用户名: 密码: 验证码:
H_2O_2敏化纳米TiO_2及其可见光催化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO_2由于具有较高的光催化活性,化学性能稳定,无毒等优点,成为了最受人们关注的光催化材料之一。但纳米TiO_2具有较宽的禁带宽度,只能吸收太阳光中5%左右的紫外线,而太阳光中近45%的可见光在处理污染物中却得不到有效利用,因此太阳能的利用率较低,这就限制了其实际使用范围;另外,TiO_2半导体载流子的复合率较高,因此量子效率较低。光催化剂作为光催化技术的核心部分,是决定光催化技术能否实际应用的关键。因此,如何提高TiO_2的光催化效率以及拓展TiO_2吸收光谱到可见光区是光催化研究领域最具挑战性的两大课题。为了拓展纳米TiO_2吸收光谱范围,金属离子掺杂、非金属离子掺杂、半导体复合以及染料敏化等手段被采用,并也取得了一定的成效。H_2O_2作为一种有效的电子捕获剂,在提高催化剂的光催化活性中得到了成功的应用。而本文用H_2O_2为敏化剂,对自制的不同体系纳米TiO_2进行敏化,成功地实现了催化剂的可见光化,并用现代表征技术对催化剂结构、性能等进行了系统表征。
     用H_2O_2敏化自制的纳米TiO_2实现了催化剂的可见光化,其对可见光的吸收值可达550nm;在可见光区,金红石敏化后具有更强的吸收,但锐钛矿对可见光的吸收更稳定。H_2O_2敏化后,样品表面的吸附水和表面羟基减少,同时样品表现出拉曼增强效应。敏化样品对底物的降解都具有选择性,在可见光激发下对甲基橙降解很差,但能够有效降解亚甲基蓝。混晶样品具有最高的光催化活性,金红石光催化活性最差,这主要是因为混晶样品在可见激发下所产生的羟基自由基最多,而金红石样品能够生成的羟基自由基最少。
     IR,Raman和XPS结果表明,酸化处理后样品表面有大量的硫酸根物种存在。TiO_2粉末的制备方法不同硫酸根物种的存在方式和吸附量也不同。硫酸根物种的存在,尤其是活性硫酸根物种,将在催化剂表面形成大量的表面酸位。这些表面酸位有利于吸附底物,样品用H_2O_2敏化后能够形成更多的过氧配合物,因此在可见光区具有更强的吸收,并且这些配合物在可见光照射下能够稳定存在。升高煅烧温度和延伸煅烧时间可以引起硫酸根物种的分解,这将降低催化剂对H_2O_2的吸附,从而降低催化剂对可见光的吸收。硫酸酸化处理后,H_2O_2敏化不会降低催化剂表面吸附水和表面羟基;一步法制备的SO_4~(2-)/TiO_2敏化后,由于形成了四面体配位钛离子,表面吸附水和表面羟基还有增加的趋势。
     H_2O_2敏化的各种SO_4~(2-)/TiO_2催化剂都能够有效降解甲基橙,比纯TiO_2具有更高的光降解能力,而一步法制备的SO_4~(2-)/TiO_2还能有效降解亚甲基蓝。硫酸根物种在催化剂表面的配位方式影响催化剂的光催化活性,螯合配位方式更有利于光催化降解。活性硫酸根物种的存在对样品的光催化活性起到关键作用。B酸位可被配合物基态的空穴氧化生成羟基自由基,从而使样品具有高的光催化活性,这个空穴转移过程也是表面羟基配合物能够稳定存在的根本所在。
     直接超声分散Ti(OH)_4沉淀可以制备中性TiO_2溶胶,水热处理后溶胶的结晶度得到提高。IR和XPS表明水热处理后溶胶表面吸附水增加而表面羟基减少。大量的吸附水将阻隔溶胶粒子与外界的接触,因此,H_2O_2敏化后,水热处理溶胶表面形成的过氧配合物减少,溶胶的可见光吸收减弱,并且对亚甲基蓝的吸附也降低。水热处理溶胶具有更高的紫外光催化活性,但H_2O_2敏化后,水热处理溶胶的紫外和可见光催化活性都比水热前低。这主要是由于大量的吸附水直接影响了水热溶胶体系中羟基自由基的生成。
     通过在高分散的纳米SiO_2表面负载纳米TiO_2获得了高分散的纳米TiO_2催化剂。SiO_2与TiO_2以Ti-O-Si键结合。负载的TiO_2为无定型,煅烧和改变负载方法可以到结晶的纳米TiO_2。TiO_2的负载量将影响催化剂的分散性和敏化后的可见光光吸收强度;TiO_2量低于30%,催化剂分散性很好,而高于30%,催化剂出现团聚。随着TiO_2量的增加,H_2O_2敏化后催化剂的可见光吸收强度也增加,但TiO_2含量达到20%后,TiO_2对可见光吸收影响趋势减弱;SiO_2的存在可以增加过氧配合物在可见光照射下的稳定性。酸化处理将提高样品的可见光吸收。TiO_2含量也将影响样品光催化活性,当TiO_2含量达到20%~30%时,样品光催化活性最好。而酸化和热处理都将降低甲基橙的褪色率。但酸化处理样品可以使甲基橙完全降解,而未酸化处理样品在甲基橙褪色过程中有新的小分子化合物生成。TiO_2/SiO_2具有的高光催化活性源于H_2O_2与TiO_2/SiO_2界面处的Ti离子形成的配合物。
Nanosize TiO_2 particles are used widely as one of the photocatalysts due to their chemical stability, non-toxicity and high activity, but its high activity can be acquired only under ultraviolet light with a wavelength of 400 nm or less at room temperature due to its broad band gap. Since ultraviolet (UV) light is only 3-5% part of the solar spectrum, the photocatalytic activity of TiO_2 can not be sufficiently activated under solar light irradiation, which strongly limits the use of solar spectra as a source for photodecomposition of pollutant. In addition, the recombination for large numbers of charge carriers would occur in the volume or on the surface of TiO_2. Therefore, the extension of the photoactive wavelength region of TiO_2 into the visible region and improvement of quantum efficiency are desirable for popularizing more TiO_2 photocatalyst, especially under solar light for industrial areas or poor interior lighting illumination in living spaces. For this purpose, pure TiO_2 has been modified by various ways such as impurity doping, inorganic compound and dye sensitization to obtain visible light reactivity. Hydrogen peroxide often was used widely as an electron acceptor in photocatalytic degradation reaction. However, in this paper, H_2O_2 was used as a sensitizer to modify the TiO_2, and the attempt succeeded in extending the optical absorption edge of TiO_2 into the visible region.
     TiO_2 nanoparticles prepared by hydrolysis of TiCl4 were sensitized with H_2O_2, resulting in absorbing visible light up to 550 nm. Compared with anatase, the stronger visible photoabsorption could be observed for rutile nanopaiticles treated with H_2O_2, but the visible irradiation faded the yellow rutile more easily. The adsorbed water and surface hydroxyl group on TiO_2 nanoparticles treated with H_2O_2 would decrease. The dyes could be degraded selectively. Methylene blue (MB) could be degraded efficiently for all used samples, but a poor activity for decompositions of methyl orange (MO).The mixture phase of anatase and rutile showed the highest photoactivity, and the photoactivity for rutile was most low, due to that more hydroxyl radicals were detected in the suspension of mixture phase of anatase and rutile.
     The results from XPS, Raman and IR indicated that an amount of SO_4~(2-) species anchored on the surface of sulfated TiO_2, which resulted in a large number of Br?nsted and Lewis acidic sites on the surface of TiO_2, especially for active sulfate species. More surface chemisorptions centers for some reactants can be facilitated due to surface acidic sites, and these chemisorptions centers also serve hydrogen peroxide. So, the sulfated TiO_2 sensitized with H_2O_2 can adsorb more hydrogen peroxide to form more peroxo-titanium complexes, resulting in more intensive Vis absorption, and the acidic sites could also stabilize the peroxo-titanium complexes. Calcinations at high temperature would lead to the decomposition of a large amount of active sulfate species, which decreased Vis absorption for the used samples treated with H_2O_2.Sensitizing with H_2O_2 to sulfated TiO_2 hardly reduced the adsorbed water and surface hydroxyl group, and more surface hydroxyl groups were observed for sulfated TiO_2 from one-step hydrolysis of boiling TiCl4 solutions due to formation of Ti ions in tetrahedral coordination.
     All sulfated TiO_2 could degrade efficiently MO, and the sulfated TiO_2 from one-step hydrolysis also could degrade efficiently MB. Photoactivity differed from sulfate species with different coordination to the surface of TiO_2. Higher Vis photoactivity occurred to sulfated TiO_2 with cheating bidentate sulfate species. The active sulfate species were mostly responsible for high Vis photoactivity due to formation of B acidic sites. The photoexcited holes could directly react with B acidic sites on the catalyst surface to produce hydroxyl radicals proven to be powerful oxidants in degrading organics, which would stabilize peroxo-titanium complexes.
     TiO_2 sol could be prepared via directly sonicating the Ti(OH)4 precipitate. Sol with better crystallization was acquired by hydrothermal treatment. The results from IR and XPS indicated that hydrothermal treatment could increase the absorbed water but reduce surface hydroxyl groups. A large numbers of adsorbed water isolate sol particles from reaction surroundings, so hydrothermal sol sensitized with H_2O_2 could absorb less visible light and adsorb also less MB. The hydrothermal sol had more high photoactivity under ultraviolet radiation; After sensitizing with H_2O_2, UV and Vis photoactivity both was reduced for hydrothermal sol, because the adsorbed water would restrain generation of hydroxyl radicals.
     Highly dispersive nano TiO_2 particles could obtained by loading TiO_2 particles on the surface of the dispersive nanosize SiO_2 particles by deposition method.TiO_2 loaded on the surface of SiO_2 by Ti-O-Si bond.TiO_2 loaded on the surface of SiO_2 were amorphous, but the crystal TiO_2 were got by calcining and changing the way of loading TiO_2.The catalyst could disperse well if the content of TiO_2 was less 30% in the catalyst; And the content of TiO_2 exceeded 30%, resulting in agglomeration of catalyst. With the increase of TiO_2, the Vis absorption for catalyst treated with H_2O_2 increased.After the content of TiO_2 exceeded 20%, the increase for the Vis absorption become milder. An amount of SiO_2 also could stabilize the peroxo-titanium complexes on the surface of catalyst. The sulfated catalyst could absorb more visible light. The catalyst had highest Vis photoactivity when the content of TiO_2 was about 20-30%. The sulfation and thermal treatment both decreased photoactivity of catalyst. However, sulfated catalyst could degrade MO completely, and other catalyst just discolored MO, due to the generation of small organic molecules. The peroxo-titanium complexes between TiO_2 and SiO_2 particles resulted in high Vis photoactivity for TiO_2/SiO_2 composite catalyst treated with H_2O_2.
引文
[1] M Pera-Titus,V Garcia-Molina,M A Banos,JaimeGim,S Esplugas.Degradation of chlorophenols by means of advanced oxidation processes[J].Appl.Catal.B,2004,47 (4): 219-256.
