击试样断口断裂机制为韧性断裂,400℃回火出现钢的回火脆性,试验材料最佳的淬火工艺为880℃淬火+200~250℃×2h回火。试验材料在不同正火温度下的组织为板条状贝氏体铁素体+残余奥氏体。900℃正火时试验材料具有良好力学性能,正火后200℃~300℃回火,回火保温时间在2h-3h可获得良好强韧性配合,200℃~300℃回火下冲击试样断口断裂机制为韧性断裂。正火后400℃回火出现钢的回火贝氏体脆性,冲击试样断口断裂机制为脆性断裂,试验材料最佳的正火工艺为900℃淬火+200-300℃×2h回火。试验材料淬火或正火后不同温度回火,400℃回火出现回火脆性,通过TEM显微组织观察表明,400℃回火出现脆性的原因为马氏体或贝氏体板条之间的残余奥氏体分解,在板条之间形成断续分布的碳化物,引起回火脆性。
     用35SiMnMo钢生产的截齿,在截齿钎焊后油冷处理,实体截齿表面组织为马氏体和贝氏体复相组织,均呈板条状分布,钎焊后空冷截齿的表面组织为索氏体组织和块状铁素体组织,商用截齿钢42CrMo的表面组织为板条状马氏体组织。成品截齿的实体取样冲击韧度值低于国家标准值;35SiMnMo截齿钢在空冷和油冷下实体冲击试样的冲击韧性高于标准值。商用成品截齿的实体表面硬度为49.8HRC,硬度满足标准要求。35SiMnMo截齿钢在油冷下的表面硬度为47.7HRC,硬度满足标准要求,35SiMnMo截齿钢空冷下的表面硬度为38.1HRC,低于标准要求。试验截齿柄部硬度偏低,商用截齿柄部硬度值偏高。建议35SiMnMo钢截齿感应加热钎焊硬质合金后油冷。磨料磨损载荷在5N时,商用成品试样的耐磨性能优于油冷截齿试样耐磨性,空冷截齿钢试样的耐磨性能最差,在10N的载荷下,油冷截齿钢试样的耐磨性能优于商用截齿试样的耐磨性,空冷截齿钢试样的耐磨性能最差。三种状态的截齿二体磨损机制主要是微切削机制。
The effect of different heat treatment technologies on microstructure and mechanical property of a new cut teeth by the heat treatment test, OM, TEM, SEM, mechanical property testing, room-temperature impact test and abrasive wear test has been studied. The cut production process was formulated, and we producted the teeth, microstructure, mechanical property and wear resistance of producted cut teeth and commercial cut teeth were studied.
     The test results show:Phase change transition point of the 35SiMnMo steel was determined by the hardness method, and Ac1 temperature range is at 690~700℃, Ac3 temperature range is at 790~800℃. In quenching at different temperature, hardness, elongation percent tage and percentage reduction in area of experimental material is on a descending trend with the quenching temperature rising. Tensile strength is maximum in quenching at 880℃, and it has good impact toughness values. The microstructure of the test material is lath martensite and retained austenite on different austenizing heating temperature, and retained austenite are distributed in lath or above martensite lath. Experimental material can obtain good with mechanical properties in quenching at 880℃, tempering at 200℃~250℃for 1~2h. The fracture mechanism of impact fracture is ductile fracture, and tempering brittleness is appeared when tempering temperature is 400℃, experimental materials has best quenching process in quenching at 880℃, tempering at 200~250℃for 2h. The microstructure of test material is lath-shaped bainite ferritic+retained austenite in different normalizing temperature. Experimental material has good mechanical properties in normalizing at 900℃. It can obtain good matching of strength and toughness, tempering temperature at 200~300℃for 2h~3h in different normalizing temperature, and the mechanism of impact sample is toughness fracture in tempering at 200℃~300℃. It appears tempering bainite brittleness in normalizing and tempering at 400℃, the mechanism of the impact fracture is the brittle fracture, the best normalizing process of experimental material is in quenching at 900℃, tempering at 200~300℃for 2h. Temper brittleness is appeared on the experiment materials at 400℃in quenching
引文
[1]E·波金.采煤机破煤理论[M].王庆庚译.北京:煤炭工业出版社,1992,128-130.
