用户名: 密码: 验证码:
生物纤维原料汽爆预处理技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能具有资源丰富、可再生的优点,可用来转化固、液、气三种清洁燃料。二十世纪九十年代初,国内外的学者以提高转化效率为目标,开始对生物质的转化机理和影响转化因素进行研究。结果表明,如何消除或降低木质素对纤维素降解酶的阻碍作用是研究的难点和提高转化率的关键。
     生物质秸秆中的纤维素、半纤维素和木质素三者结构很复杂,要提高半纤维素和纤维素的转化率,就必须对生物质秸秆进行预处理,破坏其物理结构,实现三者的有效分离。预处理的目的是分离、除去生物质秸秆中的木质素,增加生物质秸秆的孔隙率和酶对纤维素的可及性,从而提高生物质秸秆中半纤维素和纤维素的转化率。生物质秸秆的预处理方法可以分为物理预处理、化学预处理、物理化学预处理和生物预处理四大类。学者们对秸秆预处理已进行了许多研究,虽取得了一定的成果,但还没有找到能够应用于生产、低成本、高效率的方法,因此,找到提高生物质转化利用率的预处理技术至今仍然是生物质高品位利用的技术关键,也是学者及企业家们苦苦追求的目标。
     蒸汽爆破技术是物理化学预处理方法中的一种,最初被应用于纸浆生产。到目前为止,还没有通过爆破显著提高纤维素转化率的报道。近几年来研究生物质爆破技术的逐渐多起来了,但认真分析其工艺参数和结果,其实际上为“汽喷”和“膨化”,因为真正的生物质爆破中生物质溢出时间一定要小于1秒,在这样的速度下才会出现“爆”。目前的报道,解压后生物质均在几十秒到几分钟时间内才能被完全放出来,这就不属于真正意义上的蒸汽爆破范畴了,用于秸秆预处理也无法取得好的效果。
     本研究采用新的蒸汽爆破技术设备对秸秆进行了爆破预处理研究,这种爆破设备采用蒸汽弹射技术,可以在0.00875s时间内完成能量的高密度突然释放,将秸秆推出高压缸并完成秸秆的爆碎。经对爆破秸秆的沼气发酵和纤维糖化等试验,所获得的相关数据均表现出了明显的预处理效果。
     本文较全面地反映了作者的研究工作,主要包括以下内容:
     ⑴爆破预处理影响因素和爆破参数优化研究。通过研究汽爆后秸秆结构(半纤维素、纤维素和木质素组分含量)和还原糖得率两个指标来衡量蒸汽爆破预处理中各因素对汽爆效果的影响。在不同的压力、时间、含水率、物料填充密实度等参数组合条件下对生物质秸秆进行爆破试验,对爆破生物质进行物理、化学及结构分析,找出了经过优化的爆破预处理秸秆参数。作者首次尝试了秸秆的二次汽爆试验研究,结果表明,相对于一次汽爆来说,二次汽爆的预处理能力显著提高。
     ⑵为了验证爆破效果和使用价值,用玉米秸秆爆破物分别在常温和中温下进行了沼气发酵试验。试验采用湿式发酵方法(总固形物浓度为5%)。结果表明,每克干物质产气量和沼气中甲烷百分比含量两个参数都较对比试验有一定提高。试验中也对汽爆后秸秆发酵醪液的pH值和COD值变化进行了观测,发现COD的去除率较高。经汽爆后玉米秸秆发酵启动和结束时间都较未经蒸汽爆破预处理的秸秆要早。
     ⑶用蒸汽爆破后玉米秸秆进行了糖化试验。试验结果表明,糖化率较对比试验有较大程度提高。为了进一步提高汽爆的效果,进行了添加化学试剂HCl、NaOH、Na2SO4、氨水的玉米秸秆的汽爆试验。结果表明,添加HCl效果最好,但添加这些化学试剂对提高汽爆玉米秸秆糖化率作用不大。用汽爆后的玉米秸秆发酵制取燃料乙醇试验中,在3.0Mpa压力下,燃料乙醇的产率随保压时间增加呈下降的趋势,而在低压条件下,情况则相反。
     ⑷对秸秆爆破物的显微组织进行了分析。SEM和TG分析表明汽爆后的玉米秸秆的结构破坏程度随汽爆压力和保留时间的增加而增加,虽然在高压和短的保留时间的预处理条件下酶解糖化效果较好,但汽爆后的玉米秸秆的结晶度相对于未经汽爆处理的秸秆结晶度有所增加。
     ⑸设备改进。通过一系列的试验,验证了蒸汽爆破技术设备预处理的效果,同时也发现了设备存在的诸如密封、爆出时间、所需的蒸汽压力等方面的问题,针对发现问题对蒸汽爆破试验台进行了相应设计的改进,进一步完善了试验台的性能,为将来的工业化设备设计制造提供了依据。
Bioenergy is rich in resource and reproducible which can be convert into clean fuels—solid、liquid and gas. Scholars began to study the mechanism and the influence factors of conversion at the aim of improving the biomass conversion efficiency at the beging of 1990s. Among these problems how to eliminate or decrease the hindrance of lignin to the cellulase is the difficulty of research.