    [2] A. Fujishima,T.N.Rao, D.A.Tryk. Titanium dioxide photocatalysis[J]. J. Photochem. Photobio. C. 2000,1:1–21.
    [3] M..R.Hoffmann,S.T.Martin,W.Choi,D.W. Bahneman. Environmental applications of semi- conductor photocatalysis[J].Chem. Rev.1995, 95:69-96.
    [4] U.I.Gaya, A.H.Abdullah. Heterogeneous photocatalytic degradation of orgnic contaminants over titanium dioxide: A review of fundamentals, progress and problems[J]. J. Photochem. Photobio. C.2008,9:1-12.
    [5] A.Fujishima,X.Zhang. Titanium dioxide photocatalysis:present situation and future approaches [J]. C. R.Chimie.2006,9:750-760.
    [6] A.Fujishima,X.Zhang,D.A.ryk.TiO_2 photocatalysis and related surface phenomena[J]. Surf. Sci. Rep. 2008,63:515-582.
    [7] A.L.Linsebigler, G.Lu, J.T.Yates. Photocatalysis on TiO_2 Surfaces: Principles, Mechanisms, and Selected Results[J].Chem. Rev.1995,95:735-758.
    [8] U.Diebold.The surface science of titanium dioxide[J].Surf.Sci.Rep.2003,48(5-8):53-229.
    [9] A. Beltrán, L.Gracia,J.Andrés.Density functional theory study of the brookite surfaces and phase transitions between natural titania polymorphs[J]. J.Phys.Chem.B,2006,110(46): 23417-23423.
    [10] F.Iskandar,A.B.D.Nandiyanto, K.M.Yun, C.J.Hogan, J.K.Okuyama,P.Biswas.Enhanced photocatalytic performance of brookite TiO_2 macroporous particles prepared by spray drying with colloidal templating[J].Adv.Mater.2007,19(10):1408-1412.
    [11] H.Kominami,Y,Ishii,M,Kohno,S.Konishi,Y.Kera,B.Ohtani. Nanocrystalline brookite-type titanium(IV) oxide photocatalysts prepared by a solvothermal method: correlation between their physical properties and photocatalytic activities[J].Catal.Lett.2003,91(1-2):41-47.
    [12] J.G.Li,T.Ishigaki, X.Sun. Anatase, brookite, and rutile nanocrystals via redox reactions under mild hydrothermal conditions: phase-selective synthesis and physicochemical properties [J].J.Phys. Chem.C 2007,111(13):4969-4976.
    [13] Sh.D.Mo,W.Y.Ching.Electronic and optical properties of three phases of titanium dioxide: rutile,anatase and brookite[J].Phys.Rev.B 1995,51(19):13023-13032.
    [14] T.Umebayashi,T.Yamaki,H.Itoh,K.Asai.Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations[J].J.phys.Chem.solids.2002,63 (10):1909-1920.
    [15] M.Gr?tzel.Heterogeneous Photochemical Electron Transfer [M]. CRC Press, Baton Rouge, FL, 1998.
    [16] Sh.U.M.Khan, M.Al-Shahry,W.B. Ingler. Efficient photochemical water splitting by a chemically modified n-TiO_2[J].Science 2002,297 (5590):2243-2245.
    [17] M.R.,Martin, S.T,Choi, W.Bahnemann, D.W.Environmental applications of aemiconductor photocatalysis[J].Chem.Rev.1995,95(1):69-96.
    [18] A.P.Alivisatos.Perspectives on the physical chemistry of semiconductor nanocrystal[J]s. J. Phys. Chem.1996, 100(31):13226-13239.
    [19]鹿院卫,马重芳,王伟,李文彩.纳米光催化杀菌技术研究进展[J].北京工业大学报,2006, 32:622-627.
    [20] A.Y.Nosaka,E.Kojima,T.Fujiwara,H.Yagi,H.Akutsu,Y.Nosaka.Photoinduced changes of adsorbed water on a TiO_2 photocatalytic film as studied by 1H NMR spectroscopy[J]. J.Phys.Chem.B 2003,107(44):12042-12044.
    [21]林华香,王绪绪,付贤智.TiO_2表面羟基及其性质[J].化学进展,2007,19:665-670.
    [22] H.Zhu,M.Shen,Y.Wu,X.Li,J.Hong,B.Liu,X.Wu,L.Dong,Y.Chen. Dispersion behaviors of molybdena on titania (rutile and/or anatase) [J].J.Phys.Chem.B 2005,109(23):11720-11726.
    [23] M.A.Henderson.Structural sensitivity in the dissociation of water on TiO_2 single crystal surfaces[J]. Langmuir.1996,12(21):5093-5098.
    [24] A.Y.Nosaka,T.Fujiwara, H.Yagi, H.Akutsu,Y.Nosaka.Characteristics of water adsorbed on TiO_2 photocatalytic systems with increasing temperature as studied by solid-state 1H NMR spectroscopy[J]. J. Phys.Chem.B 2004,108(26): 9121- 9125.
    [25] A.Y. Nosaka, J.Nishino, T.Fujiwara, T.Ikegami, H.Yagi, H.Akutsu,Y.Nosaka. Effects of thermal treatments on the recovery of adsorbed water and photocatalytic activities of TiO_2 photocatalytic systems[J]. J.Phys.Chem.B 2006,110(16):8380-8385.
    [26] Y.Namai, O.Matsuoka. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO_2(110) surfaces studied using noncontact atomic force microscopy[J]. J. Phys. Chem. B 2005, 109(50):23948-23954.
    [27] O.Murakami,K.Endo, I.Ohta, A.Y.Nosaka,Y.Nosaka.Can OH radicals diffuse from the UV-irradiated photocatalytic TiO_2 surfaces? Laser-lnduced-fluorescence study[J].J. Phys. Chem. C,2007, 111(30):11339-11346.
    [28] V.E.Henrich, G.Dresselhaus, H.J.Zeiger.Chemisorbed phases of H2O on TiO_2 and SrTiO3[J].Solid Stat. Commun.,1977.24(9):623-626.
    [29] M.A.Henderson,W.S.Epling,Ch. H.F.Peden,C.L.Perkins.Insights into photoexcited tlectron scavenging processes on TiO_2 obtained from studies of the reaction of O_2 with OH groups adsorbed at electronic defects on TiO_2(110) [J]. J.Phys.Chem.B 2003, 107(2): 534-545.
    [30] Y.Shiraishi,T.Hirai. Selective organic transformations on titanium oxide-based photocatalysts [J]. J. Photochem.Photobio.C 2008, 9(4):157-170.
    [31] K.Ishibashi, A.Fujishima,T.Watanabe, K.Hashimoto.Quantum yields of active oxidative species formed on TiO_2 photocatalyst[J].J.Photochem.Photobiol.A.2000,134(1-2):139-142.
    [32] Y. Nosaka, M.Nakamura, T.Hirakawa.Behavior of superoxide radicals formed on TiO_2 powder photocatalysts studied by a chemiluminescent probe method[J]. Phys. Chem. Chem. Phys.2002, 4(6):1088-1092.
    [33] W. Kubo, T. atsuma.Detection of H2O_2 released from TiO_2 photocatalyst to air[J]. Anal.Sci.2004, 20(4):591-593.
    [34] A.Janczyk, E.Krakowska, G.Stochel, W.Macyk.. Singlet oxygen photogeneration at surface modified titanium dioxide[J].J.Am.Chem.Soc.2006,128(49):15574-15575 .
    [35] Cermenati, P.Pichat, C.Guillard, A.Albini. Probing the TiO_2 photocatalytic mechanisms in water purification by use of quinoline, photo-Fenton generated OH? radicals and superoxide dismutase[J]. J.Phys.Chem.B.1997,101(14):2650-2658.
    [36] Y.Nosaka, H.Natsui, M.Sasagawa, A.Nosaka.Electron spin resonance studies on the oxidation mechanism of sterically hindered cyclic amines in TiO_2 photocatalytic systems[J]. J. Phys.Chem.B.2006,110(26):12993-12999.
    [37] T.Tatsuma, S.Tachibana, T.Miwa, D.A.Tryk, A.Fujishima.Remote bleaching of methylene blue by UV-irradiated TiO_2 in the gas phase[J]. J.Phys.Chem.B.1999,103(38):8033-8035.
    [38] T T.atsuma, S.Tachibana, A.Fujishima. Remote oxidation of organic compounds by UV- irradiated TiO_2 via the gas phase[J] .J.Phys.Chem.B.2001,105(29):6987-6992.
    [39] T.Tatsuma, W.Kubo, A.Fujishima. Patterning of solid surfaces by photocatalytic lithography based on the remote oxidation effect of TiO_2[J].Langmuir 2002,18(25):9632-9634.
    [40] Y.shikawa, Y.Matsumoto, Y.Nishida, S.Taniguchi, J.Watanabe. Surface treatment of silicon carbide using TiO_2(IV) photocatalyst[J]. J.Am.Chem.Soc.2003,125(21):6558-6562.
    [41] Y.Murakami,K.Endo, I.Ohta, A.Y.Nosaka, Y.Nosaka.Can OH radicals diffuse from the UV-irradiated photocatalytic TiO_2 Surfaces? Laser-induced-fluorescence study[J]. J.Phys. Chem. C 2007,111(30):11339-11346.
    [42] C.Burda,X.Chen,R.Narayanan,M.A.El-Sayed.Chemistry and properties of nanocrystals of different shapes[J]. Chem.Rev.2005, 105(4):1025-1102.
    [43] X.Chen, S.S. Mao.Titanium dioxide nanomaterials:synthesis, properties,modifications, andapplications[J].Chem.Rev.2007,107(7):2891-2959.
    [44] H.Zhang, M.Finnegan, J.F. Banfield.Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature [J].Nano Lett. 2001,1:81-85.
    [45] A.Chemseddine, T.Moritz.Nanostructuring titania:Control over nanocrystal structure, size, shape, and organization[J].Eur.J.Inorg.Chem.1999,2:235-245.
    [46] Y.Li, T.J White,.S.H.J.Lim.Low-temperature synthesis and microstructural control of titania nano-particles[J]. J.solid.chem.2004, 177(4-5):1372-1381.
    [47] H. Zhang,J.F.Banfield.Size dependence of the kinetic rate constant for phase transformation in TiO_2 nanoparticles[J].Chem.Mater.2005,17(13):3421–3425.
    [48] M.Machida, W. K.Norimoto, T.Kimura.Antibacterial activity of photocatalytic titanium dioxide thin films with photodeposited silver on the surface of sanitary war[J]. J. Am. Ceram. Soc.2005, 88: 95-100.
    [49] S.C.Pillai, P.Periyat, R.George, D.E.McCormack,M.K.Seery,H.Hayden, J.Colreavy, D.Corr, S.J. Hinder. Synthesis of high temperature stable anatase TiO_2 photocatalyst[J]. J.Phys. Chem.C. 2007, 111 (4):1605-1611.
