用户名: 密码: 验证码:
纳米二氧化钛制备方法研究、性能研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛因其化学性质稳定、无毒、成本低廉且具有催化、紫外屏蔽等性能,在半导体、催化剂、纺织品功能整理等领域有着广泛应用。通过多种改性手段改善纳米二氧化钛的活性,提高其光催化效率和抗紫外整理性能是将这一技术推向实际应用的重要环节。本文采用微乳液法、溶胶—凝胶法和低温水解法制备纳米二氧化钛,并利用UV-VIS、TG-DTA、IR、XRD、SEM、TEM等多种测试手段,对改性纳米二氧化钛催化剂的光催化性能和抗紫外整理性能进行了系统的研究。
     采用微乳液法在Triton X-100/正丁醇/环己烷体系中,制备了纳米二氧化钛,考察反应时间、水与表面活性剂浓度比等反应条件的影响,探讨了纳米二氧化钛的形成机制,经650℃和1000℃煅烧后可分别得到分散性较好的锐钛矿型和金红石型纳米二氧化钛粒子,其粒径分别为20~35nm和40~60nm。
     利用溶胶—凝胶法通过钛酸正丁酯水解制备稀土(钆、铈、镧)掺杂和双元素铈—银、铈—铜)掺杂纳米二氧化钛,通过X射线衍射、透射电镜及紫外—可见光吸收光谱分析,稀土元素的掺杂提高了纳米二氧化钛的相变温度,而双元素掺杂则能降低纳米二氧化钛的相变温度;稀土掺杂和双元素掺杂都能减小纳米二氧化钛的粒径,其粒径在8-16nm;稀土掺杂和双元素掺杂都能提高二氧化钛的光催化活性和织物的抗紫外性能。
     利用低温水解法合成纳米二氧化钛,通过控制反应时间和溶液浓度可以获得不同晶型的二氧化钛,并用1mo1·1-1的硅酸钠溶液对其进行包覆,通过光催化实验发现:催化剂中混晶的比例不同,光催化效率也不同,锐钛矿质量分数为69.8%、金红石质量分数为30.2%时,光催化降解率最高可达95.7%。通过对纳米二氧化钛整理后的织物进行测试,发现经整理后的棉织物具有突出的抗紫外性能和服用性能,将织物进行10次洗涤后,其紫外透过率基本上没有发生改变,SiO2:TiO2=5%包覆时抗紫外效果最好,金红石型次之,最后是锐钛矿。
Nanometer titania has been widely used in such fields as semiconductor, catalyst and functional finishing of textile because of its stable chemical property, no toxicity, low cost, reasonable photocatalytic and UV resistance performance. Photocatalyst is the key part in photocatalysis, and further improvement on its activity, efficiency and UV resistance by selective treatment to modify the properties of the particles is an essential step to apply this novel technology. In this dissertation, titania nanoparticles (nano-TiO2) were prepared by microemulsion, sol-gel and low-temperature hydrolysis process. The photocatalytic activity and UV resistance finishing capacity of modified nanoparticle TiO2have been characterized by UV-VIS、TG-DTA、 IR、XRD、SEM、TEM.
     Titania nanoparticles were prepared by microemulsion process with titanium chloride and aqueous ammonia in Triton X-100/n-butyl alcohol/cyclohexane. Particle size of the hydrated TiO2increases with increase in reaction time as well as surfactant-to-water molar ratio. Hydrated TiO2was calcined at650℃and1000℃and characterised by UV-VIS, TGA, DTA, XRD and TEM analyses. XRD and TEM results demonstrate that the anatase and rutile nano-TiO2possess better dispersity, with particle size20-35nm and40-60nm respectively.