     It is because the complex structure of hemicellulose, cellulose and lignose in the biomass stalk that pretreatment on biomass must be done to destory the physical sturcture of biomass and have them seprated effectively if we want to enhance the conversion rate . The aim of pretreatment is to separate or remove the lignin and increase the porosity and accessibility of cellulase to the straw stalk, thereby to improve the cellulose and hemicellulose conversion rate of the biomass straw stalk. The pretreatment methods can be classified into four kinds: physical pretreatment, chemical pretreatment, physical and chemical pretreatment and biological pretreatment. Though the scholars has made many achievements in pretreatment research, the pretreatment method with high efficiency, low cost and to the biomass straw stalk had never been found till today. So it is still the key technology of bioenergy utilizing in high grade to found the pretreatment technology if we want to increase the conversion and utilization efficiency of biomass, it is also the goal that scholars and entrepreneurs hardly pursuited.
     The steam explosion technic was first used into the paper pulp production, which is one kind of physical pretreatment method. Up to now, there is still no report on significantly increasing the cellulose conversion by steam explosion pretreatment technic. even more; there is no report about the study on the mechanism of anaerobic fermentation with steam explosion pretreated stalk straw. More and more scholars began the research of steam explosion technic in recent years; we can make a conclusion that they are all belong to steam spout or swollen technic in fact by analyzing their technics parameters and the pretreatment result. Because that the real biomass explosion occurred only when it was released out of high pressure vessel within 1 second. The explosion technics reported at present were not the real steam explosion technic indeed, which always cost about several ten seconds to several minutes to spout the biomass out of the boiler. So the good result could not be achieved with these kinds of pretreated technics.
     The steam eject technology was introduced in the steam explosion equipment in this study. The new steam explosion technique can complete the high density release of energy only in 0.00875s, so the straw stalk was break down easily. Lots of explosion experiments of straw stalk have been done and the result of the biogas anaerobic fermentation and saccharification experiments with the steam explosion pretreated straw stalk showed that the pretreatment effect was satisfied.
     The author’s study was perfectly reflected in this doctoral dissertation, including:
     (1)The study is mainly focus on impact factors of steam pretreatment and optimization of the steam explosion parameters. Through the two index: structure variety (the content of hemicellulose, cellulose and lignose) and saccharification rate of steam exploded corn stalk we can weigh the impact of factors on the pretreatment effect and found the main impact factors , the best parameters of steam explosion pretreatment technics. Accordingly, lots of experiments with the different combination of pressure, retained time, moisture content and the loaded density have been done, the physical,chemical and the structure analysis of the steam exploded straw stalk were carried through. The optimal steam explosion pretreatment parameters were found. Dual-steam explosion experiments have been done in this study; the result showed that the pretreated ability of dual-steam explosion technic was significant higher than the ordinary steam explosion.
