用户名: 密码: 验证码:
TiO_2基可见光响应纳米光催化剂的制备、表征分析及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,稀土元素掺杂改性TiO_2光催化剂已成为国内、外光催化领域研究热点,且已有众多学者探讨过稀土元素自身性质与稀土元素掺杂改性后的TiO_2光催化活性之间的关系。但对于稀土元素性质对稀土元素掺杂改性TiO_2光催化机理及掺杂机理尚存在较多争议。本研究通过溶胶—凝胶法制备稀土元素(RE)(La、Ce、Gd、Er、Yb、Y)改性TiO_2纳米光催化剂粉体,以草酸和偶氮染料为降解目标物检验其光催化活性,用XRD、TEM、BET、DRS及XPS对其晶体结构及形貌、光谱效应和化学组态进行分析。对掺杂量和煅烧温度对其光催化剂活性、晶体结构及形貌、光谱效应和化学组态的影响,以及在不同波长光的激发下的光催化活性进行了探讨,并对各稀土元素固有性质对于稀土掺杂改性TiO_2的掺杂机理和催化降解有机污染物的光催化活性的影响机理做了深入分析。
     以TiCl_4为TiO_2的前驱体,通过水热合成法制备了N掺杂改性的TiO_2纳米光催化剂,所制备的纳米粉体为黄色。其光催化剂的活性以KI溶液和草酸溶液为目标物、在不同激发波长光源激发下测定。由XRD和BET表征分析可知,所制备的N掺杂改性的TiO_2光催化剂样品的晶型为锐钛矿、和少量板钛矿组成,且其粒径分布在7nm到10nm范围内,比表面积分布于71.24m2·g~(-1)到170.38m2·g~(-1)范围内。由DRS表征分析可知,所制备的纳米粉体光催化剂的吸收光谱明显红移,且禁带宽度最小可被减小至2.80eV,可充分利用可见光。由XPS表征分析去化学组态可知,Ti-N键和NOx为所掺杂N的主要存在形式。Raman表征分析进一步验证了N-TiO_2键的存在。
     在本研究提出了以Ce和N为目标掺杂物,通过改进的溶胶—凝胶工艺合成可见光响应TiO_2光催化剂纳米粉体。并通过XRD,BET,DRS,Raman和XPS对其晶体结果及化学组态进行表征分析。其中,引入的N有效减小其禁带宽度而使受激发所需能量降低,即2.40eV(铈掺杂改性)降低到2.21eV(铈、氮共掺杂改性);XPS表征分析确定了Ce3+/Ce4+,NOx和Ti-O-N和Ti-O-Ce的存在。其光催化剂机理通过在不同激发波长光源(λ>365nm,λ>420nm,λ>500nm,λ>550nm,λ>600nm)下光催化降解亚甲基蓝(MB)进行研究。在本文的研究范围内确定了最佳掺杂比例为0.70 at.% Ce和0.70 at.% N。本研究系统的讨论了影响光催化反应过程的主要参数,即所掺杂的N与Ce的原子百分比和激发波长,以及反应过程的一级动力学。光催化活性的提高应归因于在反应过程中所大量形成的·OH自由基,且光生电子空—穴对的复合是影响MB光催化降解的关键因素。本研究用改性半导体(晶体结构和化学组态改性)薄膜材料替代纯TiO_2薄膜,即N掺杂改性的TiO_2(N-TiO_2)薄膜,增强其表面与染料(N719)的键合强度、染料在其表面的吸附量及稳定性,提高太阳能电池的光电转化效率和使用寿命。提高太阳能的利用率的同时,延长光生电子寿命和提高光生电子密度,进而揭示DSSCs光电转化效率的提高与光生电子之间的关系,并对N-TiO_2薄膜为光阳极的DSSCs内的光生电子寿命、光生电子密度及扩散系数与N-TiO_2晶体结构及个元素的化学组态间的关系做了深入、系统研究。
Rear earth (RE) doped TiO_2 nano-photocatalyst attracted the increasing attentions, and many attempts have been made to explore the relationship between the properties of rear earth elements itself and the photocatalytic activities of as-prepared photocatalyst. However, up to now, the effects of the properties of rear earth elements itself on the mechanism of doping process and activity still kept unclear. The RE (La, Ce, Gd, Er, Yb, Y) doped TiO_2 nano-photocatalyst was synthesized using modified sol-gel technique, and the activities were evaluated using oza dye solution and oxalic acid solution as the model reactant under different light source. The as-prepared particles were characterized using XRD, TEM, BET, DRS and XPS. The effects of doping amount and sintering temperature on the crystal morphology, crystal structure and the chemical component were carried out in this study. Further, the process of photodegradation and the mechanism of photocatalyst have been studied well.
     Nitrogen doped titanium dioxide nanoparticles were prepared by heating titanium hydroxide with urea. The yellow powders obtained after calcination at 450 oC 2 h in air. Photocatalysis the photoconversion KI and oxalic acid solution have been operated under different light source irradiation. X-Ray Diffraction (XRD) and surface area analysis show the presence of anatase/brookite TiO_2 nanoparticles with crystallite size ranging from 7nm to 10 nm and specific surface area ranging from 71.24 to 170.38 m2·g~(-1), depending on the amount of urea used. Diffuse Reflectance Spectroscopy (DRS) shows a shift in the range of 400~580nm and narrowing of the bandgap up to 2.80 eV, which can be attributed to the creation of visible light absorbing titanium oxynitride centres by the doping process. X-Ray Photoelectron Spectroscopy confirms the presence of Ti-N bond and oxynitride should be main doped nitrogen species due to new coming N-TiO_2 vibration at 550 cm~(-1) from Raman spectrum, XPS analysis.