    [2]李晓豁,程东棠.掘进机截割工况参数的研究[J].煤矿机械,1991,(2):13-16.
    [3]Li Xiaohuo,Cheng Dongtang,Li Guixuan.Study on Cutline Spacing for Longgitudinal Culting Head of Boom Roadheader[J].Proceedings of the International Sympoaium on Coal Technology.Aug.1993.
    [4]Ivine.K.J.Picking.F B Low Carbon Bainitic Steel[J].J.Iran Steel Inst,1957,187:292-309.
    [5]王云霞,王软平,姚文萍.采煤机和掘进机截齿的失效分析[J].煤矿机械,2001,11(2):57-58.
    [6]康晓敏,张平,李贵轩.采煤机截齿失效研究与实践[J].煤矿机械,2002,(9):27-28.
    [7]杨瑞林,李力军.采煤机截齿的磨损失效分析[J].北京,机械工业出版社,1985,154-159.
    [8]李剑锋.提高截齿耐磨性的研究有新进展[J].凿岩机械气动工具,2006,(4):7-8.
    [9]冯婷.等离子冶金梯度碳化物高强韧截齿刀头组织性能研究[D].山东科技大学,2009,04.
    [10]杨天文.对采煤机截齿失效的认识与分析[J].科技信息,2004,(25):306-307.
    [11]练子富,唐东萍.优质镐型截齿生产工艺[J].煤矿机电,1998,(1):41-42.
    [12]刘晓周,张建军.采煤机截齿的研制与热装工艺[J].西山科技,1999,(2):25-26.
    [13]高彩云,赵运才.矿用截齿失效的原因及对策探讨[J].矿山机械,2000,(12):25-26.
    [14]张国栋.提高矿用截齿性能的技术途径[J].煤矿机械,2006,(5):27:5.
    [15]Kato K.Micro-mechanisms of wear-wear modes[J].Wear,1992,(153):277-295.
    [16]Hokkirigawa K Kato K.Theoretical estimation of abrasive wear resistance based on microscopic wear mechanism[M].Wear of Materials,1989.
    [17]戴雄杰著.摩擦学基础[M].上海:上海科学技术出版社,1984.
    [18]Zun Gahr K H.Modelling of two-body abrasive wear[J].W. Ear.1988,(124):87-103.
    [19]冯伟,周新聪,严新平等.基于有限元方法的衬套装备仿真实现[J].机械制造,2004,42(479):16-18.
    [20]李晓豁.采煤机和掘进机截齿的失效分析[J].矿山机械,1999,(8):20-21.
    [21]杨瑞林,李力军.采煤机截齿的磨损失效分析[J].北京,机械工业出版社,1985,(11):154-159.
    [22]贾虎生,武小雷,杨延请等.新型截齿用准贝氏体钢[J].金属热处理,1998(3):31-33.
    [23]姬玉媛.怎样选好矿用截齿的刀体材料及热处理方式[J].MC现代零部件,2007,(2):1-2.
    [24]中华人民共和国煤炭行业标准[S].MT/T246-91.
    [25]周贤良,周鹿宾,康沫狂.新型低碳贝氏体钢的成分设计[J].上海钢研,1993,(6):27-33.
    [26]史永革,张颜芳,寇永利42CrMo零件热处理参数的试验研究[J].铁道技术监督,2007,(9):251-252.
    [27]董玉顺.马氏体加铁素体纤维状双向组织形成机理[J].金属热处理学报,1990,(2):54-62.
    [28]李治平,刘芳.6LS型采煤机截齿材料和工艺的改进[J].太原科技,2003,(3):42-44.
    [29]黄云庆,章勃等.几种采煤机截齿用钢的性能[J].金属热处理,1995,(2):13-15.
    [30]杨丽颖,王欣,刘本领等.提高截齿使用寿命研究[J].山东理工大学学报,2003,17(4):84-87.
    [31]Pickering F B.physical metallurgy and the design of steels.applied science pulishers LTD, London,1978.