     The rare earth(Gd, Ce, La) doped and the double metallic ions (Ce-Cu, Ce-Ag) doped titania nanoparticles were prepared by a sol-gel process with Ti(OC4H9)4as precursor and characterized by XRD, TEM and UV-VIS. The morphologies of the particles varied with the doping condition. The rare earth doping increases the phase transition temperature converting anatase phase into rutile phase. The double metallic ions doping decreases the phase transition temperature. The doping (either the rare earth doping or the double metallic ions doping) can decrease the grain size of TiO2particles, which was8-16nm. The photocatalytic activities of the doped nano-TiO2were investigated by the photocatalytic degradation of methyl orange under ultraviolet lamp. The results showed that the photocatalytic performance of TiO2and UV resistance of finished fabrics was enhanced greatly owing to doping ions.
     Titania nanoparticles were prepared through low-temperature hydrolysis, and the initial material was Ti(OC4H9)4. Anatase, rutile and mixed nano-TiO2were synthesized by changing the ratio of initial materials and reaction time, and were wrapped with lmol·l-1sodium silicate. XRD, TEM, UV-VIS, IR and TG spectra were employed to characterize the nanometer particles. The photocatalytic activities of the samples were investigated by the photocatalytic degradation of methyl orange. The results revealed that the photocatalytic activity was excellent when TiO2powers contain69.8%anatase and30.2%rutile phase, and methyl orange was degraded by95.7%. The cotton fabrics were finished by nano-TiO2and its clothing performance was tested and analyzed. The results revealed that functional finishing on cotton fabrics was feasible by liquid phase at low temperature, the ultraviolet transmitting rate changed a little after10times of washing, and the fabrics treated with the finishing agent had excellent UV resistance and wear ability. UV resistance of the fabrics is best when SiO2:TiO2is5%.
引文
[1]汪信,刘孝恒.纳米材料化学[M].北京:化学工业出版社,2006
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001
    [3]翟庆洲,裘式纶,肖丰收.纳米材料研究进展—纳米材料结构与化学性质[J].化学研究 与应用,1998,10(3)::226-231
    [4]李明怡.纳米材料应用现状及发展趋势[J].世界有色金属,2000,(1):21-24
    [5]张立德.跨世纪新领域:纳米材料科学[J].科学,1993,45:13-17
    [6]牟季美,张立德.纳米复合材料发展趋势[J].物理,1996,1:31-36
    [7]周少红,甘树才,陈博.纳米材料的发展及其展望[J].世界地质,1999,18(3):100-104
    [8]易求实,黄元平.纳米材料及发展前景[J].湖北教育学院学报,2000,17(5):29-33
    [9]Morooka S, Yasutakae T.,Kobata A.,etal.,Amechanism for the production of ultrafine particles of TiO2 by a gas phase reaction[J].Internation Chemical Enginnering,1989,29(1):119-123
    [10]李凤生.超细粉体技术[M].北京:国防技术出版社,2001
    [11]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002
    [12]李浩洋,高恩君,闻兰.纳米二氧化钛的制备及对金属离子吸附研究进展[J].当代化工,2006,35(2):84-88