     (2)To validate the effect and applicable value of the steam explosion technic, the experiments of anaerobic fermentation on steam exploded corn stalk under normal and moderate temperature have been done, which with the TS concentration of 5%. The result showed that the biogas prodution and the methane content of per gram dry steam exploded corn stalk were all increased than the contrast test, the COD removal ratio was high. The starting and closing time of anaerobic fermentation was all about 10 days earlier exploded under the condition of 3.0Mpa and 90s than the unpretreated straw stalk.
     (3) The saccharification experiments of steam exploded corn stalk showed that the saccharification ratio was increased than the contrast test. The steam explosion with addition of chemical have been done to look for efficiency pretreatment technic, the chemicals such as HCl, NaOH, Na2SO4 and ammonia were added into the corn stalk during the steam explosion process. Though the saccharification ratio of steam exploded corn stalk that used HCl as addition was higher than that use the other chemical as addition, the effect of chemical addition was not so useful in increasing the saccharification ratio of steam exploded corn stalk. The prodution rate decreased along with the increaseing of retained time in the experiments of fermentation for fuel ethanol under the pressure 3.0Mpa, but it increased under the condition of low pressure.
     (4)The analysis on microstructure of steam exploded corn stalk with SEM showed that the degree of damage to structure of the steam exploded corn stalk increased along with the increase of pressure and retained time. The better saccharification effect can be achieved with the steam explosion pretreatment condition of high pressure and short retained time. The crystallinity of steam exploded corn stalk increased to some extent than the unpretreated.
     (5)Equipment improvement. The effect of steam explosion was proved by a series of experiments, the problems such as the seal, retained time, the needed steam pressure, the thermal insulation etc were found. The corresponding improvement of steam explosion test-bed design have been done, which perfects the performance further. The moderate steam explosion was established according to the experiments on the test-bed. Also the study will provide basis for the design and manufacture of equipment industrialization.
引文
[1]环球能源网http://www.worldenergy.com.cn/StatisticsData/2007/0628/content_16944.htm.
    [2]中国科技统计网http://www.sts.org.cn/nwdt/gndt/document/070326.htm.
    [3]新华网http://news.xinhuanet.com/fortune/2007-03/29/content_5913249.htm.
    [4]孙振钧.中国生物质产业及发展取向[J].农业工程学报,2004,20(5):1-5.
    [5]骆光林等.农业工程技术创新与可持续农业[J].农业工程学报,1999,15(l):22-26.
    [6]Lindley J A, Vossoughi M.Physical properties of biomass briquettes[J].Transactions of the ASAE.1989,32(2):361-366.
    [7]Food and Agriculture Organization of the United Nations.FAO environment and energy paper. The briquetting of agricultural wastes for fuel [M].1991.
    [8]Center for Biomass Technology. Danish bioenergy solution–reliable and efficiency[M].2002.
    [9]中国农村能源行业2004年产业发展报告.
    [10]Azzam, A M,. Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation [J]. Environ. Sci. Health. B, 1989,24 (4):421–433.
    [11]Dale B E, Henk LL, Shiang M. Fermentation of lignocellulosic materials treated by ammonia freeze-explosion[J].Dev. Ind. Microbiol,1984, (26): 223–233.
    [12]Neves L, Ribeiro R, Oliveira R,et al. Enhancement of methane production from barley waset [J].Biomass & Bioenergy,2006, (30): 599–603.
    [13]Cadoche L, Lopez G D. Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes[J].Biol. Wastes, 1989,(30):153–157.
    [14]Reshamwala S, Shawky B T, Dale B E. Ethanol production from enzymatic hydrolysates of AFEX-treated coastal Bermuda grass and switch grass[J].Appl. Biochem. Biotechnol ,1995,(51/52): 43–55.
    [15]Bjerre A B, Olesen A B, Fernqvist T. Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysisresulting in convertible cellulose and hemicellulose[J].Biotechnol. Bioerg, 1996,(49): 568–577.
    [16]Lee J. Biological conversion of lignocellulosic biomass to ethanol[J].Journal of biotechnology,1997,(56):1-24.
    [17]Keikhosro Karimi,Mohammad J,Taherzadeh.Conversion of rice straw to sugars by dilute-acid hydrolysis[J]. Biomass and Bioenergy ,2006,(30):247-253.