     Based on the above theorical analysis, cerium and nitrogen co-doped anatase TiO_2 nanoparticles were synthesized using a one-step technique via a modified sol-gel process and characterized by XRD, BET, DRS, Raman and XPS. The photocatalytic mechanism of the degradation of methylene blue (MB) under fluorescent light and visible light irradiation was studied. Co-doping cerium and nitrogen in the crystal lattice of TiO_2 narrowed the band gap from 2.40 eV (Ce-doped TiO_2) to 2.21 eV (Ce/N co-doped TiO_2). Ce~(4+)/Ce~(3+) pairs, oxynitride species and Ti-O-N and Ti-O-Ce bonds were determined by XPS. The recombination of photogenerated electron-hole pairs was inhibited due to the synergistic effect of doping with Ce~(4+)/ Ce~(3+) ions and N atoms. The optimal doping ratio was 0.70% Ce and 0.70% N using MB photocatalytic degradation under fluorescent light and visible light irradiation (λ>420 nm). The photocatalytic mechanism and was investigated through methylene blue (MB) photocatalytic degradation using various filtered wavelengths of light (λ>365nm,λ>420nm,λ>500nm,λ>550nm,λ>600nm) for a period. Two experimental parameters were studied systematically, namely the atomic ratio of doped N to Ce and the irradiation wavelength number. The photocatalytic degradation of MB over CNT NPs in aqueous suspension was found to follow approximately first-order kinetics according to the Langmuir-Hinshelwood model. The enhanced photocatalytic degradation was attributed to the increased number of photogenerated·OH radicals.The enhanced photocatalytic degradation under visible light irradiation was attributed to the increasing number of photogenerated·OH radicals. The recombination of photogenerated e--h+ was attributed to be the key factor for the decrease in the photocatalytic degradation efficiency of MB.
     The targeted dye sensitized solar cells in this study were fabricated using the modified nano-photocatalyst (N doped TiO_2 nanoparticles) as the electrode and N719 as the dye sensitizer. By enforced the connections between the conductivity film and dye, the absorbance of amount, the enhanced efficiency and life time of solar cells have been found. Meanwhile, the properties of photo-generated electrons have been studied in detailed, such as the electron life time, the electron density, the diffusion coefficient. The relationship between the properties of photo-generated electrons, the crystal structure, and the chemical component of N doped TiO_2 nanoparticles was dicussed in this part.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238:37-38.
    [2]Hoffmann M, Martin S, Choi W, et al. Environmental applications of semiconductor photocatalysis [J]. Chemical Review, 1995, 95(1):69-96.
    [3]Fox M A, Duby M T. Heterogeneous photocatalysis [J]. Chemical Review, 1999, 93(1):341-357.
    [4]Turchi C S, Ollis D F. Photocatalytic degradation of organic water Contaminants: Mechanism Involving Hydroxyl Radical Attack [J]. Journal of Catalysis, 1990, 122(1):178-192.
    [5]Fujishima A, Tata N R, Tryk D A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000. 1(1), 1-21.
    [6]Sigoli F A, Goncalves R R, Messaddeq Y, et al. Erbium- and ytterbium-doped sol-gel SiO2-HfO2 crack-free thick films onto silica on silicon substrate [J]. Journal of Non-Crystalline Solids, 2006, 352 (32-35):3463-3468.
    [7]Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. The Journal of Physical Chemistry, 1977, 81:1484-1489.
    [8]Heller A. Chemistry and Applications of photocatalytic oxidation of thin organic films [J]. Accounts of Chemical Research, 1995, 28:503-508.
    [9]Sopyan I, Watanabe M, Murasawa S, et al. A film-type photocatalyst incorporating highly active TiO2 powder and fluororesin binder: photocatalytic activity and long-term stability [J]. Journal of Electroanalytical Chemistry, 1996, 415(1-2):183-186.
    [10]Regan B O, Gr?tzel M. High efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353:737-739.
    [11]Murakami Y, Matsumoto T, Watanabe Y, et al. Design of catalysts for low temperature synthesis of highly polymerized titanium oxides [J]. Transactions of the Materials Research Society of Japan, 1999, 24:425-427.
    [12]Shimizu K, Imai H, Hirashima H, et al. Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions [J]. Thin Solid Films, 1999, 351(1-2):220-224.
    [13]Tryba B, Morawski A W, Inagaki M. Application of TiO2-mounted activated carbon to the removal of phenol from water [J]. Applied Catalysis B: Environmental, 2003, 41(4):427-433.
    [14]Aguado J, Grieken R V, Munoz M J L, et al. Removal of cyanides in wastewater by supported TiO2-based photocatalysts [J]. Catalysis Today, 2002, 75(1-4):95-102.
    [15]高濂,郑珊,张青红.纳米二氧化钛光催化材料及应用[M].北京:化学工业出版社, 2002.
    [16]Um M H, Kumazawa H. Hydrothermal synthesis of ferroelectric barium and strontium titanate extremely fine particles [J]. Journal of Materials Science, 2000, 35(5):1295-1300.
    [17]Bastow T J, Doran G, Whitfield H J. Electron diffraction and Ti-47, Ti-49 and O-17 NMR studies of natural and synthetic brookite [J]. Chemistry of Materials, 2000, 12(2): 436-439.