    [50] D.J.Reidy, J.D.Holmes, C.Nagle, M.A.Morris. A highly thermally stable anatase phase prepared by doping with zirconia and silica coupled to a mesoporous type synthesis technique [J]. J. Mater. Chem.2005, 15:3494-3500.
    [51] M.Niederberger, M.H.Bartl, G.D.Stucky.Benzyl alcohol and titanium tetrachloride a versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles[J]. Chem.Mater.2002,14:4364-4370.
    [52] T.J.Trentler, T.E.Denler, J.F.Bertone, A.Agrawal, V.L.Colvin.Synthesis of TiO_2 nanocrystals by nonhydrolytic solution-based reactions[J]. J.Am.Chem.Soc.1999, 121:1613-1614.
    [53] R.Buonsanti, V.Grillo, E.Carlino, C.Giannini, M.L.Curri, C.Innocenti, C.Sangregorio, K.Achterhold, F.G.Parak,. A.Agostiano, P. D.Cozzoli. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO_2 rodlike section and a magnetic gamma-Fe2O3 spherical domain[J].J.Am.Chem.Soc.2006,128:16953-16970.
    [54] J.Yang, S.Mei, J.M.F.Ferreira. Hydrothermal synthesis of TiO_2 nanopowders from tetraalky-lammonium hydroxide peptized sols[J].Mater.Sci.Eng.,C 2001,15:183-185.
    [55] M.Andersson, L.Oesterlund, S.Ljungstroem, A.Palmqvist. Preparation of nanosize anatase and r rutile TiO_2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol[J]. J.Phys.Chem.B.2002,106(41):10674-10679.
    [56] S.Y.Chae, M.K.Park, S.K.Lee, T.Y.Kim, S. K.Kim, W.I.Lee. Preparation of size controlled TiO_2 nanoparticles and derivation of optically transparent photocatalytic films[J]. Chem.Mater. 2003,15:3326-3333.
    [57] Q.Zhang, L.Gao.Preparation of oxide nanocrystals with tunable morphologies by the mode rate hydrothermal method:Insights from rutile TiO_2[J]. Langmuir 2003,19:967-971.
    [58] S.Yang, L.Gao. Low temperature synthesis of crystalline TiO_2 nanorods: mass production assisted by surfactant [J].Chem.Lett.2005,34(7):964.
    [59] Y.X.Zhang, G.H.Li, Y.X Jin, Y.Zhang, J.Zhang, L.D.Zhang.Hydrothermal synthesis and photoluminescence of TiO_2 nanowires[J].Chem.Phys.Lett.2002,365:300-304.
    [60] M.Wei, Y.Konishi, H.Zhou, H.Sugihara, H.Arakawa.A simple method to synthesize nano- wires titanium dioxide from layered titanate particles[J]. Chem.Phys.Lett.2004,400:231-234.
    [61] T.Kasuga, M.Hiramatsu, A.Hoson, T.Sekino, K.Niihara. Formation of titanium oxide nano-tube[J]. Langmuir.1998,14,3160-3163.
    [62] T.Kasuga, M.Hiramatsu, A.Hoson, T.Sekino, K.Niihara.Titania nanotubes prepared by chemical processing[J]. Adv.Mater.1999,11(15):1307-1311.
    [63] J.N. Nian, H.Teng. Hydrothermal synthesis of single-crystalline anatase TiO_2 nanorods with n anotubes as the precursor[J]. J.Phys.Chem.B.2006,110(9): 4193-4198.
    [64] X.L.Li, Q.Peng, J. X.Yi, X.Wang, Y.D.Li. Monodisperse TiO_2 nanoparticles and nanorods[J]. Chem.Eur.J.2006,12(8):2383-2391.
    [65] B.Wen, C.Liu, Y.Liu. Solvothermal synthesis of ultralong single-crystalline TiO_2 nanowires[J]. New J. Chem. 2005, 29:969-971.
    [66] C.S.Kim, B.K.Moon, J.H.Park, B.C.Choi, ,H.J.Seo. Solvothermal synthesis of nanocrystalline TiO_2 in toluene with surfactant[J]. J.Cryst. Growth.2003,257:309-315.
    [67] Z.Tang, J. Zhang, Zh.Cheng. Synthesis of nanosized rutile TiO_2 powder at low temperature[J]. Mater.Chem.Phys,2002,77(2):314-317.
    [68] D. Zhang, L.Qi, J. Ma,et a1.Formation of crystalline nanosized titania in reverse micelles at room temperature[J].J.Mater.Chem,2002,12:3677-3680.
    [69] K. C. Song, S.E. Prtsinis.Control of phase and structure of titania powder using HC1 and NH4OH catalysis[J].J.Am.Ceram.Soc,2001,84(1):92-98.
    [70] C, Kormann, D.W.Bahnemann, M. R.Hoffmann,et a1.Preparation and characterization of quantum- size titanium dioxide[J].J. Phys.Chem.,1988, 92 (18):5196-5201.
    [71] Q.H. Zhang, L.Gao, J.K Guo. Preparation and chateracterization of nanosized TiO_2 from aque-ous TiCl4 solution[J]. NanoStructured Mater.,1999,11(8):1293–1300.
    [72] Q.H. Zhang, L.Gao, J.K.Guo. Effect of hydrolysis conditions on morphology and crystallization of nanosized TiO_2 powder.[J]. J. Eur. Ceram. Soc.2000,20 (12):2153-2158.
    [73] Q.Zhang, L.Gao, J.Guo. Effects of calcination on the photocatalytic properties of nanosizedTiO_2 powders prepared by TiCl4 hydrolysis[J]. Appl. Catal.B 2000,26:207-215.
    [74] C.S. Fang, Y. W. Chen.Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution[J].Mater. Chem. Phys.,2003,78:739-745.
    [75] H.D.Nam,B.H. Lee,S.J.Kim,Ch.H. Jung,J.H.Lee,S. Paek. Preparation of ultrafine crystalline TiO_2 powders fromm aqueous TiCl4 solution by precipitation[J]. Jpn.J.Appi.Phys.1998(37): 4603-4608.
    [76] B.Chi,T. Jin. Synthesis of titania nanostructure films via TiCl4 vaporation-deposition route[J]. Crystal Growth & Design,2007,7(4):815-819.
    [77]刘威,陈爱平,林嘉平等.均相水解法制备金红石含量可控的纳米TiO_2[J].化学学报,2004,64:1148-1152.
    [78]张艳峰,魏雨,贾振斌等.TiOCl2溶液低温水解合成金红石型氧化钛纳米粉[J].无机材料学报,2001,16:1217-1219.
    [79] A.D.Paola,G.Cufalo, M.Addamo.Photocatalytic activity of nanocrystalline TiO_2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions[J]. Colloid. Surf. A.2008,317(1-3):366–376.
    [80] S.Cassaignon, M.Koelsch,J.P.Jolivet. Selective synthesis of brookite, anatase and rutile nanoparticles:thermolysis of TiCl4 in aqueous nitric acid[J]. J.Mater.Sci. 2007,42 (16): 6689–6695.
    [81] M Kobayashi, K.Tomita,V.Petrykin,M.Yoshimura,M.Kakihana. Direct synthesis of brookite-type titanium oxide by hydrothermal method using water-soluble titanium complexes[J]. J.Mater.Sci.2008,43(7):2158-2162.
    [82] J.M.Wu, T.W.Zhang, Y.W.Zeng, S.Hayakawa.Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity[J].Langmuir 2005,21:6995-7002.
    [83] X.Peng, A. Chen.Aligned TiO_2 nanorod arrays synthesized by oxidizing titanium with acetone [J].J. Mater.Chem.2004,14:2542-2549.
    [84] G.K.Mor, K.Shankar, M.Paulose, O.K.Varghese, C.A.Grimes.Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells[J]. Nano Letts. 2006,6 (5):215-218.
    [85] S.Seifried, M.Winterer, H. Hahn.Nanocrystalline titania films and particles by chemical vapor synthesis[J].Chem.Vap.Deposition 2000,6(5):239-244.
    [86] S.Liu, K.Huang.Straightforward fabrication of highly ordered TiO_2 nanowire arrays in AAM on aluminum substrate[J]. Sol. Energy. Mater. Sol. Cells 2004, 85:125-131.
    [87] W.Huang, X.Tang, Y.Wang, Y.Koltypin,Gedanken.Selective synthesis of anatase and rutile via ultrasound irradiation[J]. Chem.Commun. 2000, 15:1415-1416.
    [88] Y.Zhu, H.Li, Y.Koltypin, Y. R.Hacohen.Sonochemical synthesis of titania whiskers andnanotubes[J].Chem.Commun.2001,24:2616-2618.
    [89] X.Wu, Q. Z Jiang, Z. F.Ma, M.Fu, W. F.Shangguan. Synthesis of titania nanotubes by microwave irradiation[J]. Solid State. Commun. 2005,136 (9-10):513-517.
    [90] K.L.Ding, Zh.J.Miao, Zh.M.Liu, Zh.F.Zhang, B.X.Han, G.An. Facile synthesis of high quality TiO_2 nanocrystals in ionic liquid via a microwave-assisted process[J]. J.Am.chem.soc.2007, 129(20):6362-6363.
    [91] W.Choi,T A.ermin,M.R.Hoffmann.The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. J. Phys. Chem. 1994, 98:13669-13679.
    [92]孙晓君,井立强,蔡伟民,周德瑞.掺V的TiO_2纳米粒子的制备和表征及其光催化性能[J].硅酸盐学报.2002.30(增刊):26-30 .
    [93] M.Radecka, K.Zakrzewska, M.Wierzbicka. Study of the TiO_2-Cr2O3 system for photoelec- trolytic decomposition of water[J]. Solid State Ionics,2003, 157(1-4):379-386.
    [94] S.Karvinen, K.R.Lamminm.Preparation and characterization of mesoporous visible-light -active anatase [J]. Solid State Sci.,2003,5(8):1159-1166.
    [95] W.W.Woo, S.J.Kima, C.K. Kim. Photocatalytic behaviors of transition metal ion doped TiO_2 powder synthesized by mechanical alloying[J]. Mate. Sci. Eng. A.2007,449:1151-1154.
    [96] M.Iwasaki, M. Hara, H.Kawada. Cobalt ion-doped TiO_2 photocatalyst response to visible light[J]. J.Colloid Interface Sci.,2000,224:202-204.
    [97] B.Sun, E.P.Reddy, P.G.Smirniotis. Effect of the Cr6+ concentration in Cr- incorporated TiO_2-loaded CM-41 catalysts for visible light photocatalysis[J]. Appl. Catal. B. 2005,57: 139–149.
    [98] N.Venkatachalam, M. Palanichamy, B.Arabindoo, V.Murugesan. Alkaline earth metal doped nanoporous TiO_2 for enhanced photocatalytic mineralisation of bisphenol[J]. Catal. Commun. 2007, 8(7):1088–1093.
    [99] Y.B.Xie, Ch.W.Yuan. Photocatalytic degradation of X-3B dye by visible light using lanthanide ion modified titanium dioxide hydrosol system[J].Colloid. Surf. A.2005,252(1): 87–94.