    [32]Reynolds Jr.W T,Li F Z.Shui C K.Aaronson H I.The incomplete transformation phenomenon in Fe-C-Mo alloys[M].Metall trans.1990,21A(6):1443,1463.
    [33]FANG Hongsheng, ZHENG Yankang, CHEN Xiuyun, et al.Air-cooling bainitic steels with less heat treatment [J]. HeatTreatment of Metals,1985, (9):3-8. (in Chinese).
    [34]Mangonon P L.Effect of alloying elements on the microstructure and properties of a hot-rolled low-carbon low-alloy steel[J].Metall Trans,1997.6A:1389-1400.
    [35]黄云庆.热处理工艺对截齿钎焊接头强度的影响[J].金属热处理,1994,(2):12-15.
    [36]刘加强.提高采煤机截齿质量的新途径[J].金属热处理,1995,(7):35-36.
    [37]张军辉.我国煤矿采煤机的研制回顾、现状以及发展[J].煤矿机械,2008,(3):1-2.
    [38]Bhadeshia H K D H. High performance Banitic Steels[J]. Materials Science Forum. 2005(500-501):63-74.
    [39]彭渝丽,刘志学.热处理对新型贝氏体钢组织和力学性能的影响[J].现代制造工程,2007,(9):94-96.
    [40]H I Aaronson,Gspanos,W T J Peynolds.A progress report on the definitions of bainite.Scripta Materialia,2002,47(3):139-144.
    [41]贾虎生,武小雷,杨延清等.新型截齿用准贝氏体钢[J].金属热处理,1998,(7):31-32.
    [42]方鸿生,郑燕康,黄进峰等.我国贝氏体钢的前景[J].金属热处理,1998,(7):11-17.
    [43]孙德勤,吴春京,谢建新.贝氏体钢的研究开发现状与发展前景探讨[J].机械工程材料,2003,27(6):4-7.
    [44]席光A兰,马勤.贝氏体钢的研究现状和发展展望[J].材料导报,2006,(4):78-81.
    [45]方鸿生,郑燕康,黄进峰等.我国贝氏体钢的前景[J].金属热处理,1998,(7):11-17.
    [46]孙德勤,吴春京,谢建新.贝氏体钢的研究开发现状与发展前景探讨[J].机械工程材料,2003,27(6):4-7.
    [47]张占平,齐育红.钢的回火时间-温度-硬度动力学关系[J].材料热处理报,2004,25(1):42-4.
    [48]B L Bramfitt,J G Speer. A perspective on the morphology of Banite.Metall, Trans.A,1990, (21):817-829.
    [49]周凤云,黄进宏.国产重型钎杆的失效分析[J].机械工程料,1997,(3):47=4.
    [50]王贵,郭长庆,张明星Si-Mn-Mo系贝氏体钢组织和性能的研究[J].金属热处理,1995,(8):9.
    [51]F.B.pickering.物理冶金学及钢的设计[M].浙江大学金相教研室译,1983:48.
    [52]H Ohtani,S Okaguchi,Y Fujishiro,et al.Morphology and properties of low carbon Banitic.Metall.Trans.A,1990,(21):877-881.
    [53]丁厚福,王立人.工程材料[M].武汉理工大学出版社,2001.
    [54]丁全福.金属工艺学[M].北京:机械工业出版社,2005.
    [55]丁峰,张炎.金属热处理[M].读书园地,2007,(22):1.
    [56]潘健生,胡明娟.热处理工艺学[M].北京:高等教育出版社,2009.1.
    [57]方鸿生,郑燕康,陈秀云等.空冷贝氏体型少热处理钢[J].金属热处理,1985,(9):3-8.
    [58]康沫狂,杨思品.关于贝氏体形态及其分类:中国机械工程学会热处理学会第四届年会论文集[C].中国南京,1987:92.
    [59]张明星,康沫狂.硅对低碳贝氏体组织和性能的影响[J].金属学报,1993,(1):A6.
    [60]赵运才,唐果宁.采煤机截齿齿体材料及工艺分析[J].矿山机械,1999,(7):22-23.