    [18]Wang Y Q, Cheng H M, Zhang L, et al. The preparation, characterization, photoelectrochemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 nanoparticles [J]. Journal of Molecular Catalysis A: Chemical, 2000, 151(1-2): 205-216.
    [19]Hawthorne F C, Cooper M A, Grice J D, et al. A new anhydrous amphibole from the Eiffel region, Germany: description and crystal structure of obertiite [J]. American Mineralogist, 2000, 85(1):236-241.
    [20]Li W J, Shi E W, Yin Z W. Growth habit of rutile and alpha-Al2O3 crystals [J]. Journal of Crystal Growth, 2000, 208(1-4):546-554.
    [21]Ito S, Yoshida S, Watanabe T. Preparation of colloidal anatase TiO2 secondary submicroparticles by hydrothermal sol-gel method [J]. Chemistry Letters, 2000, 29(1): 70-71.
    [22]Yoshinaka S, Segawa K. Hydrodesulfurization of dibenzothiophenes over molybdenum catalyst supported on TiO2-Al2O3 [J]. Catalyst Today, 1998, 45(1-4): 293-298.
    [23]Sammelselg V, Rosental A, Tarre A, et al. TiO2 thin films by atomic layer deposition: a case of uneven growth at low temperature [J]. Applied Surface Science, 1998, 134(1-4):78-86.
    [24]Wu P, Iwamoto M. Metal-ion-planted MCM-41, part 3: incorporation of titanium species by atom-planting method [J]. Journal of the Chemical Society-Faraday Transactions, 1998, 94(18):2871-2875.
    [25]Sayama K, Sugino M, Sugihara H, et al. Photosensitization of porous TiO2 semiconductor electrode with xanthenes dyes [J]. Chemistry Letters, 1998, 27(10): 1005-1008.
    [26]Nam H D, Lee B H, Kim S J, et al. Preparation of ultrafine crystalline TiO2 powders from aqueous TiCl4 solution by precipitation [J]. Japanese Journal of Applied Physics, 1998, 37(8): 4603-4608.
    [27]Chen L Y, Chuah G K, Jaenicke S, Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium [J]. Journal of Molecular Catalysis A: Chemical, 1999, 132(2-3):281-292.
    [28]Danion A, Disdier J, Guillard C, et al. Characterization and study of a single-TiO2-coated optical fiber reactor [J]. Applied Catalysis B: Environmental, 2004, 52(3):213-223.
    [29]Mytych P, Stasicka Z. Photochemical reduction of chromium (VI) by phenol and its halogen derivatives [J]. Applied Catalysis B: Environmental, 2004, 52(3): 167-172.
    [30]Carneiro P A, Osugi M E, Sene J J, et al. Evaluation of color removal and degradation of a reactive textile azo dye on nanoporous TiO2 thin film electrodes [J]. Electrochimicaal ACTA, 2004, 49(22-23):3807-3820.
    [31]Bessekhouad Y, Robert D, Weber J V, et al. Effect of alkaline-doped TiO2 on photocatalytic efficiency [J]. Journal of Photochemisry and Photobiology A: Chmeistry, 2004, 167(1):49-57.
    [32]Fu X, Qutubuddin S. Synthesis of titania-coated silica nanoparticles using a nonionic water-in-oil microemulsion [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 179(1):65-70.
    [33]Caruso R A, Antonietti M, Giersig M, et al. Modification of TiO2 network structures using a polymer gel coating technique [J]. Chemistry of Marterials, 2001, 13(3):1114-1123.
    [34]Chu S Z, Inoue S, Wada K, et al. Fabrication of TiO2-Ru-(O-2)/Al2O3 composite nanostructures on glass by Al anodization and electrodeposition [J]. Journal of the Electrochemical Society, 2004, 151(1): C38-C44.
    [35]Miao L, Tanemura S, Watanabe H, et al. The improvement of optical reactivity for TiO2 thin films by N-2-H-2 plasma surface-treatment [J]. Journal of Crystal Growth, 2004, 260(1-2):118-124.
    [36]尹荔松,周歧发,唐新桂,等.溶胶-凝胶法制备纳米TiO2的胶凝过程机理研究[J].功能材料, 1999, 30(4):407-409.
    [37]郭文华,张军剑,李钢,等.溶胶-凝胶法及其制备纳米TiO2粉体的原理和研究进展[J].中国陶瓷工业, 2006, 10(13):26-29.
    [38]Takeda S, Prasad K, Hosono H. Photocatalytic TiO2 thin film deposited onto glass by DC magnetron sputtering [J]. Thin Solid Films, 2001, 392(2):338-344.
    [39]Bhattacharyya D, Sahoo N K, Thakur S, et al. Spectroscopic ellipsometry of TiO2 layers prepared by ion-assisted electron-beam evaporation [J]. Thin Solid Films, 2000, 360(1-2):96-102.
    [40]Kakati M, Bora B, Deshpande U P, et al. Study of a supersonic thermal plasma expansion process for synthesis of nanostructured TiO2 [J]. Thin Solid Films, 2009, 518(1):84-90.
    [41]Rasmussen I L, Pryds N, Schou J. RHEED study of titanium dioxide with pulsed laser deposition [J]. Applied Surface Science, 2009, 255(10):5240-5244.
    [42]Lethy K J, Beena D, Pillai V P M, et al. Band gap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications [J]. Journal of Applied Physics, 2008, 104(3):033515-033527.