    [18]林向阳,李资玲,刘玉环等.利用纤维素制备燃料酒精的进展[J].可再生能源,2006,(6):51-52.
    [19]朱圣东,吴元欣,喻子牛等.植物纤维素生产燃料乙醇的研究进展[J].化学与生物工程,2003,(5):8-9.
    [20]王振宇,焦岩.超低温微体化处理白桦木质纤维素的糖化工艺研究[J].食品与发酵工业,2006,32(10):74-76.
    [21]付泽鹏,董晓宇,杨秀山等.木质纤维素两步稀酸低温水解研究[R].广州:第一届全国研究生生物质能研讨会论文集.2006.12.
    [22]Angelidaki L,Ellegaard L, Ahring B. A comprehensive model of bioconversion of complex substrates to biogas[J].Biotechnology and Bioengineering,1999,63(3):363-372.
    [23]刘英,陈彦宾,王革华,德国沼气技术考察报告[J].中国沼气,2001,19(4):41-43.
    [24]刘继芬,德国农村再生能源—沼气开发利用的经验和启示[J].中国资源综合利用,2004,(11):24-28.
    [25]Palmowski L M, Muller J A. Influence of the size reduction of organic waste on their anaerobic digestion[J]. Water Sci. Tech, 2000,41(3),155-162.
    [26]Lissens G,Vandevivere P,De Baere L , et al. Solid waste digester: process performance and practice for municipal solid waste digestion[J]. Water Sci. Tech, 2001,44(8),91-102.
    [27]中国新能源网http://www.newenergy.org.cn/html/2006-12/2006124_12622.html.
    [28]Ingram L O,X Lai. In:BC Saha and J.Woodward,eds.Fue1s and Chemieals from Biomass[R].Washington D.C:Ameriean Chemical Society,1997,57-73.
    [29]陈驹声.传统和最新的酒精生产技术[M].北京:化学工业出版社,1990.
    [30]毛华,曲音波,高培基,李炜等.酵母属间原生质体融合改进木糖发酵性能[J].生物工程学报,1996,12(增):157-162.
    [31]Nigam,J N.Continuous ethanol production from pineapple cannery waste[J].Journal of Biotechnology,1999,72(3):197-202.
    [32]Crawford R L. Ligin biodegradation and transformation[M].New York: John Wiley&Sons,InC,1981.
    [33]高洁,汤烈贵.纤维素科学[M].北京:科学出版社,1999.
    [34]杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001.
    [35]StePhen Wald. Kineties of the enzymatic hydrolysis of cellulose[J].Biotechnol Bioeng,1984,(26):221-230.
    [36]Tatsuro Sawada, Yoshitoshi Nakamure,Fumihisa Kobayzshi. Effect of Furgal Pretreatment and Steam Explosion Pretreatment on Enzymatic Saccharification of Plant Biomass[J].Biotechnology and Bioengineering,1999,(48):719-724.
    [37]杨斌,高孔荣.甘蔗渣的糖化及转化为酒精的研究概况[J].食品与发酵工业,1995,21(6):61-65.
    [38]伍世文.大然纤维素类物质的糖化及转化为酒精的研究[J].西部粮油科技,2000,25(3):46-48.
    [39]刘穗,高培基.平维素酶的分子生学[J].纤维素科学与技术,1998,6(1):9-15.
    [40]孙可伟.固体废弃物资源化的现状和展望[J]中国资源综合利用2000,(1):10-13.
    [41]Nathan Mosier,Charles Wyman, Bruce Dale, et al. Features of promising techonlogies for pretreatment of lignocillulosic biomass[J]Bioresource Technology,2005,96(6):673-686.
    [42]Saha Badal C.Hemicellulose biocoversion[J].Ind Microbiol Biotechnol,2003,30(5):279-291.
    [43]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2(4):11-16.
    [44]Y Sun, J Cheng. Hydrolysis of lignocellulosic materials for ethanol production[J].Bioresource Technology,2002 (83):1–11.
    [45]Millet M A, Baker A J, Scatter L D. Physical and chemical pretreatment for enhancing cellulose saccharification[J]. Biotech. Bioeng. Symp ,1976(6):125–153.