    [100] G. Zhao, H. Kozuka, T.Yoko. Sol-gel preparation and photoelectrochemical properties of TiO_2 films containing Au and Ag metal particles[J].Thin Solid Films,1996,277(1-2):147-154.
    [101] K. Zakrzewska, M. Radecka, A. Kruk,et al.Noble metal/titanium dioxide nanocermets for photo- electrochemical applications[J].Solid State Ionics ,2003,157(1-4):349-356.
    [102] J. W. Yoon, T. Sasaki, N. Koshizaki,et al.Preparation and characterization of M/TiO_2 (M = Ag, Au, Pt) nanocomposite thin films[J]. Scripta Mater.2001,44(8-9):1865-1868.
    [103] T.Umebayashi,T. Yamaki,H. Itoh,K.Asai. Analysis of electronic structures of 3d transition metal-doped TiO_2 based on band calculations[J]. J.Phys.Chem.Solids 2002,63(10):1901- 1920.
    [104] M.Anpo , M.Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. J.Catal.2003,216 (1-2):505-516.
    [105] M.Anpo,M.Takeuchi. Design and development of second-generation titanium oxide photocatalysts to better our environment-approaches in realizingthe use of visible light [J] .Int.J. Photoenergy,2001,3 (2):89-94.
    [106] M.Anpo.Use of visible light second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ion-implantation method[J]. Pure Appl. Chem., 2000,72(9): 1787–1792.
    [107] M. Anpo, M.Che. Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis and photocatalysis[J].Adv.Catal.,1999, 44: 119-257.
    [108] M. Takeuchi, H. Yamashita, M. Matsuoka, et al.Photocatalytic decomposition of NO on titanium oxide thin film photocatalysts prepared by an ionized cluster beam technique[J]. Catal.Lett.,2000, 66(3):185- 187.
    [109] M.Anpo. Applications of titanium oxide photocatalysts and unique second-generation TiO_2 photocataly- sts able to operate under visible light irradiation for the reduction of environmental toxins on a global scale[J]. Stud. Surf .Sci.Catal.2000,130:157-166.
    [110] M.Anpo, S.Kishiguchi, Y.Ichihashi, M.Takeuchi, H.Yamashita. The design and development of second-generation titanium dioxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method[J]. Res. Chem. Intermed., 2001,27: 459-467.
    [111] H. Yamashita, M.Harada, J.Misaka, M.Takeuchi,B.Neppolian, M.Anpo.Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO_2 catalysts: Fe ion-implanted TiO_2[J].Catal. Today. 2003, 84(3-4):191-196.
    [112] H.Yamashita, M.Harada, J.Misaka,M.Takeuchi, K.Ikeue, M.Anpo. Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J]. J.Photochem. Photobio A.2002, 148(1-3): 257–261.
    [113] H. Yamashita, M. Harada, J. Misaka,et al.Application of ion beam techniques for preparation of metal ion-implanted TiO_2 thin film photocatalyst available under visible light irradiation: metal ion-implantation and ionized cluster beam method[J]. J.Synchrotron. Rad., 2001,8:569-571.
    [114] S. Sato.Photocatalytic activity of nox-doped TiO_2 in the visible-light region[J].Chem. Phys. Lett. 1986, 123(1-2):126-128.
    [115] R.Asahi,T.Morikawa,T.Ohwaki, K.Aoki,Y.Taga.Visible-light photocatalysis in nitrogen- doped titanium oxides[J].Science 2001,293 (1-10):269-271.
    [116] X.Qiu,C.Burda.Chemically synthesized nitrogen-doped metal oxide nanoparticles[J]. Chem. Phys.2007,339:1–10.
    [117] D. Mitoraj, H.Kisch. The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light[J]. Angew.Chem.Int. Ed.2008, 47(51):9975–9978
    [118] M. Batzill, E.H. Morales, U. Diebold. Influence of nitrogen doping on the defect formation and surface properties of TiO_2 rutile and anatase[J]. Phys. Rev.Lett.2006,96 (2): 026103-026106.
    [119] H.Irie, W.Seitaro, Y.Norio, K. Hashimoto. Visible-light induced hydrophilicity on nitrogen-substituted titanium dioxide films[J]. Chem.Commun.2003,11:1298-1299.
    [120] Y.Nakano,T. Morikawa,T.Ohwaki,Y.Taga.Deep-level optical spectroscopy investigation of N-doped TiO_2 films[J].Appl.Phys.Lett.2005,86(13):132104-123111.
    [121] M. Kitano, K.Funatsu, M.Matsuoka, M.Ueshima, M.Anpo.Preparation of nitrogen- substituted TiO_2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation [J]. J.Phys.Chem.B 2006,110: 25266-25272.
    [122] H.Irie, Y.Watanabe, K.Hashimoto.Nitrogen-concentration dependence on photocatalytic activity of TiO_2-xNx powders[J].J.Phys.Chem.B.2003,107(23):5483-5486.
    [123] S.Joung,T.Amemiya, M.Murabayashi, K.Itoh.Mechanistic Studies of the Photocatalytic Oxidation of Trichloroethylene with Visible-Light-Driven N-Doped TiO_2 Photocatalysts[J]. Chem. Eur. J.2006,12 (21): 5526-5534.
    [124] T.Tachikawa,Y.Takai, S.Tojo, M.Fujitsuka, H.Irie, K.Hashimoto,T.Majima.Visible light- induced degradation of ethylene glycol on nitrogen-doped TiO_2 powders[J].J.Phys.Chem.B 2006,110(26):13158-13165.
    [125] H. Fu, L. Zhang, S. Zhang, Y. Zhu, J. Zhao.Electron spin resonance spin-trapping detection of radical intermediates in N-doped TiO_2-assisted photodegradation of 4-chlorophenol[J].J. Phys. Chem. B 2006,110(7):3061-3065.
    [126] V. Pore, M. Heikkil, M. Ritala, M. Leskel, S. Areva.Layer deposition of TiO_2?xNx thin films for photocatalytic applications[J].J.Photochem.Photobio. A 2006,177 (1) 68-75.
    [127] H.Li, J.Li,Y.Huo.Highly active TiO_2 photocatalysts prepared by treating TiO_2 precursors in NH3/ethanol fluid under supercritical conditions[J].J. Phys.Chem.B.2006,110 (4): 1559-1565.
    [128] S. Chen, X. Liu, Y. Liu, G. Cao. The preparation of nitrogen-doped TiO_2-xNx photocatalyst coated on hollow glass microbeads[J].Appl. Surf. Sci. 2007, 253 (6):3077-3082.
    [129] C.Burda,Y.Lou, X.Chen, A.C.S. Samia, J. Stout, J.L.Gole.Enhanced nitrogen doping in TiO_2 nano-particles[J].Nano Lett. 2003,3 (8):1049-1051.
    [130] R.Bacsa, J.Kiwi, T.Ohno, P.Albers, V.Nadtochenko.Preparation, Testing and characterization of doped TiO_2 active in the peroxidation of biomolecules under visible light[J]. J.Phys.Chem.B 2005,109 (12): 5994-6004.
    [131] X.Chen, C.Burda.Photoelectron spectroscopic investigation of nitrogen-doped titania nano- particles[J]. J. Phys.Chem. B 2004,108 (40):15446-15449.
    [132] X.Chen,Y.Lou, A.C.S. Samia,C. Burda, J.L.Gole.Formation of oxynitride as the photocata- lytic enhancing site in nitrogen-doped titania nanocatalysts: comparison to a commercial nanopowder[J].Adv.Funct.Mater.2005,15 (1):41-49.
    [133] J.L.Gole, J.Stout, C.Burda, Y.Lou, X.Chen.Highly efficient formation of visible light tuna- ble TiO_2- xNx photocatalysts and their transformation at the nanoscale[J].J.Phys. Chem. B 2004,108(4): 1230-1240.
    [134] S.M.Prokes, J.L.Gole, X.Chen, C.Burda, W.E.Carlos.Defect-related optical behavior in surface modified TiO_2 nanostructures[J].Adv.Funct.Mater.2005,15(1):161-167.
    [135] T.Matsumoto, N.Iyi,Y.Kaneko, K.Kitamura, S.shihara, YTakasu, Y Murakami.High visi- blelight photocatalytic activity of nitrogen-doped titania prepared from layered titania/ isostearate nanocomposite[J].Catal.Today 2007,120:226-232.
    [136] S.Livraghi,M.C.Paganini,E.Giamello,et al.Origin of photoactivity of Nitrogen-Doped Titanium Dioxide under Visible Light[J]. J.Am.Chem.Soc.2006,128:15666-15671.
    [137] M. Drygas, C. Czosnek, R. T. Paine,J. F. Janik.Two-Stage Aerosol Synthesis of titanium nitride TiN and titanium oxynitride TiOxNy nanopowders of spherical particle morphology[J]. Chem.Mater., 2006,18:3122-3129.
    [138] Sh.Yin,H.Yamaki,M.komatsu.Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine [J]. J.Mater.Chem.,2003,13:2996-3001.
    [139] M. Maeda, T.Watanabe. Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma enhanced chemvapor deposition[J].J.Electrochem.Soc,2006,153 (3):186-189.
    [140] C.Di Valentin, G.Pacchioni, A.Selloni. Origin of the different photoactivity of N-doped anatase and rutile TiO_2[J].Phys.Rev.B 2004,70 (8):085116-085119.
    [141] C.Di Valentin, G.Pacchioni, A.Selloni, S.Livraghi, E.Giamello.Characterization of parama-gnetic species in N-doped TiO_2 powders by EPR spectroscopy and DFT calculations[J]. J.Phys. Chem.B 2005,109 (23):11414-11419.
    [142] Z.Lin, A.Orlov, R.M.Lambert, M.C.Payne.New insights into the origin of visible light photocatalytic activity of nitrogen-doped and oxygen-deficient anatase TiO_2[J].J.Phys.Chem. B 2005,109 (44):20948- 20952.
    [143] A.Nambu, J.Graciani, J.A.Rodriguez, Q.Wu, E.Fujita, J.F.Sanz.N-Doping of TiO_2(110): photoemission and density-functional studies[J]. J.Chem.Phys.B.2006,125:094706-094708.
    [144] B. Kosowska, S. Mozia, A. W. Morawski,et a1.The preparation of TiO_2 nitrogen doped by calcinations of TiO_2·H2O under ammonia atmosphere for visible light photocatalysis[J]. Sol.Energy Mater.Sol.Cells,2005,88(3):269-280.
    [145] O.Diwald,T.L.Thompson, T.Zubkov, E.G.Goralski, S.D.Walck, J.T.Yates. Photochemical activity of nitrogen-doped rutile TiO_2 (110) in visible light[J].J.Phys.Chem.B.2004,108(19): 6004- 6008.
    [146] H.Kisch,S.Sakthivel, M.Janczarek, D.Mitoraj.A Low-Band Gap, Nitrogen-Modified Titania Visible- Light Photocatalyst[J]. J.Phys.Chem.C 2007,111(30):11445-11449.