    [43]Trenczek-Zajac A, Radecka M, Jasinski M, et al. Influence of Cr on structural and optical properties of TiO2: Cr nanopowders prepared by flame spray synthesis [J]. Catalysis Today, 2009, 140(1-2):1-6.
    [44]Yamashita H, Harada M, Misaka J, et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2 [J]. Catalysis Today, 2003, 84(3-4):191-196.
    [45]Seung M O, Seung S K, Lee J E, et al. Effect of additives on photocatalytic activity of titanium dioxide powders synthesized by thermal plasma [J]. Thin Solid Films, 2003, 435(1-2):252-258.
    [46]Chen J H, Yao M S, Wang X L. Investigation of transition metal ion doping behaviors on TiO2 nanoparticles [J]. Journal of Nanoparticles Research, 2008, 10(1):163-171.
    [47]Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293:269-271.
    [48]Wu G S, Wang J P, Thomas D F. Synthesis of F-doped flower-like TiO2 nanostructures with high photoelectrochemical activity [J]. Langmuir, 2008, 24(7):3503-3509.
    [49]Ho W, Yu J C, Lee S. Synthesis of hierarchical nanoporous F-doped TiO2 spheres with visible light photocatalytic activity [J]. Chemical Communications, 2006, 10:1115-1117.
    [50]Sato S. Photocatalytic activity of NOx doped TiO2 in the visible light region [J]. Chemical Physics Letters, 1986, 123(1-2):126-128.
    [51]Irie H, Watanabe Y, Hashimoto K J. Visible-light active N-doped TiO2 prepared by heating of titanium hydroxide and urea [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170(2):177-179.
    [52]Kobayakawa K, Murakami Y, Sato Y. Visible-light-driven nitrogen-doped TiO2 photocatalysts: effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants [J]. Materials Science and Engineering B, 2005, 117(1):67-75.
    [53]Prokes S M, Gole J L, Chen X, et al. Carlos defect-related optical behavior in surface modified TiO2 nanostructures [J]. Advanced Functional Materials, 2006, 15(1):161-167.
    [54]Mann J R, Nevins J S, Soja G R, et al. Influence of solvation and the structure of adsorbates on the kinetics and mechanism of dimerization-induced compositional changes of mixed monolayers on TiO2 [J]. Langmuir, 2009, 25(20):12217-12228.
    [55] Avendano R G R, De-Los-Reyes J A, Viveros T, et al. Synthesis and characterization of mesoporous materials: Silica-zirconia and silica-titania [J]. Catalysis Today, 2009, 148(1-2):12-18.
    [56]Prokes S M, Carlos W E, Gole J L, et al. Surface modification and optical behavior of TiO2 nanostructures [J]. Materials Research Society, 2003, 738(2):239-241.
    [57]Wu J C S, Chen C H. A visible-light response vanadium-doped titania nanocatalyst by sol–gel method [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163(3):509-515.
    [58]Li F B, Li X Z, Hou M F, et al. Enhanced photocatalytic activity of Ce3+–TiO2 for 2-mercaptobenzothiazole degradation in aqueous suspension for odour control [J]. Applied Catalyst A: General, 2005, 285(3-4):181-189.
    [59]Sasirekha N, John S, Basha S, et al. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide [J]. Applied Catalyst B: Environmental, 2006, 62(1-2):169-180.
    [60]Nagaveni K, Hegde M S, Madras G. Structure and photocatalytic activity of Ti1-xMxO2±δ(M = W, V, Ce, Zr, Fe, and Cu) synthesized by solution combustion method [J]. Journal of Physical Chemistry B, 2004, 108(52):20204-20212.
    [61]Jo W K, Kim J T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds [J]. Journal of Hazardous Materials, 2009, 164(1):360-366.
    [62]Khan S U M, Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2002, 297:2243-2245.
    [63]Irie H, Watanabe Y, Hashimoto K. Carbon-doped anataseTiO2 powders as a visible-light sensitive photocatalyst [J]. Chemistry Letters, 2003, 32(8):772-773.
    [64]Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angewandte Chemie International Edition, 2003, 42(40):4908-4911.
    [65]Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping [J]. Applied Physical Letters, 2002, 81(33):454-457.
    [66]Umebayashi T, Yamaki T, Yamamoto S, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies [J]. Journal of Applied Physics, 2003, 93(9):5156-5160.
    [67]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light [J]. Chemical Letters, 2003, 32(4):364-365.
    [68]Yu J C, Ho W K, Yu J G, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania [J]. Environmental Science and Technology, 2005, 39(4):1175-1179.
    [69]Zabek P, Eberl J, Kisch H. On the origin of visible light activity in carbon-modified titania [J]. Journal of Photochemistry and Photobiology Science, 2009, 8(2):264-269.
    [70]Yang W Z, Chen C, Wu F Q. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals [J]. Journal of Hazadrous Materials, 2009, 164(2-3):615-620.
    [71]Izumi Y, Itoi T, Peng S. Structure and Photocatalytic Role of Sulfur or Nitrogen-Doped Titanium Oxide with Uniform Mesopores under Visible Light [J]. Journal of Physical Chemistry C, 2009, 113(16):6706-6718.
    [72]Sakthivel S, Janczarek M, Kisch H. Visible light activity and photoelectrochemical Properties of nitrogen-doped TiO2 [J]. Journal of Physical Chemistry B, 2004, 108(50):19384-19387.
    [73]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders [J]. Journal of Physical Chemistry B, 2003, 107(23):5483-5486.