    [46]Hahn-Hagerdal,B Jeppsson,H Skoog, et al. Bioehemistry and Physiology of xylose fermention by yeasts[J]. Enzyme and Microbial Technology,1994,(16):933-943.
    [47]李稳宏,吴大雄,高新,等.麦秸纤维素酶解法产糖预处理过程工艺条件[J].西北大学学报(自然科学版),1997,27(3):227-230.
    [48]Lynd L R, Elander R T, Wyman C E, et al. Likely features and costs of mature biomass ethanol technology[J]. Appl. Biochem Biotechnol,1996,(57/58): 741-761.
    [49]Shafizadeh F, Lai Y Z. Thermal degradation of 2-deoxy-Darabino-hexonic acid and 3-deoxy-D-ribo-hexono-1,4-lactone[J]. Carbohyd. Res,1975,(42):39–53.
    [50]Shafizadeh F, Bradbury A, G W. Thermal degradation of cellulose in air and nitrogen at low temperatures[J]. J. Appl. Poly. Sci,1979,(23):1431–1442.
    [51]B S Dien,X-L Li,L B hen,et a1.Enzymatic saccharification of hot-water pretreatede or B fibe rfor production ofmonosaeeharides[J].Enzyme and Microbial Technology,2006,39(5):1137-1144.
    [52]Palmqvist E,Hahn—Hagerdal B.Fermentation of lignoeellulosie hydrolysates:Inhibitors and menehanisms of inhibition[J].Bioresource Technology,2000,74(1):25-33.
    [53]吕欣,坂志朗,董明胜等.用加压热水预处理山毛榉树粉生产燃料乙醇的初步研究[J].农业工程学报.2008,24(3):219-222.
    [54]Chaogang Liu,Charles E,Wyman.Partial flow of compressed—hotwater through corn stover to enhance hemicelulose sugar recovery and enzymatic digestibility of cellulose[J].Bioresouree Technology,2005, 96(18): 1978-1985.
    [55]桂江生,应义斌.微波干燥技术及其应用研究[J].农机化研究,2003,(4):153-154.
    [56]李静,杨红霞,杨勇等.微波强化酸预处理玉米秸秆的乙醇化工艺的研究[J].农业工程学报.2007,23(6):199-202.
    [57]谷洪春,顾永宝,蓝李桥等.电子束辐射加工研究进展叨[J].原子核物理评论.1997,14(3):185-188.
    [58]宋安东.生物质(秸秆)纤维燃料乙醇生产工艺试验研究[D].郑州:河南农业大学,2003.
    [59]唐爱民,粱文芷.纤维素预处理技术的发展[J].林产化学与工业.1999,19(4):81-88.
    [60]廖双泉,邵自强等.剑麻纤维蒸汽爆破处理研究[J].纤维素科学与技术.2002,10(1).
    [61]Wright J D. Ethnol from biomass by enzymatic hydrolysis[J].Chem Eng Prog , 1998 , 84 (8) : 62-74.
    [62]Abatzojlou N,Chornet E,Belkacemi K. Phenomenological Kinetics of Complex Systems: the Development of a Generalized Severity Parameter ND Its Application to Lignocellulosics Fractionation.Chem[J].Emg.Sci, 1992,(47),1109.
    [63]T Jeoh,F A Agblevor. Characterizatio and fermentation of steam exploded cotton gin waste[J]. Biomass & Bioenegy, 2001(21):109-120.
    [64]T Jeoh. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production[D]. Blacksburg: Virginia Tech University,1998.
    [65]陈洪章,李佐虎.麦草蒸汽爆破处理的研究Ⅱ.麦草蒸汽爆破处理作用机制分析[J].纤维素科学与技术.1999,7(4):13-22.
    [66]Tatsumoto K, Baker J O , Tucker M P , et al.Digestion of pretreated aspen substrates:Hydrolysis rates and adsorptive loss of cellulase enzymes[J].Appl Biochem Biotechnol , 1988 ,(18) : 159-174.
    [67]Palonen H , Tjerneld F , Zacchi G, et al . Adsorption of Trichoderma reesei CBH I and EGⅡand their catalytic domains on steam pretreated softwood and isolated lignin [J]. Biotechnology , 2004 ,(107) : 65-72.