    [147]李艳红,曹文斌,冉凡勇.氮掺杂纳米TiO_2粉体的制备研究[J].无机材料学报,2006,21:1067- 1072.
    [148] T.Ihara, M.Miyoshi, Y.Iriyama, O.Matsumoto, S.Sugihara. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl.Catal.B 2003, 42(4):403-409.
    [149] J.Wang, W.Zhu,Y.Zhang,Sh.G.Liu. An Efficient two-step technique for nitrogen-doped titanium dioxide synthesizing:visible-light-induced photodecomposition of methylene blue[J]. J. Phys.Chem.C 2007,111(2):1010-1014.
    [150] Y.Zhao, X.F. Qiu, C.Burda.The effects of sintering on the photocatalytic activity of N-doped TiO_2 nanoparticles[J].Chem.Mater.2008,20 (8):2629–2636.
    [151] B.Neumann, P.Bogdanoff, H.Tributsch, S.Sakthivel, H.Kisch.Electrochemical mass spec- troscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania[J]. J. Phys. Chem.B 2005,109:16579-16586.
    [152] G.K.Mor, K.Shankar, M.Paulose, O.K.Varghese, C.A.Grimes. Enhanced photocleavage of water using titania nanotube arrays[J]. Nano Lett. 2005,5(1):191-195.
    [153] G.K.Mor, H.E.Prakasam, O.K.Varghese, K.Shankar, C.A.Grimes.Vertically oriented Ti-Fe-O nanotube array films: toward a useful material architecture for solar spectrum water photo-electrolysis[J]. Nano Lett. 2007,7(8):2356-2364.
    [154] O.K. Varghese, C.A. Grimes.Appropriate Strategies For Determining The PhotoconversionEfficiency Of Water Photoelectrolysis Cells:A Revivew With Examples Using Titania Nano- tube Array Photoanodes[J].Solar Energy Mater. Solar Cells.2008,92:374-384.
    [155] H.Irie, Y.Watanabe, K.Hashimoto.Carbon-doped anatase TiO_2 powders as a visible-light sensitive photocatalys[J].Chem.Lett.2003,32:772-773.
    [156] H. Irie, S. Washizuka, K. Hashimoto. Hydrophilicity on carbon-doped TiO_2 thin films under visible light[J]. Thin Solid Films 2006,510:21-25.
    [157] S.W.Hsu, T.S.Yang, T.K.Chen, M.S.Wong.Ion-assisted electron-beam evaporation of carbon-doped titanium oxide films as visible-light photocatalyst[J].Thin Solid Films. 2007,515 (7-8):3521-3526.
    [158] M.Shen,Z.Y.Wu,H.Huang,Y.Du,Zh.G.Zou,P.Yang.Carbon-doped anatase TiO_2 obtained from TiC for photocatalysis under visible light irradiation[J]. Mater. Lett. 2006,60 (5): 693– 697
    [159] E.Barborini,A.M.Conti,I.kholmanov,et al.Nanostructured TiO_2 films with 2.0eV optical gaps[J] .Adv.Mater.2005,17:1842-1846.
    [160] T.Umebayashi, T.Yamaki, S.Tanaka, K.Asai.Visible light-induced degradation of methylene blue on S-doped TiO_2[J].Chem.Lett. 2003,32:330-331.
    [161] T.Umebayashi, T.Yamaki, H.Itoh, K.Asai.Band gap narrowing of titanium dioxide by sulfur doping[J]. Appl.Phys.Lett.2002,81(3):454-456.
    [162] T.Umebayashi, T.Yamaki, S.Yamamoto, A.Miyashita, S.Tanaka, T.Sumita, K.Asai. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies[J].J.Appl.Phys.2003,93:5156-5160.
    [163] T.Ohno, T.Mitsui, M.Matsumura.Photocatalytic activity of sdoped TiO_2 photocatalyst under visible light[J]. Chem.Lett.2003,32 (4):364-365.
    [164] T.Ohno, M.Akiyoshi, T.Umebayashi, K.Asai, T.Mitsui, M.Matsumura .Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light[J]. Appl.Catal.A:Gen. 2004,265:115-121.
    [165] K.Takeshita, A.Yamakata, T.-A.Ishibashi, H.Onishi, K.Nishijima, T.Ohno.Trasient IR absorption study of charge carriers photogenerated in sulfur-doped TiO_2[J]. J.Photochem. Photobiol. A 2006,177:269 -275.
    [166] T.Ohno, N.Murakami, T.Tsubota, H.Nishimura. Development of metal cation compound loaded S-doped TiO_2 photocatalysts having a rutile phase under visible light[J]. Appl. Catal. A 349 (1-2):70–75.
    [167] A.M.Czoska, S.Livraghi, M.Chiesa, E.Giamello, S.Agnoli, G.Granozzi, E.Finazzi,C.Di Valentin, G.Pacchioni. The nature of defects in fluorine-doped TiO_2[J]. J.Phys.Chem.C, 2008, 112(24):8951–8956.
    [168] G.Wu, A.Chen. Direct growth of F-doped TiO_2 particulate thin films with high photo-catalytic activity for environmental applications[J]. J. Photochem. Photobio.A 2008,195 (1):47–53.
    [169] H.Xu, Z.Zheng, L.Zhang,H.Zhang, F.Deng. Hierarchical chlorine-doped rutile TiO_2 spherical clusters of nanorods:Large-scale synthesis and high photocatalytic activity[J]. J.Solid Stat. Chem. 2008,181 (9):2516–2522.
    [170] S.Tojo,T.Tachikawa, M.Fujitsuka, T.Majima. Iodine-doped TiO_2 photocatalysts: correlation between band structure and mechanism[J]. J.Phys.Chem.C 2008, 112(38):14948– 14954.
    [171] G.Liu, Zh.G.Chen, Ch.L.Dong,Y.N.Zhao, F.Li, G. Q.Lu,H.M.Cheng. Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework[J]. J.Phys.Chem. B 2006, 110(42): 20823-20828.
    [172] W.Y. Su, Y,F.Zhang, Zh.H.Li, L.Wu, X.X.Wang, J.Q. Li, X.Zh.Fu. Multivalency iodine doped TiO_2: preparation, characterization,theoretical studies, and visible-light photocatalysis[J]. Langmuir 2008, 24(7):3422-3428.
    [173] L.Lin, W.Lin, Y.Zhu, B.Zhao. Uniform carbon-covered titania and its photocatalytic property[J] . Chem.Lett.2005,34:284-287.
    [174] W.Zhao, W.Ma, Ch.Chen, J.C.Zhao, Zh.Shuai. Efficient degradation of toxic organic pollutants with Ni2O3/TiO_2-xBx under visible irradiation[J]J.Am.Chem.Soc. 2004, 126(15): 4782-4783.
    [175] S.In, A.Orlov, R.Berg, F.Garcia,et al.Effective visible light-activated B-doped and B, N-codoped TiO_2 photocatalysts[J]. J.Am.Chem.Soc.2007, 129(45):13790-13791.
    [176] G. Liu, Y.Zhao, Ch.Sun, F. Li, G. Q. Lu, H.M.Cheng. Synergistic effects of B/N doping on the visible-light photocatalytic activity of mesoporous TiO_2[J].Angew. Chem.Int. Ed.2008, 47(24): 4516-4520.
    [177] N.O.Gopal, H.H.Lo, Sh.Ch.Ke. Chemical state and environment of boron dopant in B,N-codoped anatase TiO_2 nanoparticles: an avenue for probing siamagnetic dopants in TiO_2 by electron paramagnetic resonance spectroscopy[J].J.Am.Chem. Soc.2008, 130:2760-2761.
    [178] E.Finazzi, C.D.Valentin, G.Pacchioni. Boron-doped anatase TiO_2: pure and hybrid DFT calculations[J]. J.Phys.Chem.C 2009,113:220-228.
    [179] R.Nakamura, T.Tanaka, Y.Nakato.Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes[J].J. Phys.Chem.B.2004,108 :10617- 10620.
    [180] H.Chen, A.Nambu, W.Wen, J.Graciani, Z.Zhong, J.C.Hanson. Reaction of NH3 with TiO_2:N-doping and the formation of TiN[J].J.Phys.Chem.C.2007, 111: 1366-1372.
    [181] M.Kitano, K.Funatsu, M.Matsuoka, M.Ueshima, M. Anpo.Preparation of nitrogen-substituted TiO_2 thin film photocatalysts by the radio frequency magnetron sputtering deposition methodand their photocatalytic reactivities under visible light irradiation[J].J.Phys.Chem.B. 2006,110:25266-25272.
    [182] M.Kitano, M.Matsuoka, M.Ueshima, M.Anpo. Recent developments in titanium oxide-based photocatalysts[J]. Appl. Catal.A 2007:325 (1):1–14.
    [183] X.Chen,C.Burda. The electronic origin of the visible-lighta bsorption properties of C-, N- and S-doped TiO_2 nanomaterials[J].J.Am.Chem. Soc.2008,130(15):5018-5019.
    [184] S.Livraghi, M.C.Paganini, E.Giamello, A.Selloni.Origin of photoactivity of nitrogen-doped titanium dioxide under visible light[J].J.Am.Chem.Soc. 2006,128 (49):15666-15671.
    [185] T.Ihara, M.Miyoshi, Y.Iriyama, O.Matsumoto, S.Sugihara.Visible-light-active titanium oxide photo-catalyst realized by an oxygen-deficient structure and by nitrogen doping[J]. Appl.Catal .B 2003, 42(4):403-409.
    [186] M.Mrowetz, W.Balcerski, A.J.Colussi, M.R.Hoffmann.Oxidative power of nitrogen-doped TiO_2 photo- catalysts under visible illumination[J].J.Phys.Chem.B 2004,108: 17269-17273.
    [187] N.Serpone.Is the band gap of pristine TiO_2 narrowed by anion and cation-doping of titanium dioxide in second-generation photocatalysts?[J].J.Phys.Chem.B 2006,110(48):24287-24293.
    [188] V.N.Kuznetsov, N.Serpone.Visible light absorption by various titanium dioxide specimens[J]. J.Phys. Chem.B.2006,110 (50):25203-25209.
    [189] S.Sakthivel, M.Janczarek, H.Kisch.Visible light activity and photoelectrochemical properties of nitrogen-doped TiO_2[J].J.Phys.Chem.B 2004,108 (50):19384-19387.
    [190] E.A.Reyes-Garcia, Y.Sun, K.Reyes-Gil, D.Raftery.15N solid state NMR and EPR characterization of N-doped TiO_2 photocatalysts[J].J.Phys.Chem.C 2007,111(6):2738-2748.
    [191] F.Dong,W. Zhao, Zh.Wu, S.Guo. Band structure and visible light photocatalytic activity of multi-type nitrogen doped TiO_2 nanoparticles prepared by thermal decomposition[J]. J. Hazard. Mater. 2009,162 (2-3):763–770.