    [74]Diwald O, Thompson T L, Zubkov T, et al. Photochemical activity of nitrogen-doped rutile TiO2 (110) in visible light [J]. Journal of Physical Chemistry B, 2004, 108(19):6004-6008.
    [75]Saha C N, Hadand G T. Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study [J]. Journal of Applied Physics, 1992, 72(7):3072-3079.
    [76]Gyorgy E, Pino A P, Serra P, Morenza J L. Depth profiling characterisation of the surface layer obtained by pulsed Nd: YAG laser irradiation of titanium in nitrogen [J]. Surface of Coating Technology, 2003, 173(2):265-270.
    [77]Prokes S M, Gole J L, Chen X B. Defect-related optical behavior in surface-modified TiO2 nanostructures [J]. Advanced Functional Material, 2005, 15(1):161-167.
    [78]Hu C, Wang Y, Tang H. Influence of adsorption on the photodegradation of various dyes using surface bond-conjugated TiO_2/SiO_2 photocatalyst [J]. Applied Catalysis B: Environmental, 2001, 35(2):95-105.
    [79]Chen S F, Chen L, Gao S, et a1. The preparation of coupled WO3/TiO_2 photocatalyst by hall milling [J]. Powder Technique, 2005, 160(3):198-202.
    [80]Wingkei H, Yu J C. Sonochemical synthesis and visible light photocatalytic behavior of CdSe and CdSe/TiO_2 nanoparticIes [J]. Molecular Catalysis A: Chemical, 2006, 247(1-2):268-273.
    [81]Zhang X, Zhang F, Chan Y. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and Photocatalytic properties [J]. Applied Catalysis A: General, 2005, 284(1-2):193-198.
    [82]Floretina A, Betianu C, Robu B M, et al. Study concerning the influence of oxidizing agents on heterogeneous photocatalytic degradation of persistent organic pollutants [J]. Environmental Engineering and Management Journal, 2007, 6(6):483-489.
    [83]Yurdakai S, Loddo V, Augugliaro V, et al. Photodegradation of pharmaceutical drugs in aqueous TiO_2 suspensions: Mechanism and kinetics[J]. Catalysis Today, 2007, 129(1):9-15.
    [84]Peng T Y, Zhao D, Song H B, et al. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high Photocatalytic activity [J]. Journal of Molecular Catalysis A: Chemical, 2005, 238(1-2):119-126.
    [85]孙俊英,孟大维,汪新星,等.稀土元素掺杂对纳米TiO_2光催化剂的影响及机理[J].材料导报, 2007, 11(21):70-73.
    [86]蔡河山,刘国光,吕文英,等.稀土元素掺杂改性纳米TiO_2光催化性能[J].稀有金属, 2006, 30(3):390-394.
    [87]王振阳,何洪,戴洪兴,等.稀土掺杂TiO_2光催化的研究进展[J].中国稀土学报, 2006, 24(6):94-99.
    [88]Rodriguez T, Vargas S, Montiel C, et al. Modification of the phase transition temperature in Titania doped with various cations [J]. Journal of Material Research, 1997, 12(2):439-442.
    [89]Asako K, Kota N, Go H, et al. Photoreactions on LaTiO_2N under visible light irradiation [J]. Journal of Physical Chemistry A, 2002, 106(29):6750-6753.
    [90]Zhang Y, Zhang H, Xu Y, et al. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO_2 [J]. Journal of Solid State Chemistry, 2004, 177(10):3490-3498.
    [91]周武艺,唐绍裘,张世英,等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性[J].硅酸盐学报, 2004, 32(10):1203-1208.
    [92]Wang D, Xue C, Gong M. Single-crystalline Cr-TiO_2 nanofilm with rough tube walls: synthesis and gas-sensing properties [J]. Nanotechnology, 2006, 8(31):1256-1257.
    [93]Radecka M, Wierzbicka M, Komornicki S, et al. Influence of Cr on photoelectrochemical properties of TiO_2 thin films [J]. Physics B, 2004, 348(1-4): 160-168.
    [94]Yang P, Lu M K. Photoluminescence properties of ZnS nanoparticles co-doped with Pb2+ and Cu2+ [J]. Chemical Physics Letter, 2001, 336(1-2):76-79.
    [95]Sakatani Y, Nunoshige J, Ando H, et al. Photocatalytic decomposition of acetaldehyde under visible light irradiation over La3+ and N co-doped TiO_2 [J]. Chemistry Letters, 2003, 32(11):1156-1157.
    [96]Wei H, Wu W, Lun N, et al. Preparation and photocatalysis of TiO_2 nanoparticles co-doped with nitrogen and lanthanum [J]. Journal of Materials Science, 2004, 39(4):1305-1308.
    [97]华南平,吴遵义,杜玉扣. Pt、N共掺杂TiO_2在可见光下对三氯乙酸的催化降解作用[J].物理化学学报, 2005, 21(10):1081-1085.
    [98]Goswam D Y, Vijayaraghavan S. New and emerging developments in solar energy [J]. Solar Energy, 2004, 76(1-3):33-38.
    [99]Zhang L F, Tatsuo K, Noriaki S, et al. Development of TiO_2 photocatalyst reaction for water purification [J]. Separation and Purification Technology, 2003, 31(1):105-110.
    [100]Chen J S, Liu M C, Zhang L, et al. Application of nano TiO_2 towards polluted water treatment combined with electro-photochemical method [J]. Water Research, 2003, 37(16):3815-3820.
    [101]Roberta L Z, Wilson F J. Photocatalytic decomposition of seawater-soluble crude-oil fractions using high surface area colloid nanoparticles of TiO_2 [J]. Journal of photochemistry and photobiology A: Chemistry, 2002, 147(3):205-212.