    [68]罗鹏,刘忠.蒸汽爆破法预处理木质纤维原料的研究[J].林业科技,2005,30(3):53-56.
    [69]Cantarella M,Cantarela L,Gallifueoo A,eta1.Comparison of different detoxificafion methods for steam-exploded poplar wood as a Substrate for the bioproduction of ethanol in SHFand SSF[J].Proeess Biochemistry,2004,39(11):1533-1542.
    [70]Schell D , Nguyen Q , Tucker M, et al . Pretreatment of softwood by acid—catalyzed steam explosion followed by alkali extraction[J].Appl . Biochem.Biotechnol, 1998 , (70) : 17-24.
    [71]刘仲齐.生物乙醇转化技术的研究进展[J].西南农业学报,1999,(12):64-68.
    [72] Himmel M E,Baker J O,Overend R P.Enzymatic Conversion of Biomass for Fuels Production.ACS Symposium Series[C].1994,292-324.
    [73]Jamshid Iranmahbooba, Farhad Nadima, Sharareh Monemib. Optimizing acid-hydrolysis: a critical step for production of ethanol from mixed wood chips[J].Biomass and Bioenergy, 2002,(22):401-404.
    [74]Kadam K L,Wooley R J,Aden A,et a1.Softwood forest thinnings as a biomass source forethanol production:a feasibility study for california[J].Biotechnol Prog,2000,(16):947-957.
    [75]Sivers M V.Zacchi G.A techno-economical eomparison of three processes for the production of ethanol from pine[J].Bioresouree Technology,1995,(51):43-52.
    [76]Hinman N D , Schell D J , Riley C J , et al.Preliminary estimate of the cost of ethanol production for SSF technology[J].Appl Biochem Biotechnol, 1992, 34(35):639-649.
    [77]Esteghlalian A,Hashimoto A G,Fenske J J,et a1.Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover,poplar and switchgrass[J].Bioresource Technology,1997,(59):129-136.
    [78]张继泉.利用玉米秸秆发酵生产乙醇燃料乙醇的研究[D].济南:山东轻工业学院,2002.
    [79]Wooley R,Ruth M ,Glassner D,et a1.Process design and costing of bioethanol technology :a tool for determining the status and direction of research and development[J].Biotechnology Progress,1999,(15):794-803.
    [80]庄新姝.超低酸水解制取纤维燃料乙醇的研究[D].杭州:浙江大学,2005.
    [81]Curreli Nicoletta,Agelli M ario,Pisu Brunella,et a1.Com plete and efficient enzymic hydrolysis of pretreated wheat straw [J].Process l~iochemistry,2002,37(9):937-941.
    [82]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [83]张雪松,朱建良.纤维素类物质预处理效果的影响因素分析[J].纤维素科学与技术,2005,13(2):45-49.
    [84] McMillan J D.Pretreatment of lignocellulosic biomass.In:Himmet ME.Enzymatic convemiort of bionmssfrofuels production[J].Amercian Chemical Society,1992,292-324.
    [85]de Vrije T.de Haas G G,Tan G B,et a1.Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii[J].International Journal of Hydrogen Energy,2002,27(11-12):1381-1390.
    [86]Mes—Hanme M,Dale B E,Craig W K.Comparison of steam and aminonia pretreatment for enzymatic hydrolysis of cellulosel[J].Appl Microbiol Biotechno1.1988,(29):462-468.
    [87]Lin K W ,Ladisch M R,Sehaefor D,et a1. Review on effect of pretreatment on digestibility of cellulosic materials[J].AIChE Symposium Series,1981,(77):102-106.
    [88]Foster B L,Dale B E,Doran-Peterson J B.Enzymatic hydrolysis of ammonia-treated sugar beet pulp[J].Applied Biochemistry and Biotechnology, 2001,91(3):269-282.
    [89]许风,孙润仓,詹怀宇.木质纤维原料生物转化燃料乙醇的研究进展[J].纤维素科学与技术,2004,l2(1):45-54.