    [192] Sh. Liu, X.Chen.A visible light response TiO_2 photocatalyst realized by cationic S-doping and its application for phenol degradation[J]. J.Hazard. Mater. 2008,152 (1):48–55.
    [193] D.Chen, D.Yang, Q.Wang, Zh.Jiang. Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles[J].Ind.Eng.Chem.Res.,2006,45(12):4110- 4116.
    [194] L.Wu, J. C.Yu , X.Zh.Fu.Characterization and photocatalytic mechanism of nano-sized CdS coupled TiO_2 nanocrystals under visible light irradiation[J]. J.Mol.Catal. A 2006,244 (1-2):25-32.
    [195] Y.Bessekhouad, D.Robert, J.V.Weber. Bi2S3/TiO_2 and CdS/TiO_2 heterojunctions as an available configu- ration for photocatalytic degradation of organic pollutant[J].J.Photochem.Photobiol. A:Chem. 2004, 163(3): 569-580.
    [196] Y.J. Zhang, W.Yan,Y.P.Wu, Zh.H.Wang.Synthesis of TiO_2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition[J]. Mater. Lett. 2008,62 (23):3846–3848.
    [197] J.S.Jang, S.H.Choi, H.G.Kim, J.S.Lee. Location and state of Pt in platinized CdS/TiO_2 photocatalysts for hydrogen production from water under visible light[J]. J.Phys.Chem.C 2008,112(44):17200-17205.
    [198] H.Liu, L. Gao. Preparation andproperties of nanocrystalline a-Fe_2O_3-sensitized TiO_2 nano- sheets as a visible light photocatalyst[J]. J.Am.Ceram.Soc.2006,89(1):370-373.
    [199] J.Li, L. Liu,Y.Yu,Y.Tang, H.Li,F.Du. Preparation of highly photocatalytic active nano-size TiO_2–Cu2O particle composites with a novel electrochemical method[J]. Electrochem. Commun. 2004,6(9):940-943.
    [200] Y.G.Zhang, L.L.Ma,Y.Yu.In situ fenton reagent generated from TiO_2/Cu_2O composite film: a new way to utilize TiO_2 under visible light irradiation[J]. Environ.Sci. Technol.2007,41 (17):6264- 6269.
    [201] H.Song,H.Jiang,X.Liu,G.Meng. Efficient degradation of organic pollutant with WOx modified nano TiO_2 under visible irradiation[J]. J. Photochem.Photobio. A 2006,181(2-3): 421-428.
    [202] I. Robel, M. Kuno, P.V. Kamat. Size-dependent electron injection from excited CdSe quantum dots into TiO_2 nanoparticles[J]. J.Am.Ceram.Soc.2007,129 (14):4136- 4137.
    [203] N.Kakuta, N.Goto, H.Ohkita, T.Mizushima.Silver bromide as a photocatalyst for hydrogen generation from CH3OH/H2O solution[J]. J.Phys.Chem.B.1999,103:5917-5919.
    [204] C.Hu, Y.Q.Lan, J.H.Qu, X.X.Wang.Ag/AgBr/TiO_2 visible light photocatalyst for destruction of azodyes and bacteria[J].J.Phys.Chem.B 2006, 110:4066-4072.
    [205] C.Hu, X.X.Hu, L.S.Wang, J.H.Qu. A.M.Wang. Visible-light-induced photocatalytic degradation of azodyes in aqueous AgI/TiO_2 dispersion[J].Environ.Sci.Technol.2006, 40 (24): 7903-7907.
    [206] S.Rodrigues, S.Uma, I.N.Martyanov, K.J.Klabunde.AgBr/Al-MCM-41 visible-light photocatalyst for gas- phase decomposition of CH3CHO[J].J.Catal.2005,233(2):405–410.
    [207] Y.Li, H.Zhang, Zh.Guo, J.Han. Highly efficient visible-light-induced photocatalytic activity of nanostructured AgI/TiO_2 photocatalyst. Langmuir.2008,24(15):8351-8357.
    [208] Y.Bessekhouad, D.Robert , J.V.Weber. Photocatalytic activity of Cu2O/TiO_2, Bi2O3/TiO_2 and ZnMn2O4/TiO_2 heterojunctions[J].Catal. Today.2005,101(3-4):315-321.
    [209] L. Zang, C. Lange, I. Abraham, S. Storck, W.F.Maier. Amorphous microporous titania modified with platinum(Ⅳ) chloride -a new type of hybrid photocatalyst for visible lightdetoxification[J].J.Phys.Chem.B, 1998,102:10765-10771.
    [210] B. O’Regan, M.Gra?tzel. A low-cost,high-efficiency solar-cell based on dye-sensitized colloidal TiO_2 films[J].Nature,1991,353(6346):737-739.
    [211] P. Wang, S. M. Zakeeruddin, J. E. Moser.A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J].Nature Mater.2003, 2(6):402-407.
    [212]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术[J].环境科学进展,1997,5 (3):1-10.
    [213] H.Osora, W. Li.Photosensitization of nanocrystalline TiO_2 thin films by a polyimide bearing pendent substituted-Ru(bpy)3+2 groups[J].J.Photochem.Photobio.B 1998, 43(3):232-238.
    [214] K. Tennakone, J. Bandara. Photocatalytic activity of dye-sensitized tin(IV) oxide nanocrystalline particles attached to zinc oxide particles: long distance electron transfer via ballistic transport of electrons across nanocrystallites[J].Appl. Catal.A 2001,208:335 -341.
    [215] S.Nasr, P.Hotchandani, V.Kamat.Photoelectrochemistry of composite semiconductor thin films. Photo- sensitization of SnO_2/CdS coupled nanocrystallites with a Ruthenium complex [J] .J.Phys. Chem.B,1997,101:7480-7487.
    [216] A. Islam, H. Sugihara, K. Hara, et al.Sensitization of nanocrystalline TiO_2 film by ruthenium(II) diimine dithiolate complexes[J]. J.Photochem. Photobiol.A.Chem. 2001,145 (1-2): 135-141.
    [217] K. Hara, H. Horiuchi, R. Katoh,et al.Effect of the ligand structure on the efficiency of electron injection from excited Ru-phenanthroline complexes to nanocrystalline TiO_2 films[J]. J.Phys.Chem. B, 2002, 106 (2):374-379.
    [218] V. H.Shabtai, I.Willner. Photocatalyzed CO_2-fixation to formate and H2 evolution by eosin- modified Pd-TiO_2 powders[J].J.Chem.Soci.Chem.Commun.1994,18:2113-2114.
    [219] D. Schlettwein, T. Oekermann, T.Yoshida, et al. Photoelectrochemical sensitisation of ZnO- tetrasulfophthalocyaninatozinc composites prepared by electrochemical self-assembly[J].J. Electroanaly. Chem.,2000,481:42-51.
    [220] M.Jungwoo,Y.Ch.Yeon,Ch.K.Won,et al.Photocatalytic activation of TiO_2 under visible light using acid red 44[J]. Catal. Today,2003,87(1-4):77-86.
    [221] I.K.Konstantinou, T.A.Albanis.TiO_2 assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations:A review[J].Appl. Catal.B 2004,49 (1):1-14.
    [222] F.Chen, Zh.Deng, X.Li. Visible light detoxification by 2,9,16,23-tetracarboxyl phth- alocyanine copper modified amorphous titania.Chem[J]. Phys.Lett.2005,415 (1-3): 85-88.
    [223] Y.Chen, K.Wang, L.Lou. Photodegradation of dye pollutants on silica gel supported TiO_2particles under visible light irradiation[J].J.Photochem. Photobio.A 2004,163(1-2): 281-287.
    [224] Y.Liu, J.I.Dadap, D.Zimdars, K.B.Eisenthal.Study of interfacial charge-transfer complex on TiO_2 particles in aqueous suspension by second-harmonic generation[J].J.Phys.Chem.B 1999, 103:2480–2486.
    [225] J.Moser,S.Punchihewa,P.P.Infelta,M.Gr?tzel.Surface complexation of colloidal semiconductors strongly enhances interfacial electron-transfer rates[J]. Langmuir 1991, 7:3012-3018.
    [226] D.C.Hurum, K.A.Gray, T.Rajh, et al.Photoinitiated reactions of 2,4,6 TCP on degussa P25 formulation TiO_2:wavelength-sensitive decomposition[J]. J.Phys.Chem.B 2004,128:16483- 16487.
    [227] S.Kim,W,Choi.Visible-light-induced photocatalytic degradation of 4-chlorophenol and phenolic compounds in aqueous suspension of pure titania: demonstrating the existence of a surface-complex-mediated path[J].J.Phys.Chem.B 2005,109 (11):5143-5149.
    [228] S.Ikeda,C.Abe,T.Torimoto,B.Ohtani, Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation[J].J.Photochem. Photobiol.A 2003,160:61-67.
    [229] D.Jiang,Y.Xu,B.Hou,D.Wu,Y.Sun.Synthesis of visible light-activated TiO_2 photocatalyst via surface organic modification J.Solid State Chem.2007,180 (5):1787-1791.
    [230] M. Zhang, Ch.Chen, W.Ma, J.C.Zhao.Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO_2 and TEMPO[J]. Angew.Chem.Int.Ed., 2008,120(50):9876-9879.
    [231] D.Jiang,Y.Xu,D.Wu,Y.Sun.Visible-light responsive dye-modified TiO_2 photocatalyst[J]. J. Solid Stat. Chem.2008,181(3):593–602.
    [232] M.Kitano,M.Matsuoka,M.Ueshima,M.Anpo.Recent developments in titanium oxide-based photocatalysts[J]. Appl.Catal. A 2007,325(1):1-14.
    [233] A.L.Linsebigler, G.Lu,J.T.Yates.Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J].Chem.Rev.1995, 95(3):735-758.
    [234] M. Jakob, H. Levanon, P.V.Kamat.Cllarge distributionbe between UV irradiationTiO_2 and gold nanoparticles: determination of shift in the Fermi level[J]. Nano Lett.,2003,3(3):353-358.
    [235] Y.Ishibai,J.Sato,T.Nishikawa,S.Miyagishi.Synthesis of visible-light active TiO_2 photocatalyst with Pt-modification:Role of TiO_2 substrate for high photocatalytic activity[J]. Appl. Catal. B 2008,79(2):117-121.
    [236] T.Yonezawa, H.Matsune, T.Kunitake.Layered nanocomposite of close-packed gold nano particles and TiO_2 gel layers[J].Chem.Mater.1999,11(1):33-35.
    [237] H. Li, Zh.Bian, J.Zhu, Y.Huo, H.Li,Y.Lu.Mesoporous Au/TiO_2 Nano-composites with enhanced photocatalytic qctivity[J]. J.Am.Chem.Soc.2007,129:4538-4539.
    [238] P.Wang,B. Huang,X.Qin,X.Zhang,Y. Dai,J.Wei, Ag@AgCl:a highly efficient and stable photocatalyst active under visible light[J].Angew. Chem.Int.Ed.2008, 47(41):7931-7933.