    [102]刘福生,吉仁,吴敏,等.苝染料敏化Pt/TiO_2光催化分解水制氢[J].物理化学学报, 2007, 23(12):1899-1904.
    [103]Zhu X D, Mark A. N, Elizabeth C B. Effect of inorganic anions on the titanium dioxide-based photocatalytic oxidation of aqueous ammonia and nitrite [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(25):289-294.
    [104]Iliev V, Tomova V, Bilyarska L, et a1. Photocatalytic properties of TiO_2 modified with platinum and silver nanoparticles in the degradation of oxalic acid in aqueous solution [J]. Applied Catalysis B: Environmental, 2005, 63:261-266.
    [105]罗洁,陈建山. TiO_2光催化氧化降解印染废水的研究[J].工业催化, 2004, 12(6):36-38.
    [106]Dalton J S, Janes P A, Jones N G, et al. Photocatalytic oxidation of NOx gases using TiO_2: a surface spectroscopic approach [J]. Environmental Pollution, 2002, 120(2):415-422
    [107]Devahasdin S, Fan C, Li K Y, et al, TiO_2 photocatalytic oxidation of nitric oxide: transient behavior and reaction kinetics [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1):161-170.
    [108]Satoshi H, Nick S, Shuji Y, et al. Photocatalyzed degradation of polymers in aqueous semiconductor suspensions: IV theoretical and experimental examination of the photooxidative mineralization of constituent bases in nucleic acids at titania/water interfaces [J]. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 120(1):63-74.
    [109]Eftaxias A, Fonta J, Fortuny A. Kinetic modeling of catalytic wet air oxidation of phenol by simulated annealing [J]. Applied Catalysis B: Environmental, 2001, 33(2):175-190.
    [110]申森,王振强,付慧坛.水体中有机物污染的治理技术[J].科技资讯, 2007, 2:100-101.
    [111]Azenha M G, Burrows H D, Canle L M. On the kinetics and energetic of one-electron oxidation of 1,3,5-triazines [J]. Chemical Communications, 2003, 7(1):112-113.
    [112]Lagemat J, Frank A. Effect of the surface-state distribution on electron transport in dye-sensitized TiO_2 solar cells [J]. Journal of Physical Chemistry, 2000, 18(4):42-49.
    [113]Yu B, Wang P, Graetzel M, et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts [J]. Nature Materials, 2008, 7 (8):626-630.
    [114]Wang Q, Nathan R N, Arthur J F, et al. Constructing ordered sensitized heterojunctions: bottom-Up electrochemical synthesis of p-Type semiconductors in oriented n-TiO_2 nanotube arrays [J]. Nano Letters, 2009, 9 (2):806-813.
    [115]Burke A, Kwiatkowski J, Gr?tzel M, et al. The function of a TiO_2 compact layer in dye-sensitized solar cells incorporating "Planar" organic dyes [J]. Nano Letters, 2008, 8 (4): 977-981.
    [116]Masanori M, Eiji S, Shogo M, et al. Interfacial electron transfer kinetics in metal free organic dye sensitized solar cells: combined effects of molecular structure of dyes and electrolytes [J]. Journal of American Chemistry Society, 2008, 130 (52):17874-17881.
    [117]Jun Y, Sohn D, Kang M G, et al. A module of a TiO_2 nanocrystalline dye sensitized solar cell with effective dimensions [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 200(2-3):314-317.
    [118]Snaith H J, Lukas S M. Advances in Liquid electrolyte and solid state dye sensitized solar cells [J]. Advanced Materials, 2007, 19(20):3187-3200.
    [119]Yum J H, Gr?tzel M, Nazeeruddin M K, et al. Effect of co-adsorbent on the photovoltaic performance of squaraine sensitized nanocrystalline solar cells [J]. Nanotechnology, 2008, 19(42):424003-424005.
    [120]Ko K H, Lee Y C, Junget Y J, et al. Enhanced efficiency of dye-sensitized TiO_2 solar cells (DSSC) by doping of metal ions [J]. Journal of Colloid and Interface Science, 2005, 283(2):482-487.
    [121]Han L, Ashraful I, Masafumi S, et al. Integrated dye-sensitized solar cells with conversion efficiency of 8.2% [J]. Applied Physics Letters, 2009, 94(1):013305-013307.
    [122]Yum J H, Chen P, Gr?tzel M, et al. Recent developments in solid state dye sensitized solar cells [J]. Minireviews of Chemical Surface and Chemistry, 2007(10):699-707.
    [123]Xia J B, Masaki N, Yanagida S, et al. Effect of doping anions structures on poly (3,4-ethylenedioxythiophene) as hole conductors in solid-state dye-sensitized solar cells [J]. The journal of physical chemistry C: Nanomaterials and interfaces, 2008, 112 (30): 11569-11574.
    [124]Ma T L, Akiyama M, Imai I, et al. High-efficiency dye-sensitized solar cell based on a nitrogen-doped nanostructured titania electrode [J]. Nano Letters, 2005, 12 (5): 2543-2547.
    [125]Gao F F, Wang Y, Zakeeruddin S M, et al. Enhance the optical absorptivity of nanocrystalline TiO_2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells [J]. Journal of the American Chemical Society, 2008, 130 (32):10720-10728.
    [126]Cesar I, Sivula K, Kay A, et al. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting [J]. Journal of Physical Chemistry C, 2009, 113 (2): 772-782.