    [90]G Peter van Walsum,Helen Shi.Carbonicacid enhancement of hydrolysis in aqueous pretreatmentof corn stover[J].Bioresource Technology,2004,(93):217-226.
    [91]Buswell J A,Odiere. Ligninbiodegradation[J].CRC Crit Rev Biotechnol,1987,(6):1-60.
    [92]Kirk T K,Farrell R L. Enzymatic“combustion”: The microbial degradation of lignin[J].AnnRev Microbiol,1987,(41):465-505.
    [93]高扬,王双飞.木素的生物降解及酶的作用[J].纸和造纸,1996,3(2):51-52.
    [94]Boominathan K, Reddy C A .Camp-mediated differential regulation of lignin peroxidase and manganese-dependent peroxidase production in the white-rot basidiomycete Phanerochaete chrysosporium[J]. Proc. Natl. Acad. Sci. (USA) 1992, 89 (12), 5586–5590.
    [95]Blanchette R A. Delignification by wood-decay fungi[J]. Annu. Rev. Phytopatho,(1991),(29): 381-398.
    [96]王双飞,韦小英,杨征月等.膨化/生物法预处理对纤维素酶酶解蔗渣的影响[J].纤维素科学与技术.1998,6(1):29-36.
    [97]Yujie Chi, Annele Hatakka, Pekka Maijala. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes[J].International Biodeterioration & Biodegradation, 2007,59(1):32-39.
    [98]管筱武,张甲耀,罗宇炕.木质素降解酶及其调控机理的研究进展[J].上海环境科,1998,(17):46-49.
    [99]浦跃武,甄浩铭,冯书庭.白腐菌产锰过氧化物酶条件的研究[J].菌物系统,1998,17(3):251-255.
    [100]王佳玲,付时雨,余惠生等.氮源浓度和芳香化合物对自腐菌Panus conchatus产木素降解酶的影响[J].纤维素科学与技术,1997,5(4):25-32.
    [101]柯世省,夏黎明,张朝晖,等.氧浓度对固定化黄抱原毛平革菌合成过氧化物酶的影响[J].林产化学与工业,2000,20(3):40-46.
    [102]Youn H,Hah Yand Kang S.Role of laccase in lignin degradation by white-rot fungi[J].FEMS Microbiol Lett.,1995,(132):183-188.
    [103]Faison B D, Kirk T K. Relationship between lignin degradation and production of reduced oxygen species by Panerochaete chrysosporium[J]. Appl Environ Microbiol,1983,(46):1140-1145.
    [104]Paola Giardina,Gianna Palmieri,Bianea Fontanella,et al.Manganese peroxidase isoenzymes Produced by Pleurotus grown on wood sawdust[J]. Archives of Biochemistry and Biophysics,2000,376(l):171-179.
    [105]Claudia Crestini,Giovanni Giovannozzi Sermanniand DimitrisS.Argyropoul.Structrual modifications induced during biodegradation of wheat lignin by Lentjnula edodes[J].Bioorganic & Medicinal Chemistry,1998,(6):967-973.
    [106]Eduardo Agosin and Etienne Odier. Solid-state fermentation,lignin degradation and resulting digestibility of wheat fermented by selected white-rot fungi[J].Appl.Microbial Biotechnol,1985,(21):397-403.
    [107]Segula Massaphy and Dan Levanon.The effect of lignocellulose on lignocellulolytic activityof Pleurorus Pulmonarius on a submerged culture[J],Appl. Microbial Biotechnol,1992,(36):828-832.
    [108]Jeffrey K.Glenn,Meredith A.Morgan,Mary B.Mayfield,et al. An extracellular H2O2-requiring enzyme involved in lignin biodegradation by the white rot basidiomycete Phanerochaete chrysosporiun[J]. Biochemical and Biophysical Researeh Communications,1983,114(3):1077-1083.
    [109]罗鹏,刘忠.用木质纤维素原料生产乙醇的预处理工艺[J].酿酒科技,2005,(8):42-47.