    [239] K.Awazu, M.Fujimaki, C.Rockstuhl,et al. A plasmonic photocatalyst consisting of Silver nano- particles embedded in titanium dioxide[J]. J.Am.Chem.Soc.,2008, 130 (5):1676-1680.
    [240] T.Hirakawa, P.V.Kamat.Charge separation and catalytic activity of Ag@TiO_2 core-shell composite clusters under UV-irradiation[J].J.Am.Chem.Soc.2005,127:3928-3934.
    [241] M.Anpo,M.Takeuchi.The design and development of highly reactive titanium oxide photo- catalysts operating under visible light irradiation[J].J.Catal. 2003, 216: 505-516.
    [242] K.Tanaka, M.F.V.Capule, T.Hisanaga.Effect of crystallinity of TiO_2 on its photocatalytic action[J].Chem. Phys.Lett.1991,187(1-2):73-76.
    [243] T.Y.Peng, A.Hasegawa, J.R.Qiu, K.Hirao. Fabrication of titaniat ubules with high surface area and well-weveloped mesostructural walls by surfactant-mediated yemplating method[J]. Chem.Mater.2003, 15(10):2011-2016.
    [244] Y.Z.Li, N.H.Lee, E.G.Lee, J.S.Song, S.J.Kim. The characterization and photocatalytic properties of mesoporous rutile TiO_2 powder synthesized through self-assembly of nano crystals[J].Chem. Phys. Lett. 2004, 389(1-3):124-128.
    [245] Y. Li, S.J.Kim.Synthesis and characterization of nano titania particles embedded in mesopo- rous silica with both high photocatalytic activity and adsorption capability[J]. J.Phys.Chem.B 2005, 109 (25):12309-12315.
    [246] Y.D.Hou, X.C.Wang, L.Wu, X.F.Chen, Z.X.Ding, X.X.Wang, X.Z.Fu. N-Doped SiO_2/TiO_2 mesoporous nanoparticles with enhanced photocatalytic activity under visible-light irradia- tion.Chemosphere[J].2008,72 (3):414-421.
    [247] P. Cheng, M. Zheng, Y.Jin, Q.Huang, M.Gu. Preparation and characterization of silica-doped titania photocatalyst through sol–gel method[J]. Mater. Lett.2003,57 (20):2989-2994.
    [248] A.Mabakazu,T.Kawamura,S.Kodama, et al.Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species[J].J.Phys.Chem. 1988, 92 (2) 438-440.
    [249] C.Minero, F.Catozzo, E.Pelizzetti. Role of adsorption in photocatalyzed reactions of organic molecules in aqueous titania suspensions[J].Langmuir 1992,8 (2):481-486.
    [250] Y.X.Chen, K.Wang, L.P.Luo. Photodegradation of dye pollutants on silica gel supported TiO_2 particles under visible light irradiation[J].J.Photochem.Photobiol.,A 2004,163:281-287.
    [251] M.Hirano, K.Ota, H.Iwata.Direct formation of anatase (TiO_2)/silica (SiO_2) compositenanoparticles with high phase stability of 1300℃from acidic solution by hydrolysis under hydrothermal condition[J]. Chem.Mater.2004,16(19):3725-3732.
    [252] M.Hirano, K.Ota, H.Iwata.Hydrothermal synthesis of TiO_2/SiO_2 composite nanoparticles and their photocatalytic performances[J].J. Ceram. Soc. Jpn. 2004, 112:143.
    [253] C.Anderson, A.J.Bard. An Improved photocatalyst of TiO_2/SiO_2 prepared by a Sol-Gel synthesis[J]. J.Phys. Chem.B.1995,99(24):9882-9885.
    [254]付贤智,丁正新,苏文悦等.二氧化钛基固体超强酸的结构及其光催化氧化性能[J].催化学报,1999,20(3): 321-324.
    [255]苏文悦,付贤智,魏可镁.SO42-表面修饰对TiO_2结构及其光催化性能的影响[J].物理化学学报, 2001,17(01):28-31.
    [256] X.Z.Fu, W.A.Zeltner, Q.Yang, M.A. Anderson.Catalytic hydrolysis of dichlorodifluoro- imethane (CFC-12) on Sol-Gel-derived titania unmodified and modified with H2SO4[J].J. Catal. 1997,168:482-490.
    [257] D.S.Muggli, L.Ding. Photocatalytic performance of sulfated TiO_2 and Degussa P-25 TiO_2 during oxidation of organics[J]. Appl.Catal.B 2001,32(3):181-194.
    [258] A. Nakajima,H.Obata,Y.Kameshima, K.Okada. Photocatalytic destruction of gaseous toluene by sulfated TiO_2 powder[J].Catal. Commun. 2005,6(11):716– 720.
    [259] X.Deng, Y.Yue, Z.Gao. Gas-phase photo-oxidation of organic compounds over nanosized TiO_2 photocatalysts by various preparations[J].Appl. Catal. B:Environ.39 (2002) 135-147.
    [260] R.Gomez, T.Lopez, E.Ortis-Islas,et al. Effect of sulfation on the photoactivity of TiO_2 sol-gel derived catalysts[J].J.Mol.Catal.A 2003, 193(1-2): 217-226.
    [261] H.Li,G. Li,J.Zhu,Y.Wan. Preparation of an active SO42?/TiO_2 photocatalyst for phenol degradation under supercritical conditions[J].J. Mol. Catal. A 2005,226 (1):93–100.
    [262] X.Wang ,J.C.Yu ,P. Liu ,X.X.Wang ,W. Su,X,Zh.Fu.Probing of photocatalytic surface sites on SO42?/TiO_2 solid acids by in situ FT-IR spectroscopy and pyridine adsorption[J]. J.Photochem. Photobio. A 2006,179 (3):339-347.
    [263] Zh.C.Wang ,H.F.Shui.Effect of PO43- and PO43-–SO42- modification of TiO_2 on its photocatalytic properties[J]. J.Mol. Catal. A 2007,263 (1-2):20-25.
    [264] G.Colón, M.C.Hidalgo, J.A.Navío. Photocatalytic behaviour of sulphated TiO_2 for phenol degradation[J]. Appl. Catal.B 2003,45(1):39-50.
    [265] G.ColónJ.M.Sánchez-Espa?a, M.C.Hidalgo, J.A.Navío. Effect of TiO_2 acidic pretreatment on the photocatalytic properties for phenol degradation[J]. J Photochem. Photobio.A 2006,179 (1-2):20–27.
    [266] K .T. Ranjit, B.Viswanathan.Photocatalytic reduction of nitrite and nitrate ions to ammonia onM/TiO_2 catalysts[J].J Photochem.Photobio. A 1997,108(1):73-78.
    [267] H. Kominami, A. Furushok, S.Murakami,et al.Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid[J]. Catal. Lett.,2001,76(1-2):31-34.
    [268]柳丽芬,董晓艳,杨凤林,Jimmy C Yu. Ag/TiO_2光催化还原硝酸氮[J].无机化学学报,2008,24 (2):211-217.
    [269] Y. Nosaka. Properties of O_2~(·-) and OH·formed in TiO_2 aqueous suspensions by photocatalytic reaction and the influence of H2O_2 and some ions[J]. Langmuir 2002,18 (8): 3247-3254.
    [270] T.Hirakawa, K.Yawata, Y.Nosaka. Photocatalytic reaction for O_2~(·-) and OH·radical formation in anatase and rutile TiO_2 suspension as the effect of H2O_2 addition[J].Appl. Catal. A 2007, 325:105-111.
    [271] H.K.Singh, M.Saquib, M.M.Haque, M.Muneer. Heterogeneous photocatalyzed degradation of uracil and 5-bromouracil in aqueous suspensions of titanium dioxide[J]. J. Hazard.Mater 2007,142 (1-2):425-430.
    [272] W.Bahnemann, M.Muneer, M.M.Haque. Titanium dioxide-mediated photocatalysed degrada- tion of few selected organic pollutants in aqueous suspensions[J]. Catal. Today.2007, 124 (3-4): 133-148.
    [273] M.M. Haque, M.Muneer.TiO_2-mediated photocatalytic degradation of a textile dye derivative, bromo- thymol blue, in aqueous suspensions[J]. Dyes and Pigments 2007,75 (2):443-448.
    [274] R.Bacsa, J.Kiwi, T.Ohno, P.Albers, V.Nadtochenko.Preparation, testing and characterization of doped TiO_2 active in the peroxidation of biomolecules under visible light[J]. J.Phys.Chem.B 2005,109(12):5994-6003.
    [275] Y.Liu, J.Li, X.F.Qiu, C.Burda. Bactericidal activity of nitrogen-doped metal oxide nanocatalysts and the influence of bacterial extracellular polymeric substances (EPS)[J]. J.Photochem. Photobiol. A 2007,190:94-100.
    [276] M.R.Elahifard, S.Rahimnejad, S.Haghighi.Apatite-coated Ag/AgBr/TiO_2 visible-light photocatalyst for destruction of bacteria[J].J.Am.Chem . Soc. 2007,129(31):9552-9553.
    [277] M.Ni,M. K.H.Leung, D.Y.C.Leung, K.Sumathy.A review and recent developments in photocatalytic water-splitting using TiO_2 for hydrogen production[J]. Renewable and Sustainable Energy Reviews. 2007,11 (3):401-425;.
    [278] H. Arakawa, K.Sayama. Solar hydrogen production: significant effect of Na2CO3 addition on water splitting using simple oxide semiconductor photocatalysts[J].Catal.Surv.Jpn 2000, 4:75-80.
    [279] R.Abe, K.Sayama, K.Domen, H.Arakawa.A new type of water splitting system composed oftwo different TiO_2 photocatalysts (anatase, rutile) and a IO3-/I- shuttle redox mediator[J].Chem. Phys. Lett.2001, 344 (3-4):339-344.
    [280] M.Matsuoka, M.Kitano, M.Takeuchi, M.Anpo. Photocatalytic water splitting on visible light-responsive TiO_2 thin films prepared by a RF magnetron sputtering deposition method[J]. Top.Catal. 2005,35(3-4):305-310.
    [281] M. Gr?tzel.Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J].J. Photochem. Photobiol.A 2004, 164:3-14.
    [282] D.Cahen, G.Hodes, M.Gr?tzel, J.F.Guillemoles, I.Riess. Nature of photovoltaic action in dye-sensitized solar cells[J]. J.Phys.Chem.B.2000,104(9):2053-2059.
    [283] G.K. Mor, K.Shankar, M.Paulose, O.K.Varghese, C.A.Grimes.Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett.2006,6(2):215-218.
    [284] S P.R.omani, C.Dionigi, M.Murgia, D.Palles, P.Nozar, G.Ruani.Solid-state dye PV cells using inverse opal TiO_2 films[J].Sol.Energy Mater.Sol.Cells.2005,87(1-4):513-519.
    [285] H.Han, L.Zan, J.Zhong, X.Zhao.A novel hybrid nanocrystalline TiO_2 electrode for the dye-sensitized nanocrystalline solar cells[J].J. Mater. Sci. 2005, 40:4921-4927.
    [286] E.W.McFarland, J.Tang.A photovoltaic device structure based on internal electron emission[J]. Nature 2003,421(6923):616-618.