    [127]Ito S, Miura H, Uchida S, et al. High conversion efficiency organic dye sensitized solar cells with a novel indoline dye [J]. Chemical Comminications, 2008 41:5194-5196.
    [128]Bessho T, Constable E, Graetzel M, et al. An element of surprise efficient copper functionalized dye sensitized solar cells [J]. Chemical Communications, 2008 32:3717-3719.
    [129]Nazeeruddin M K, Bessho T, Cevey L, et al. A high molar extinction coefficient charge transfer sensitizer and its application in dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 185(2):331-337.
    [130]Kuang D B, Klein C, Ito S, et al. High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte [J]. Advanced Materials, 2007, 19(8): 1133-1137.
    [131]Kim C, Kim K S, Kim H Y, et al. Modification of a TiO_2 photoanode by using Cr-doped TiO_2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell [J]. Journal of Materials Chemistry, 2008, 18(47): 5809-5814.
    [132]Deng X Y, Yue Y H, Gao Z. Gas-phase photo-oxidation of organic compounds over nanosized TiO_2 photocatalysts by various preparations [J]. Applied Catalysis B: Environmental, 2002, 39(2):135-147.
    [133]Zhang J L, Terukazu A, Madoka M, et al. Investigations of TiO_2 photocatalysts for the decomposition of NO in the flow system: the role of pretreatment and reaction conditions in the photocatalytic efficiency [J]. Journal of Catalysis, 2001, 194(2):225-233.
    [134]Kozlov D V, Vorontsov A V, Smirniotis P G, et al. Gas-phase photocatalytic oxidation of diethyl sulfide over TiO_2: kinetic investigations and catalyst deactivation [J]. Applied Catalysis B: Environmental, 2003, 42(1):77-87.
    [135]Alberici R M, Jardim W F. Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide [J]. Applied Catalysis B: Environmental, 1997, 14(1-2):55-68.
    [136]Anpo M, Shima T, Kodam S, et al. Photocatalytic hydrogenation of CH3COOH with H2O on small-Particle TiO_2 [J]. Journal of Physical Chemistry, 1987, 91(16):4305-4310.
    [137]Tanizaki T, Murakami Y, Hanada Y, et al. Titanium dioxide assisted photocatalytic degradation of volatile organic compounds at ppb level [J]. Journal of Health Science, 2007, 53(5):514-519.
    [138]Zhu J, Deng Z. Hydrothermal doping method for preparation of Cr3 +-TiO_2 photocatalysts with concentration gradient distribution of Cr3+ [J]. Applied Catalysis B: Environmental, 2006, 62(3-4):329-335.
    [139]Obuchi E, Sakamoto T, Nakano K, et al. Photocatalytic decomposition of acetadehyde over TiO_2 /SiO_2 catalyst [J]. Chemical Engineering Science, 1999, 54(1):52-55.
    [140]Sauer M L, Ollis D F. Acetone oxidation in a photocatalytic monolith reactor [J]. Catalysis Today, 1994, 149(1-2):81-87.
    [141]Ao C, Lee S, Roberta L, et al. Photodegradation of volatile organic compounds and NO for indoor air purification using TiO_2: promotion versus inhibition effect of NO [J]. Applied Catalyst B: Environmental, 2003, 43(2):119-129.
    [142]Lindner M, Theurich J, Bahnemann D W. Photocatalytic degradation of orLanic-compounds: accelerating the process efficiency [J]. Water Science and Technology, 1997, 36(10):79-86.
    [143]Martyanov N, Savinov E N. Mineralization of organic compounds in photo-chemical and photocatalytic systems: comparative analysis for the example of methyl-viologen photooxidation [J]. Catalyst Today, 1997, 39(3):197-205.
    [144]An J Y, Kim B W. Biological desulphurization in an optical-fiber photobioreactor using an automatic sunlight collection system [J]. Journal of Biotechnology, 2000, 80(1):35-44.
    [145]Xu W, Gao Y, Liu H Q. The Preparation, characterization, and their photocatalytic sctivities of rare-earth-doped TiO_2 nanoparticles [J]. Journal of Catalysis, 2002, 207(2):151-157.
    [146]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide doped titanium dioxide photocatalysts: effective photocatalysts for the enhanced degradation of salicylic acid and t-cinnamic acid [J]. Journal of Catalysis, 2001, 204(4):305-313.
    [147]Ranjit K T, Willner I, Bossmann S H, et al. Lanthanide oxide-doped titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid [J]. Environmantal Science and Technology, 2001, 35(17):1544-1549.
    [148]Xu Y H, Zeng Z X. The preparation, characterization and photocatalystic axtivities of Ce-TiO_2/SiO_2 [J]. Journal Molecular Catalysis, 2008, 279(1):77-81.
    [149]Zhang Y H, Zhang H X, Xu Y X. Significant effect of lanthanide doping on the texture and properties of nanocrystalline mesoporous TiO_2 [J]. Journal of Solid State Chemistry, 2004, 177(10):3490-3498.
    [150]Fan C M, Xue P, Sun Y P. Preparation of nano-TiO_2 doped with cerium and its photocatalytic activity [J]. Journal of Rare Earths, 2006, 24(3):309-313.
    [151]Zhang R B, Gao L, Zhang Q H. Photodegradation of surfactants on the nanosized TiO_2 prepared by hydrolysis of the alkoxide titanium [J]. Chemosphere, 2004, 54(3):405-411.
