用户名: 密码: 验证码:
COS、CS_2水解催化剂的开发及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工是云南省重要支柱产业之一,目前我国黄磷产量已达到80万吨/年。在黄磷生产过程中,伴随着大量含CO混合气体的产生,每生产1吨黄磷约产生2500~3000m3的尾气,其中CO的含量高达85%~95%。近年来,随着一碳(C1)化工技术的发展,完全有可能从CO出发合成各种有经济价值的有机化合物。但是,一方面黄磷尾气中的含有大量有机硫,如羰基硫(COS)、二硫化碳(CS2)等,这些均是对环境有害的气体,另一方面这些有机硫气体可导致羰基合成催化剂中毒,其中,黄磷尾气中的COS含量为700~1000mg/m3,CS2的含量为20~-80mg/m3,黄磷尾气用作一碳化工原料气必须去除其中的COS和CS2。目前,国内外尚未对黄磷尾气中COS和CS2的同时脱除进行较为系统和深入的研究。
     针对上述问题,本文根据黄磷尾气特征,采用催化水解法同时脱除COS和CS2。主要的研究内容包括微波煤质活性炭催化剂和微波椰壳活性炭的开发、微波椰壳活性炭的再生性能研究、COS和CS2同时催化水解动力学研究和改性微波活性炭同时脱除COS、C82的反应机理研究。具体的研究内容及研究结论如下:
     改性微波煤质活性炭(MCAC)催化剂的开发:以微波煤质活性炭为载体,采用溶胶凝胶法制备负载型催化剂,考察了一元活性组分种类及含量、焙烧条件、碱金属种类、碱含量;二元活性组分种类及含量;三元活性组分种类及含量等对COS和CS2同时催化水解活性的影响。在确定最佳制备条件和最佳活性组分配方的基础上,考察了不同工艺条件对同时催化水解反应的影响。研究表明,Fe2O3的质量分数为5.0%,n(Fe):n(Cu):n(Ni)为10:2:0.5,焙烧条件为300℃下焙烧3h,浸渍质量分数为13%的KOH溶液,所得催化剂的同时催化水解COS和CS2的性能最优。反应温度的升高有利于COS的催化水解,但是当温度超过50℃时,CS2的水解活性随温度的升高有所下降。过高的相对湿度(RH)和氧含量不利于催化水解反应的进行;当进口浓度比COS/CS2从40:1降低到3:1时,COS和CS2的同时催化水解活性会明显下降。
     改性微波椰壳活性炭(MCSAC)催化剂的开发:空白微波椰壳活性炭活性较空白微波煤质活性炭活性要高。对比了Fe-Cu-Ni/MCAC和Fe-Cu-Ni/MCSAC两种催化剂的活性,相同条件下,二者的工作硫容分别为38.54mgS/g和56.77mgS/g。考察了工艺条件对Fe-Cu-Ni/MCSAC催化剂水解活性的影响,结果表明,随着反应温度的升高,催化剂的工作硫容逐渐增加,但是当反应温度超过50℃时,催化剂的工作硫容增加幅度不明显;当相对湿度为32%时,催化剂的工作硫容最大,随着相对湿度的不断增大,催化剂的工作硫容随之下降,在17%~49%的相对湿度范围内,催化剂的硫容能够维持在60mgS/g左右;当氧含量为0%时,催化剂的工作硫容最大,随着氧含量的不断增大,催化剂的工作硫容随之下降;Fe-Cu-Ni/MCSAC催化剂在8000h-1-20000h-1空速范围内较为稳定;当COS/CS2进口浓度比为40:1时,催化剂的工作硫容最大,随着进口浓度比的不断减小,催化剂的工作硫容随之下降。
     考察了CO作为载气对Fe-Cu-Ni/MCSAC催化剂同时催化水解COS和CS2活性的影响,结果显示,Fe-Cu-Ni/MCSAC催化剂在CO气氛下的催化水解活性低于N2气氛下的活性,但是下降趋势并不明显。实验考察了不同硫化氢(H2S)浓度对Fe-Cu-Ni/MCSAC催化剂同时催化水解COS和CS2活性的影响。结果表明,H2S气体不利于催化水解反应的进行,且随着H2S浓度的增加,COS和CS2的脱除效率下降明显,但是当H2S的浓度较小时(70mg/m3),催化剂的催化水解活性下降趋势较小,说明低浓度的H2S对Fe-Cu-Ni/MCSAC催化剂的催化水解活性影响不大。