    [13]黄月霞,邢建伟.纳米二氧化钛整理剂的研制和应用[J].纺织科技进展,2006,(3):39-41
    [14]李志军,王红英.纳米二氧化钛的性质及应用进展[J].广州化工,2006,34(1):23-24
    [15]Deperpo L E,Sangaletti L, Allierietal B, etal. Correlation between crystallite sizes and microstrains in TiO2 nanopowder[J]. J Cryst Growth,1999,198:516-520
    [16]Hong K.P.,Young T.M.,Do K.K.Formation of monodisepersed spherical TiO2 powders by thermal hydrolysis of Ti(SO4)2 [J].J Am Ceram Soc,1996,79(10):27-32
    [17]龙震,黄喜明,钟家柽等.纳米金红石型二氧化钛的低温制备及表征[J].功能材料,2004,35(3):311-313
    [18]蔡红.纳米二氧化钛的制备及应用[J].江西化工,2002,(2):107-109
    [19]陈小泉,古国榜.钛氧有机化合物常压低温液相合成纳米二氧化钛晶体的研究[J].无机化学学报,2002,7(18):749-752
    [20]方晓明,陈焕钦.纳米TiO2的液相合成方法[J].技术进展,2001,9:17-20
    [21]李志军,王红英.纳米二氧化钛的制备方法[J].山西化工,2006,26(2):47-50
    [22]吴迎春,徐章法.液相法制备纳米TiO2微粒的研究进展[J].盐城工学院学报,2001,12,14(4):25-27
    [23]唐玉朝,李薇.TiO2形态结构与光催化活性关系的研究[J].化学进展,2003,15(5):379-384
    [24]吴树新,尹燕华.掺铜TiO2光催化剂光催化氧化还原性能的研究[J].感光科学与光化学,2005,23(5):333-335
    [25]Fujishima A, Honda A. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature,1972,238:37-38
    [26]Choi W, Termin A, Hoffmann M R. The role of metalion dopants in quantumsized TiO2 correlation between photoreactivity and charge carrier recombination dynamics[J]. Phys Chem, 1994,98(51):13669-13679
    [27]夏宇正,叶晶磊,石淑先等.具有混晶结构纳米TiO2水溶胶的低温制备及光催化性能研究[J],涂料工业,2007,37(8):38-41
    [28]任成军,钟本和,陈国强等.铜离子掺杂对二氧化钛薄膜光催化性能的影响[J].硅酸盐学报,2006,34(1):39-43
    [29]Sun J, K Gao L, Zhang Q H. Synthesizing and comparing the photocatalyic properties of high surface area rutile and anatase titania nanoparticles [J], J.Am.Cenm.Soc,2003,86(10): 1677-1682
    [30]张慧,陈建华,陈鸿博等.纳米TiO2混晶的形成及其对光催化性能的影响[J].分子催化,2006,20(3):249-253
    [31]Gratzel M,howe R F. Electron paramanetic Resonance studies of doped colloids[J]. J.phys.Chem.,1990,94:2566-2572
    [32]Navio J A, Colon G, Trillas M, et al. Heterogenous photocatalytic reactions of nitrite oxidation and Cr(VI)reduction on ion-doped titania prepared by the wet impregnation method[J]. Appl.Catal.B,1998,16(2):187
    [33]Litter M I. Heterogenous photocatalytic transition metal ions in photocatalytic systems[J]. Appl.Catal.B:1999,23(2/3):89
    [34]Naviol J A, Testa J J, Djedjeian P, et al. Ion-doped titania powders prepared by sol-gel method[J]. Appl.Catal.A,1999,178(2):191
    [35]Sakata Y, Yamarmoto T, Okazaki T, et al. Generaton of visible light response on the photocatalyst of copper ion contaning TiO2[J]. Chem.Lett.,1998, (12):1253
    [36]Iwasaki M, Hara M, Kawada H, et al. Cobalt ion-doped TiO2 photocatalyst response to visible light[J]. J.CollidInterfaceSci.,2000,224(1):202
    [37]刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性的光催化研究进展[J].催化学 报,2001,22(2):215-218
    [38]水淼,岳林海,徐铸德.几种制备方法的掺铁二氧化钛的光催化性能[J].物理化学学报,2001,12(3):282-285