    [287] T.Lindgren, J.M.Mwabora, E.Avendano, J.Jonsson, A.Hoel, C.G.Granqvist, S.E.Lindquist. Photoelectrochemical and optical properties of nitrogen doped titanium dioxide films prepared by reactive DC magnetron sputtering[J] .J.Phys.Chem.B.2003,107(24):5709-5716.
    [288] H. Boonstra, C.H.A. Mutsaers.Adsorption of hydrogen peroxide on the surface of titanium dioxide[J]. J. Phys. Chem. 1975,79:1940-1943.
    [289] X.Zh. Li, Ch.Ch. Chen, J.C. Zhao.Mechanism of Photodecomposition of H2O_2 on TiO_2 Surfaces under Visible Light Irradiation[J]. Langmuir 2001,17:4118-4122.
    [290] T. Ohno, Y. Masaki, S. Hirayama, M. Matsumura.TiO_2-Photocatalyzed Epoxidation of 1-Decene by H2O_2 under Visible Light[J].J.Catal. 2001,204 :163-168.
    [291] Y.K. Takahara, Y. Hanada, T. Ohno, S. Ushiroda, S. Ikeda.Photooxidation of organic compounds in a solution containing hydrogen peroxide and TiO_2 particles under visible light [J]. J. Appl. Electrochem. 2005,35:793-797.
    [292] A. Chaves, R. S. Katiyar, S. P. S. Porto.Coupled modes with A1 symmetry in tetragonal BaTiO3[J]. J Phys. Rev. B 1974,10(8):3522-3533.
    [293] T. Ohsaka, F. Izumi, Y. Fujiki.Raman spectrum of anatase TiO_2[J].J.Raman Spectrosc.1978, 7(6): 321-324.
    [294] S.Kelly, F.H. Pollak,M.Tomkiewicz. Raman spectroscopy as a morphological probe for TiO_2aerogels[J]. J. Phys. Chem. B 1997, 101, 2730-2734.
    [295]沈剑沦.米颗粒的合成与表面增强拉曼光谱[J].兰州大学学报(自然科学版),2007, 3:9-41.
    [296] C.oka,H.oshida,.akeuchi, M.Maekawa,Z.I.Yamada. T.Hattori. Hydrogen peroxide improving crystallinity of TiO_2 nanoparticle in layer compound[J]. Catal. Commun.2004,5:49-54.
    [297] H.X. Li, G.Sh. Li, J. Zhu, Y. Wan.Preparation of an active SO_4~(2-)/TiO_2 photocatalyst for phenol degradation under supercritical conditions[J].J. Mol. Catal. A 2005,226:93-100.
    [298] M.Nag, P.Basak, S.V.Manorama. Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature tuning of morphology and photocatalytic activity[J]. Mater. Res. Bull.2007,42:1691–1704.
    [299] F.Bonino, A.Damin, G.Ricchiardi. Ti-Peroxo Species in the TS-1/H_2O_2/H_2O System[J]. J. Phys. Chem. B 2004, 108,:3573-3583.
    [300] W. Chu, C.C. Wong. The photocatalytic degradation of dicamba in TiO_2 suspensions with the help of hydrogen peroxide by different near UV irradiations[J].Water Res.2004,38:1037-1043.
    [301] J.C. Yu, L.ZH. Zhang, Zh. Zheng, J.C. Zhao.Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity[J].Chem.Mater.2003,15: 2280-2286.
    [302] R.P.Kalakodimi,A.M.Nowak.Carbon/molecule/metal and carbon/molecule/metal oxide molecular electronic junctions[J]. Chem.Mater.2005,17:4939-4948.
    [303] T.Ohno, K.Tokieda, S.Higashida, M. Matsumura. Synergism between rutile and anatase TiO_2 particles in photocatalytic oxidation of naphthalene[J]. Appl. Catal. A 2003,244:383-391.
    [304] F.Jiang, Zh.Zheng, Zh.Y. Xu, Sh.R. Zheng.Aqueous Cr(VI) photoreduction catalyzed by TiO_2 and sulfated TiO_2[J]. J. Hazard. Mater. 134 (2006): 94-103.
    [305] Y. Hu,H.L.Tsai, C.L.Huang. Phase transformation of precipitated TiO_2 nanoparticles[J]. Mater. Sci. Eng. A 2003,344:209-214.
    [306]刘红,刘潘,辜孔良,李晶,孙旋.固体超强酸纳米光催化剂SO_4~(2-)-TiO_2的制备及Ag改性[J].化工进展.2006,25:411-414.
    [307] Y.H.Xua,L.Y.Wang,Q.Zhang,Sh.J.Zheng,X.J.Li. Correlation between photoreactivity and photophysics of sulfated TiO_2 photocatalyst[J].Mater. Chem. Phys.2005,92:470-474.
    [308] S.M.Jung, P.Grange. Characterization and reactivity of pure TiO_2-SO_4~(2-)SCR catalyst: influence of SO42-content[J].Catal.Today 2000,59:305-312.
    [309]陈林,赵宇,曲延玲,赵成学.二酰基过氧化物的激光拉曼光谱表征[J].分析化学,20002,30: 1422-1425.
    [310] I.Szilágyi,E.K?nigsberger, P.M. May.Characterization of chemical speciation of titanyl sulfate solutions for production of titanium dioxide precipitates[J].Inorg.Chem. 2009,48:2200-2204.
    [311] D.Fraenkel. Structure of sulfated metal oxides and its correlation with catalytic activity[J]. Ind. Eng. Chem. Res. 1997, 36: 52-59.
    [312] Q. Yang, Ch. Xie, Z. Xu, et al. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light[J]. J. Phys. Chem. B 2005,109:5554-5560.
    [313] E. Barraud, F. Bosc, D. Edwards, N. Keller.Gas phase photocatalytic removal of toluene effluents on sulfated titania[J]. J. Catal. 2005,235:318-326.
    [314] Hadi Nur. Modification of titanium surface species of titania by attachment of silica nanoparticles[J]. Mater. Sci.Eng. B 2006,133:49-54.
    [315] Sh.Y. Zhang, Zh.H.Chen, Y.L. Li.Photocatalytic degradation of methylene blue in a sparged tube reactor with TiO_2 fibers prepared by a properly two-step method[J].Catal. Commun. 2008,9:1178-1183.
    [316]丁正新,王绪绪,付贤智. TiO_2基固体超强酸及其在光催化空气净化中的应用[J].化工进展, 2003, 22:1278-1283.
    [317] Y.Xie,Ch.Yuan.Transparent TiO_2 sol nanocrystallites mediated homogeneous like photocatalytic reaction and hydrosol recycling process[J]. J.mater. sci.2005,40:6375-6383.
    [318] F.Cot,A.Larbot,G.Nabias,L.Cot.Preparation ans characterization of colloidal solution derived crystallized titania powder[J]. J Eur.ceram.soc.1998,18:2175-2181.
    [319] T.X.Liu, F.B.Li, X.Zh.Li. TiO_2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase[J]. J. Hazard. Mater.2008,152:347-355.
    [320] D. S. Lee,T. K. Liu. Preparation of TiO_2 Sol using TiCl4 as a precursor[J]. J Sol-Gel Sci. Tech. 2002,25:121-136.
    [321]戈磊,徐明霞,方海波.针状TiO_2锐钛矿晶粒溶胶的制备!结构及形成机理研究[J].无机化学学报,2005,21:394-398.
    [322] Y.Liu, R.O. Claus. Blue light emitting nanosized TiO_2 colloids[J]. J. Am. Chem. Soc. 1997, 119: 5273-5274.
    [323] J. C. Parker, R. W. Siegel.Calibration of the Raman spectrum to the oxygen stoichiometry of nanophase TiO_2[J].Appl. Phys. Lett.1990,57(9):943-945.
    [324] I.Ilisz, F.oglein, A,Dombi. The photochemical behaviorof hydrogen peroxide in near UV-irradiated aqueous TiO_2 suspensions[J]. J. Mol. Catal.1988,135:55-61.
    [325] V.Augugliaro, C.Baiocchi, A.B.Prevot.Azo-dyes photocatalytic degradation in aqueous suspension of TiO_2 under solar irradiation[J].Chemosphere 2002,49,1223-1230.
    [326] D.Pan,N.Zhao,Q.Wang. Facile synthesis and characterization of luminescent TiO_2 nanocrystals[J]. Adv.Mater.2005,17:1991-1995.
    [327] Y.Zhang,J.Li,J.Wang.Substrate assisted crystallization and photocatalytic properties ofmesoporous TiO_2 thin films[J]. Chem. Mater. 2006, 18: 2917-2923.
    [328] Z.Wang, F.Zhang, Y.Yang, B.Xue, J.Cui.Facile postsynthesis of visible-light-xensitive titanium dioxide/mesoporous SBA-15[J].Chem.Mater.2007,19: 3286- 3293.
    [329] S.H.Lim,N.Phonthammachai, S.S. Pramana. Simple route to monodispersed silica-titania core-shell photocatalysts[J]. Langmuir 2008, 24, 6226-6231.
    [330] X.Jiang,T.Wang. Influence of preparation method on morphology and photocatalysis activity of nanostructured TiO_2[J]. Environ. Sci. Technol. 2007, 41: 4441-4446.
    [331] D.W.Lee, S.K.Ihm, K.H.Lee. Mesostructure control using a titania-coated silica nanosphere framework with extremely high thermal stability[J]. Chem. Mater. 2005, 17: 4461-4467.
    [332] J.Yu, L.Zhao, B.Cheng. Facile preparation of monodispersed SiO_2/TiO_2 composite microspheres with high surface area[J]. Mater. Chem.Phys.2006,96:311-316.
    [333] W.St?ber, A.Fink, E.Bohn. Controlled growth of monodisperse silica spheres in the micron size range[J]. J. Colloid.Interface Sci.1968,26:62-69.
    [334] H.Yoshida. Silica-based quantum photocatalysts for selective reactions[J]. Curr.Opin. Solid Stat.Mater. Sci.2003,7:435-442.
    [335] C.Xie, Q.Yang, Z.Xu, X.Liu, Y.Du. New route to synthesize highly active nanocrystalline sulfated titania-silica: synergetic effects between sulfate species and silica in enhancing the photocatalysis efficiency[J]. J. Phys. Chem. B 2006, 110: 8587-8592.
    [336] A. K. Sinha, S. Seelan, M. Okumu,T. Akita, S. Tsubota. Three-dimensional mesoporous titanosilicates prepared by modified Sol-Gel method:ideal gold catalyst supports for enhanced propene epoxidation[J]. J. Phys. Chem. B 2005, 109:3956-3965.
    [337] L.Yuliati,H.Yoshida.Photocatalytic conversion of methane[J].Chem.Soc.Rev. 2008,37: 1592- 1602.
    [338] B.Notari, R.J.Willey, M.Panizza, G.Busca. Which sites are the active sites in TiO_2-SiO_2 mixed oxides?[J]. Catal. Today 2006,116:99-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700