    [110]Dekker R, F H. Steam explosion: an effective pretreatment method for use in the bioconversion of lignocellulosic materials. In: "Steam Explosion Techniques: Fundamental Principles and Industrial Applications"[M]. Philadelphia(USA): Gordon and Breach Scientific Publishers, 1991,277-305.
    [111]Mamers H, Yuritta J P, Menz D J.Explosion pulping of bagasse and wheat straw[J]. Tappi,1981,64(7):93-96).
    [112]正道科技网.http://www.gentle-st.com/qbcs1.
    [113]董宽虎,沈益新.饲草生产学[M].北京:中国农业出版社,2003.
    [114]徐勇,勇强,单谷等.汽喷玉米秸秆纤维素酶水解的研究[J].林产化工通讯,1999,33(6):15-18.
    [115]罗鹏,刘忠.蒸汽爆破预处理条件对麦草酶水解影响的研究[J].林业科技,2007,32(5):37-40.
    [116]王堃,蒋建新,宋先亮.蒸汽爆破预处理木质纤维素及其生物转化研究进展[J].生物质化学工程,2006,40(6):37-42.
    [117]朱琳,薛少平,阎勤劳.秸秆膨化颗粒饲料生产工艺的研究[J].中国农机化,2006.(1): 53-56.
    [118]孙占威,陈洪章,王艳辉等.钢球振荡酶解汽爆麦草的研究[J].北京化工大学学报(自然科学版) , 2006,33(6):26-30.
    [119]陈洪章,刘丽英.蒸汽爆碎技术原理及应用[M].北京:化学工业出版社,2007.
    [120]陆元章.现代机械设备设计手册[M].北京:机械工业出版社,1996.
    [121]李坚等.木材波谱学[M].北京:科学出版社.2003.
    [122]李润卿.有机结构波谱分析[M].天津:天津大学出版社,2003.
    [123]Gerotge P. Philippidis And Tammy K. Smith. Limitting factors in the simultaneous saccharification and fermentation process for conversion of cellulosic biomass to fuel ethanol[J].Appl.Biochem. Biotechnol..1995,(51-52):117-124.
    [124]Jin Won Park, et al. Development of effective modified cellulose for cellulose hudrolysis process[J].Biotechnol. Bioeng. 1995,(45):366-373.
    [125]邓良伟.纤维素类物质生产燃料酒精研究进展[J].食品与发酵工业.1995,21(5):69-72.
    [126]周德庆.微生物学教程[M].北京:高等教育出版社,2000.
    [127]卞有生.生态农业中废弃物的处理与再利用[M].北京:化学工业出版社,2000.
    [128]熊承永,李健,黄利宏.户用沼气池秸秆利用浅析[J].可再生能源,2003,109(3):44-45.
    [129]Zhang R,Zhang Z. Biogasification of rice straw with an anaerobic-phased solids digester system[J].BioresourceTechnology,1999,(68):235-245.
    [130]Palmowski L,Müller J. Influence of the size reduction of organic waste on their anaerobic digestion.In:Mata—Alvarez J,Tilche A,Cecchi F,eds. Proceedings of the Second International Symposium on Anaerobic Digestion of solid Wastes[R],Barcelona:Grafiques,1999,137-144.
    [131]Deigèns J P,Penaud V,Torrijos M,et al.Thermo-chemical Pre-treatment of an industrial microbial biomass:effect of sodium hydroxide addition on COD solubilization,anaerobic biodegradability and generation of soluble inhibitory compounds. In: Mata-Alvarez J.,TilChe A.,Cecchi F.,eds. Proeeedings of the Second International Symposium on Anaerobic Digestion of Solid Wastes[R],Barcelona: Grafiques,1999,121-128.
    [132]杨懂艳,李秀金,高志坚,等.化学与生物预处理对玉米秸秆生物产气量影响的初步比研究[J].农业工程学报,2003,19(5):209-213.
    [133]张金锁.技术经济学[M].北京:中国经济出版社,1993.
    [134]吴添祖,冯勤,欧阳仲健.技术经济学[M].北京:清华大学出版社,2004.
    [135]张百良.农村能源技术经济及管理[M].北京:中国农业出版社,1995.
    [136]张百良.农村能源工程学[M].北京:中国农业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700