    [39]Palmisano L, Augugliaro V, et al. Activity of chyomlum ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation[J]. J.Phys.Chem.,1988,92, 6710
    [40]Choi W, Termin A, et al. The role of metal ion dopants in quantum-sized TiO2:correlation between photoreactivity and charge carrier recombination dynamics[J]. J.Phys.Chem.,1994, 98(51):13669-13679
    [41]于向阳,程继建.铁离子掺杂对TiO2薄膜光催化活性的影响[J].无机材料学报,2001,16(4):742-745
    [42]俞行,刘艾平.纺织专用功能纳米材料及其应用[J].纺织科学研究,2001,(3):1-9
    [43]周晓沧,肖建宇.新合成纤维及其制造[J].北京:中国纺织出版社,1996,75-83
    [44]余旺苗.纳米材料及其在纺织工业中的应用[J].东华大学学报(自然科学版),2001,27(6):123-126
    [45]齐文玉.织物用抗紫外整理剂[J].上海丝绸,2001,(1):14-17
    [46]张永文,陈英.纳米技术与抗紫外线功能性纺织品[J].纺织导报,2004,(6):48-50
    [47]高婵娟,王进美,杨家密.纯棉织物纳米抗紫外线功能整理研究[J].纺织科技进展,2005,4(2):16-17
    [48]董绍伟.织物的抗紫外线整理[J].染整技术,2005,27(2):8-12
    [1]陈龙武,甘礼华,岳天仪等.微乳液反应法制备α-Fe2O3超细粒子的研究[J].物理化学学 报,1994,10(8):750-754
    [2]哈润华,侯斯健,栗付平等.微乳液结构和丙烯酰胺反相微乳液聚合[J].高分子通报,1995,1:10-19
    [3]Brus L E. J Chem Phys,1983,79(11):5566
    [4]沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报,1995,11:6
    [5]Chang Chia-lu, Fogler H S. AICHE J,1996,42(11):3153
    [6]Robinson B H, Towey T F, Zourab S, et al. Coll Surf,1991,61:175
    [7]Chhabra V, Pillai V, Mishra B K, et al. Langmuir,1995,11:3307
    [8]William F M. Power Diffraction File, Alphabetical Index (Inorganic Material)[M]. edited by Benjamin P & Sigmund W, Swarthmore:JCPDS,1979, p849
    [9]Warren B E. X-Ray Diffraction[M]. New York:Dover Publication,1990, Chap.13
    [10]吴建懿,周继承,曹俊.硫酸钛低温水解中对原级粒子的控制研究[J].无机盐工业,2004,36(3):29-31
    [11]文明芬,王秋萍,陈靖等.纳米二氧化钛晶型互变的研究[J].功能材料,2004,35(5):651-653
    [1]Huo Q, Margolese D 1, Stucky G D. Surfactant control of phase in the synthesis of mesoporous silica-based materials[J]. Chem Mater,1996,8(5):1147-1155
    [2]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of mesoporous molecular sieves the nonionic polyethylene oxide surfactants[J]. Science,1995,269(1): 1242-1244
    [3]Kim S J, Park S D, Jeong Y H, etal. Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution[J]. Am Ceram Soc,1999,82(4):927-932
    [4]Ovenston J, Yanagisawa K. Effect of hydrothermals treatment of amorphous titania on the phase change from anatase to rutile during calcinations[J]. Chem Mater, 1999,11:2770-2774
    [5]高伟,吴凤清,罗臻等.TiO2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22:660-662
    [6]赵文宽,方佑龄,董庆华.用高温热水解法制备活性纳米微晶光催化剂[J].物理化学报,1998,14(5):424-426
    [7]张艳峰,林玉龙,贾振斌等.液相合成金红石二氧化钛纳米晶的性能研究[J].河北师范大学学报,2003,27(2):156-158
    [8]Li Y Z, Lee N H, Hang D S, etal. Synthesis and characreization of nano titania powder with high photocativity for gas-phase photo-oxidation of benzene form TiOCl2 aqueous solution at low temperature[J]. Langumir,2004,20(25):10838-10844.