    [152]Beamson G, Clark D T, Kendrick J, et al. Observation of vibrational asymmetry in the high resolution monochromatized XPS of hydrocarbon polymers [J]. Journal of Electron Spectroscopy and Related Phenomena, 1991, 57(1):79-90.
    [153]Ohsaka T, Izumi F, Fujik Y. Raman spectrum of anatase: TiO_2 [J]. Journal of Raman Spectroscopy, 1978, 7(6):321-324.
    [154]Berger H, Tang H. Growth and Raman spectroscopic characterization of TiO_2 anatase single crystals [J]. Journal of Crystal Growth, 1993, 130(1-2):108-112.
    [155]Bernarda M, Deneuville A, Thomasb P, et al. Raman spectra of TiN/AlN superlattices [J]. Thin Solid Films, 2000, 380(1-2):252-255.
    [156]Balachandran U, Eror N G. Raman spectra of titanium dioxide [J]. Journal of Solid State Chemistry, 1982, 42(3):276-282.
    [157]Benjaram M R, Khan A, Yamada Y, et al. Structural characterization of CeO_2?TiO_2 and V2O5/CeO_2?TiO_2 catalysts by Raman and XPS techniques [J]. Journal of Physical Chemistry B, 2008, 107(22):5162-5167.
    [158]Reddy B M, Khan A, Yamada Y, et al. Raman and x-ray photoelectron spectroscopy study of CeO_2-ZrO_2 and V2O5/CeO_2?ZrO_2 catalysts [J]. Langmuir, 2003, 19(7):3025-3030.
    [159]Gong X Q, Selloni A, Vittadini A. Density functional theory study of formic acid adsorption on anatase TiO_2(001): geometries, energetics, and effects of coverage, hydration, and reconstruction [J]. Journal of Physical Chemistry B, 2006, 110(6):2804-2811.
    [160]Liu Z L, Guo B, Hong L, et al. Preparation and characterization of cerium oxide doped TiO_2 nanoparticles [J]. Journal of Solid State Chemistry, 2005, 15(1):161-167.
    [161]Herrmann J M, Tahiri H, Guillard C, et al. Photocatalytic degradation of aqueous hydroxy-butandioic acid (malic acid) in contact with powdered and supported titania in water [J]. Catalyst Today, 1999, 54(1):131-141.
    [162]Chen J, Ollis D F, Rulkens W H, et al. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO_2 and metallized TiO_2 suspensions, part (I): photocatalytic activity and pH influence [J]. Water Research, 1999, 33(3):661-668.
    [163]Suzuko Y, Satoru T, Hidekazu T, et al. Kinetic studies of oxidation of ethylene over a TiO_2 photocatalyst [J]. Photochemistry Photobiology A: Chemistry, 1999, 12l(1):55-61.
    [164]Wang K H, Tsai H, Hsieh Y H. The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO_2 supported on glass bead [J]. Applied Catalyst B: Environmental, 1998, 17(4):313-319.
    [165]Asahi R, Morikawa T. Nitrogen complex species and its chemical nature in TiO_2 for visible-light sensitized photocatalysis [J]. Chemical Physics, 2007, 339(1-3):57-63.
    [166]Fernando J, Beltran P, Jose M, et al. Industrial wastewater advanced oxidation. Part 2: ozone combined with hydrogen peroxide or UV radiation [J]. Water Research, 1997, 31(10):2415-2428.
    [167]Xu C K, Killmeyer R, McMahan L, et al. Gray photocatalytic effect of carbon-modified n-TiO_2 nanoparticles under visible light illumination [J]. Applied Catalysis B: Environmental, 2006, 64(3-4):312-317.
    [168]Kang M, Choung S J, Park J Y. Photocatalytic performance of nanometer sized FexOy/TiO_2 particle synthesized by hydrothermal method [J]. Catalysis Today, 2003, 87(1):87-97.
    [169]Karunakaran C, Dhanalakshmi R, Anilkumar P. Degradation of carboxylic acids on Y2O3 surface under UV light synergism by semiconductors [J]. Chemosphere, 2008, 78:173-176.
    [170]Eftaxias A, Fonta J, Fortuny A. Kinetic modeling of catalytic wet air oxidation of phenol by simulated annealing [J]. Applied Catalysis B: Environmental, 2001, 33(2):175-190.
    [171]Liu C, Tang X H, Mo C H, et al. Characterization and activity of visible-light-driven TiO_2 photocatalyst codoped with nitrogen and cerium [J]. Journal of Solid State Chemistry, 2008, 181(1):913-919.
    [172]Abdullah M, Low G K C, Matthews R W. Effect of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide [J]. Journal of Physical Chemistry, 1990, 94(17):6820-6825.
    [173]冯良荣,谢卫国.纳米TiO_2催化剂微晶结构对光催化反应的影响[J].中国科学: B辑, 2001, 31(6):536-541.
    [174]李国华,王大伟.纳米二氧化钛粉体晶相控制实验研究[J].无机材料学报, 2002, 17(3):422-428.
    [175]Hagfeld A. Laser induced photocurrent transients and capacitance measurements on nanocrystalline TiO_2 electrodes [J]. Solar Energy Materials and Solar Cells, 1996, 44(1):11-24.
    [176]石立杰,杨儒,李敏.纳米TiO_2低温水解法的晶型控制合成及其表面织构的研究[J].无机化学学报, 2006, 22(7):1196-1202.
    [177]李卫华,郝彦忠. PbS/RuS配合物敏化TiO_2纳米晶电极的光电化学[J].应用化学, 1999, 16(1):6-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700