    [61]Hillert Mats. The nature of banite[J]. ISIJ International.1995,35(9):1134-1140.
    [62]张占平,齐育红.钢的回火时间-温度-硬度动力学关系[J].材料热处理报,2004,25(1):42-43.
    [63]苗静.新型贝氏体钢[J].西安工业大学学报.2011,(10):13-15.
    [64]方鸿生,郑燕康等.发展新型贝氏体钢[J].兵器材料科学与工程,1988(11):1-13.
    [65]方鸿生,邓海金.低铬Fe-Mn-B钢粒状贝氏体的组织及其强韧性[J].机械工程材料,19815(1):5-14.
    [66]方鸿生,郑燕康等.空冷贝氏体型热处理钢[J].金属热处理,1985(9):3-8.
    [67]Fang Hengshang,ChenXinYun, Development of New Air Cooled Bainitie Steels in Chinal [A].Geoffrey Tither,Zhang ShouHua HSLA Steels. Processing Properies and A plieations[C], Beijing TMS 1992:119-125.
    [68]康沫狂,周鹿宾.高强度高韧性低碳贝氏体钢[J].陕西冶金,1989(2):16.
    [69]康沫狂,贾虎生等.新型系列准贝氏体钢[J].金属热处理,1995(12):4-5.
    [70]Nakasuki H,Matsuda H,Tamahiro H.Development of controlled rolled ultra low Carbon bainitie steel for large diameter linpipe[A].Processings alloys for the eighties[C].Greenwieh Climax Molybelenum ComPany,1980,213-224.
    [71]Caballelo F G, Bhadeshia HKDH, Mawella KJA, etal.Design of novel high strength bainiticsteels:Part[J].Materials Seinence and Teehnology,2001,17:512-516.
    [72]Yang J R,Huang C Y, Chiou C S. The influence of Plastic deformation and cooling rates on themicrostructural constituents of an ultra-low earbon bainit steel. [SI] Int, 1995,35(8):1013.
    [73]Yamamoto S,Yokoyama H,Ymada K, Niikura M.Effeets of the austenite grain size and deformation in the unreerystallized anstenite region on bainite transformation behavior andmierostrueture.[SI] Int,1995,35(s):1020-1025.
    [74]FujiwaraK, OkaguehiS, Ohtani H.Effeet of deformation on bainite struetureinlow carbonsteel.[SI]Int,1995,35(8):1006-1012.
    [75]Bai D Q, Yue S, Maccagno T M, Jonas J J.Effeet of deformation and cooling rate on the microstructures of low carbon Nb-B steels.[SI] Int,1998,38(4):371-379.
    [76]Manohar P A, Chandra T. Coniinuous cooling transformation behavior of high strength mieroalloyed steels for linepipe applications.[SI] Int.1998,38(4):766-772.
    [77]Bai Q Q,Yue S,Maeeagno T M,Jonas J J.Static recrystallization of Nb and Nb-B steels undercontinuous cooling conditions.[SI] Int.1996,36:1084-1088.
    [78]Bai Q Q,Yue S,MaeeagnoTM,Jonas J J. Continuous cooling transformation temperaturedetermined by compression tests in low carbon bainite grades.Metall Trans A,1998,29A:989-992.
    [79]Smith Y E, Sandberg A.Coniinuous cooling transformation kineties of thermom-echanieallyworked low-earbon austenite[J].Metall Trans,1971,2:1711-1716.
    [80].Mang vnon L. Effeet of Alloying Elemenis on the Mierostrueture and Properties of A Hot-Rolled Low-Carbon Low-Alloy Bainiie steel.Met.TransVol7(A):1390.
    [81]刘正堂等15CrMoVA钢粒状贝氏体回火脆性的研究[J].航空材料及热处理加工工艺论文集.西北工业大学,1994.
    [82]Piekering F B.Physical Metallurgy and the Designof Steels.1979,79.
    [83]刘东雨,方鸿生等.我国中低碳贝氏体钢的发展[J],江苏冶金,2002(5):1-5.
    [84]徐祖耀.马氏体相变与马氏体[M].北京:科学出版社,1999:254-255.