    [9]王有乐,张庆芳.提高废水处理中TiO2光催化活性途径的探索[J].工业水处理,2001,21(12):5-8
    [10]管自生,马颖,曹亚安等.钛凝胶的光致变色和电致变色特性[J].物理化学学报,2000,16(1):5-8
    [11]Choi W, Termin A, Hoffmann M R. The role of metalion dopants in quantumsized TiO2 correlation between photoreactivity and charge carrier recombination dynamics[J]. Phys Chem,1994,98 (51):13669-13679
    [12]Li X Z, Li F B. Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and waste water treatment[J]. Environ. Sci. Technol,2001,35(11):2381-2387
    [13]张彭义,余刚,蒋展鹏.半导体光催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10
    [14]Irie H, Watanabe Y, Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of TiO2-xNx powders[J]. J Phys Chem B,2003,107(23):5483-5486
    [15]Diwald O, Thompson T L, Goralski E G, et al. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals[J]. J Phys Chem B,2004,108(1):52-57
    [16]Khan S U M, Al-Shahry M, Ingler W B. Efficient photochemical water splitting by a chemically modified n-TiO2[J]. Science,2002,297(5590):2243-2245
    [17]Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light[J]. Chem Lett,2003,32(4):364-365
    [18]Umebayashi T, Yamaki T, Tanaka S, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Chem Lett,2003,32(4):330-331
    [19]Yamaki T, Umebayashi T, Sumita T, et al. Fluorine-doping in titanium dioxide by ion implantation technique. nuclear instruments and methods in physics research[J].2003,206B: 254-258
    [20]姜研彦.玻璃表面TiO2膜性能的影响因素及提高其光降解效率的途径[J].材料导报,2000,14(6):38-40
    [21]于向阳,梁文,程继健.提高二氧化钛光催化性能的途径[J].硅酸盐学报,2000,(1):53-57
    [22]袁锋,黎甜楷.荧光素衍生物LB膜对电极的光敏化作用[J].物理化学学报,1995,11(6):526-531
    [23]王有乐,张庆芳.提高废水处理中TiO2光催化活性途径的探索[J].工业水处理,2001,21(12):5-8
    [24]Fox M A, Dulay M T. Heterogeneous photocatalysis[J]. Chem.Rev,1993:341-357
    [25]沈学优,李华英.载铂二氧化钛对3B艳红染料溶液光催化降解性能的研究[J].水处理技术,2001,27(1):33-36
    [26]Chen J. Photocatalyzed oxidation of alcohols and organochlorides in the presence of native TiO2 and metallized suspensions[J]. Wat. Res.,1999,18(3):244-247
    [27]Vinodgopal K, Kamat P V. Enhanced rates of photocatalytic degradation of azo dye uaing SnO2/Tio2 coupled semiconductor thin films[J]. Environ. Sci. Technol.1995,29:841-845
    [28]刘平,周廷云,林华香等.TiO2/SnO2复合光催化剂的耦合效应[J].物理化学学报,2001,17(3):265-269
    [29]张玉红,熊国兴,杨维慎等.溶胶-凝胶法制备复合MxOy-TiO2光催化剂[J].物理化学学报,2001,17(3):273-277
    [30]邓桦,析浩忠.纳米TiO2的抗紫外线整理应用研究[J].纺织学报,2005,26(6):47-49
    [31]杨俊玲.纳米TiO2在纺织品抗菌、抗紫外线整理中的研究[J].东华大学学报,2005,31(5):106-109
    [32]Bozzi A, Yuranova T, Guasaquillo, et al. Self-cleaning of modified cotton textiles by TiO2 at low temperatures under daylight irradiation[J]. J. Phys. Chem. A,2005,174(1):156-164