    [85]熊云奇.弹簧钢的弹性松弛及抗力指标[J].物理测试,1991(4):47.
    [86]杉本淳,本间达.弹簧材料的发展动向[J].特殊钢[日].1995,(8).44.
    [87]黎业生,饶克.低碳马氏体弹簧钢35Si2CrVB弹性减退性能的研究[J].金属热处理,2001,(4):18-20.
    [88]. Engineer S J. 1%Chrome-Boron Steels for High-Strengh BoDts[J],Stahl and Eisen, 1992,112(2):95-101.
    [89]薛广文,杜义,李伟.低碳马氏体高强度螺栓用钢的研制[J].特殊钢,1998(10):31
    [90]徐进,陈再枝.模具材料应用手册[M].北京:机械工业出版社,2001:99-101,107,356,375-392.
    [91]崔壳.模具钢及其热处理的研究进展[J].金属热处理学报,1999(20)(增刊):16-27
    [92]王洪明.结构钢手册[M].河北:科学技术出版社,1985:18.
    [93]徐发樾,王家瑛.模具材料与使用寿命[M].北京:机械工业版社,,2000:183.188.
    [94]李泉华.热处理技术100问解析[M].北京:机械工业出版社,2002:355,373-374,412,413,62.
    [95]张堰.低碳马氏体在模具中的应用[J].金属热处理,2004(10):7-10.
    [96]崔良.钢铁材料及有色金属材料[M].北京:机械工业出版社.1981:89.
    [97]张伟强,李智超,董台等.形变对低碳马氏体力学性能的影响[J].金属热处理学报.1994,(6):61-64.
    [98]关小军,周家娟,王作成.一种新型汽车用钢—相变诱发马塑性钢.特殊钢,2000,21(2):27.
    [99]苑佳林.轧辊用中铬合金铸钢组织和性能的研究[D].河北工业大学,2010,03.
    [100]荆余刚.新型贝氏体耐磨铸钢的试验研究[D].东北大学,2008,02.
    [101]薛贯鲁.含硅钢上贝氏体组织演变特征及性能研究[D].天津理工大学,2008,12.
    [102]侯凤刚.新型碲镍铬合金的耐摩擦性能研究[J].兰州理工大学,2011,12(6):1-4.
    [103]杨静.低合金高碳钢低温等温淬火组织和力学性能的研究[D].燕山大学,2007,10.
    [104]施梅勤PTFE基金属复合材料的摩擦磨损性能研究[D].浙江工业大学,2004,12.
    [105]薛景文编著.摩擦学及润滑技术[M].北京:兵器工业出版社,1991,52-67.
    [106]刘源洞.低速重载滚动轴承的状态监测与寿命预测方法研究[D].武汉科技大学,2006.05.
    [107]S.Bahadur.Attrition research and development[J].ASME,1978,100:449-454.
    [108]唐琴.基于摩擦功原理的凸轮—挺柱磨损仿真[D].中南大学,2010,05.
    [109]霍林.摩擦学原理[M].北京:机械工业出版社,1981,1-28.
    [110]刘佳.振动对磨料磨损影响的研究[D].硕士论文,2006,12.
    [111]汪选国,销盘滑动磨损试验的仿真方法研究[D].武汉理工大学,2009,7.
    [112]吴刚.销盘磨损试验的计算机仿真方法研究[D].武汉理工工大学,2003,6.
    [113]薛景文编著.摩擦学及润滑技术[M].北京:兵器工业出版社,1991,52-67.
    [114]赫罗绍夫MM,巴比切夫MA金属的磨损[M].北京:机械工业出版社,1966,339-341.
    [115]刘哲文.涨圈密封在高速高压条件下的摩擦与磨损机理研究[D].华南理工大学,2009,05.
    [116]张惠惠,唐建新.我国贝氏体耐磨铸钢的发展及应用[J].热加工工艺,2009,38(11):61-63.
    [117]刘国明.铝锰合金干滑动摩擦磨损性能的研究[D].新疆大学,2010,06.
    [118]程巨强,刘志学.新型贝氏体铸钢回火热处理组织和性能的研究[J].铸造技术,2005,26(6):462-464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700