    [1]侯梅芳,李芳柏,李瑞丰,等.钕掺杂提高TiO22光催化活性的机制[J].中国稀土学报,2004,22(1):75
    [2]吴树新,马智,秦永宁,等.掺杂纳米TiO2光催化性能的研究[J].物理化学学报,2004,20(2):138
    [3]刘国光,张学治,许亚杰,等.铁、锌、铁酸锌掺杂对纳米级二氧化钛光催化降解罗丹明B活性的影响[J].环境工程,2003,21(2):72
    [4]Zhu Jiefang, Fu Wen, He Bin, et al. Fe3+, Cr3+ -doped TiO2 photocatalysts prepared by the sol-gel and hydrothermal method[J]. Photographic Science and Photochemistry,2004,22(4): 241
    [5]吕学钧,许宜铭,王智,等.Fe(Ⅲ)参与TiO2光催化降解X3B的反应机理研究[J].化学学报,2004,62(16):1455
    [6]吴树新,马智,秦永宁,等.过渡金属掺杂二氧化钛光催化性能的研究[J].感光科学与光化学,2005,(2):94-102
    [7]井立强,张新,屈宜春,等.掺杂镧的TiO2纳米粒子的光致发光及其光催化性能[J].中国稀土学报,2004,(6):746-750
    [8]吴玉程,陈挺松,解挺,等.纳米TiO2稀土元素掺杂改性与光催化性能研究[J].功能材料,2005,(1):124-126
    [9]钱斯文,王智宇,王民权.La3+掺杂对纳米TiO2微观结构及光催化性能的影响[J].材料科学与工程学报,2003,(1):48-52
    [10]周武艺,唐绍裘,张世英,等.制备不同稀土掺杂的纳米氧化钛光催化剂及其光催化活性[J].硅酸盐学报,2004,(10):1203-1208
    [11]井立强,孙晓君,蔡伟民,等.掺杂Ce的TiO2纳米粒子的光致发光及其光催化活性[J].化学学报,2003,(8):1451-1456
    [12]任成军,钟本和,陈国强等.铜离子掺杂对二氧化钛薄膜光催化性能的影响[J].硅酸盐学报,2006,34(1):39-43
    [13]熊建裕,乔学亮,陈建国.银掺杂对二氧化钛晶型转变的影响[J].2005,26(2):84-86
    [14]张小丽,毛健,王龙等.Ce/TiO2复合粉体的制备及其性能评价[J].功能材料与器件学报,2005,9,11(3):363-366
    [15]吴树新,尹燕华,何菲,等.掺铜纳米二氧化钛光催化氧化还原性能的研究[J].感光科学与化学,2005,23(5):333-339
    [16]赵高凌,韩高荣.银纳米离子/二氧化钛附和薄膜的溶胶凝胶法制备及其光学性质的研究[J].材料科学与工程,2001,19(1):21-25
    [17]崔鹏.Ag/TiO2光催化剂的表面性能表征[J].合肥工业大学学报,2002,25(3):365-368
    [1]周晓明,刘剑洪,张培新等.TiO2纳米晶低温制备[J].深圳大学学报(理工版),2005,22(3):278-281
    [2]赵晓红,张渊明,胡军文等.低温水热法制备高活性纳米金红石相二氧化钛[J].化学研究与应用,2006,18(3):235-238
    [3]张艳峰,魏雨,贾振斌等.TiOCl2溶液低温水解合成金红石型氧化钛纳米粉[J].无机材料学报,2001,16(6):1217-1219
    [4]Wang Wei,, Gu Baohua, Liang Liyuan,ea tl. Synthesis of rutile nanocrystals with controlled size and shape by low-temperature hydrolysis effects of solvent composition[J]. J. phys chem. B,2004, 108(39):14789-14791
    [5]孙爱华,杨烨,林永兴等.低温制备金红石型纳米TiO2粉体[J].硅酸盐学报,2007,35(2):170-173
    [6]张霞,赵岩,张彩碚等.低温制备锐钛矿结构的纳米TiO2[J].材料科学与工程学报,2004,22(3):328-332
    [7]Wang Zhenyao, Xia Dingguo, Chen Ge, et al. The effects of different acids on the preparation of TiO2 nanostructure in liquid media at low temperature[J]. Chemistry and Physics.2008, 111(2-3):313-316
    [8]Wei Fengyu, Zeng Hualing, Cui Peng, et al. Various TiO2 microcrystals:Controlled synthesis and enhanced photocatalytic activities[J]. Chemical Engineering Journal,2004,144(1): 119-123
    [9]Warren B E. X-Ray Diffraction[M]. New York:Dover Publication,1990, Chap.13
    [10]Huang Y, Ju X. Study on photocatalytic degradation of organic pollutants in water by using nanometer titanium dioxide[J]. Modern Chemical Industry,2001,21(4):45-48
    [11]方世杰,徐明霞,黄卫友等.纳米TiO2光催化降解甲基橙[J].硅酸盐学报,2001,29(5):439-442
    [12]陈小泉,古国榜.以钛氧有机物为前驱物制备具有高光催化活性的纳米二氧化钛晶体[J].催化学报,2002,23(4):312-316
    [13]秦纬,刘建军,左胜利等.不同晶型纳米TiO2的溶剂热合成及其光催化活性研究[J].无机材料学报,2007,22(5):933-935
    [14]Sopyan L, Murasawa S, Hashimoto K, et al. Highly efficient TiO2 film photocatalyst degra-dation of gaseous acetaldehyde[J]. Chem.Let,1994,4:723-728
    [15]杨甫生.纳米粉体制备及其对棉织物抗紫外整理的研究[J].安徽:安徽农业大学,2005
    [16]许颖琦.棉织物的无机紫外屏蔽整理研究[D].上海:东华大学,2005
    [17]王蕾,陈克宁.多元羧酸防皱机理的探讨[J].印染,2002,3(9):1-5
    [18]汪澜,李卓.多羧酸与纤维素纤维反应机理的分析研究[J].纺织学报,2002,21(1):18-20
    [19]Wang Wenli, Zhang Shufen, Yang Jinzong. Research on the dyeing and anti-crease finishing difunctional properties of a polycarboxylic water-soluble sulfur dye[J]. Function Technol, 2005, (36):1-4
    [20]Andrew B. Nonformaldehyde DP fFinish atcotton with citric acid[J]. T.C.C,1990,22(9): 63-66
    [21]吴丽莉,俞建勇.多元羧酸和壳聚糖对棉织物的抗菌防皱整理[J].现代纺织技术,2001,9(4):1-4
    [22]黄华芹,高洗,李文国.柠檬酸酯化交联棉织物的基础研究[J].广东化纤,2003,3(1):15-19
    [23]陈美云,袁德宏,王春梅.棉织物多元羧酸和壳聚糖防皱整理[J].山东纺织科技,2006,3(6):1-4
    [24]陈克宁,贾炳颖,王超.次磷酸钠在CA整理体系中的催化作用[J].印染,2002,7(1):1-3
    [25]廖咏梅,许建华.精练棉织物表面FT-IR ATR红外光谱分析[J].广西轻工业,2008,(1):122-123
    [26]BOZZI A, YURANOVA T, KIWI J. Self-Cleaning of wool-polyamide and polyester textiles by TiO2-rutile modification under daylight irradiation at ambient temperature[J]. J.Phys.Chem A,2005,172(3): 27-34
    [27]谢冰,章少华,李丽.二氧化钛光催化中的测试表征技术[J].江西化工,2004,(4):38-40
    [28]尹峰,林瑞峰,林原.TiO2表面电子结构及其光催化活性[J].催化学报,1999,20(3):344-346
    [1]刘华,胡文启.钛白粉的生产和应用[M].北京:科学技术出版社,1992:78-80
    [2]陈朝华.钛白粉生产技术问答[M].北京:化学工业出版社,1998:17-18
    [3]郭英凯,刘晓薇,张秀起等.纳米二氧化钛表面改性研究[J].无机盐工业,2003,35(3):25-26
    [4]崔爱莉,王亭杰,金涌等.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报,2001,22(9):1543-1545
    [5]崔爱莉,王亭杰,金涌.TiO2表面包覆SiO2纳米膜的动力学模型[J].高等学校化学学报,2000,21(10):1560-1562
    [6]章建辉,刘淮涌,王振林.二氧化硅包裹氧化铁的方法[P].CN 101186762,2008
    [7]覃操,王亭杰,金涌.液相沉积法制备TiO2颗粒表面包覆SiO2纳米膜[J].物理化学学报,2002,18(10):884-888
    [8]方晓明.TiCl4液相水解制备纳米TiO2粉体的研究[D].华南理工大学博士学位论文,2002
    [9]Werner Alfred J. Titanium dioxide pigment coated with silica and alumina[P]. US 3,437,502, 1969
    [10]Robert Moody John. Process for producing coated titanium dioxide pigment[P]. US 3,515,566, 1970
    [11]Decolibus Raymond Lew. TiO2 pigment coated with porous alumina/silica and dense silica[P]. US 3,928,057,1975
    [12]Maurizio Bruni and Mario Visca. Preparation of aluminosilicates on the surface of titanium dioxide[J]. Ind. Eng. Prod. Res. Dev.,1985,24:579-586
    [13]Dmitry V Bavykin, Elizabeth V. Milsom, Frank Marken et al. A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis[J]. Electrochemistry Communications, 2005 (7):1050-1058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700