     实验对失活Fe-Cu-Ni/MCSAC催化剂的再生进行了研究,考察了再生方法、N2加热吹扫温度、KOH浓度和再生次数对催化剂活性恢复的影响。研究表明,“水洗+N2加热吹扫+浸碱(碱洗)”方法的再生效果是最佳的,其中N2加热吹扫条件为500℃下吹扫3h,浸渍质量分数为13%的KOH时再生效果最优。实验通过BET、XPS、XRD、TG-DTA等表征手段对这种再生过程进行了分析,分析表明,通过水洗失活催化剂可以将催化剂表面少量的硫酸盐和单质硫洗去,N2加热吹扫可以使部分硫酸盐和亚硫酸盐分解生成S02气体脱除,使催化剂表面恢复活性组分Fe203的形式,浸渍KOH溶液则为了提供水解反应所需的碱性基团,在这种再生方式下所得的催化剂的活性恢复最为明显。另外,随着再生次数的不断增加,催化剂的活性也逐渐下降,但其影响有限。由此可知,该再生方法具有较好的稳定性。
     对COS和CS2同时催化水解反应动力学进行了计算和分析:首先,采用幂函数作为动力学等效模型分别对COS和CS2催化水解反应本征动力学进行了数据分析和拟合,分别得到了COS和CS2的水解反应动力学方程式:
     -rCOS=3.3×106exp(-23.44/RT)PCOS1.0535PH2O-0.0015和-rCS2=2.26×107exp(-29.797/RT)PCS20.9727PH2O-0.11
     在此基础上,通过二者之间的关系和对反应过程的推断,对同时催化水解动力学方程进行了推导和计算。提出了COS和CS2同时催化水解的反应动力学方程为:-rCOS=3.3×106exp(-23.44/RT)PCOS1.0535PH2O-0.0015和-rCS2=2.26×107exp(-29.797/RT)PCS20.9727PH2O-0.11
     与此同时,实验对实际测得的同时催化水解反应速率与上述推导出的动力学方程所算得的同时催化水解反应速率进行了对比验证。结果表明,随着COS和CS2的进口浓度比从40:1下降到1:1,实际反应速率与计算反应速率的相对误差随之增大。但是二者的误差一直保持在8%左右,误差并不是十分明显。所以,上述同时催化水解COS和CS2的反应动力学方程式是适用的。
     改性微波活性炭同时脱除COS和CS2反应机理的研究:根据催化剂活性评价、工艺条件影响实验、结合不同条件下催化剂的分析测试表征(例如:BET、SEM/EDS、XPS等)、再生分析结果,提出了改性微波活性炭同时脱除COS和CS2的反应机理:在改性微波活性炭上COS和CS2的同时脱除分为两步:一是COS和CS2的水解反应过程,二是水解产物H2S的氧化反应过程。COS和CS2会被不断地催化水解生成H2S(CS2催化水解的中间体含有COS,但其同样会被进一步水解为H2S),而H2S则会在有氧气引入的条件下被氧化最终形成硫酸盐。在无水(RH=0%)或者水含量较低(RH=49%)的条件下,CS2和H2O首先被吸附在催化剂表面,在碱性基团和活性组分的作用下发生催化水解反应,而大多数COS直接与吸附在催化剂上吸附态的H2O在碱性基团和活性组分的作用下反应,也有可能少量的COS吸附在催化剂表面,与吸附态的H2O在碱性基团和活性组分的作用下反应,但是其反应较CS2的水解要快。此时,吸附态的CS2与吸附态的H2O在催化剂表面的催化水解反应是整个反应的控制步骤。在水含量较高(RH=96%)的条件下,COS和H2O更容易先被吸附在催化剂表面,然后发生水解反应,而CS2则没有或者较少被吸附在催化剂表面,直接与吸附在催化剂上吸附态的H2O发生水解反应。在有氧条件下,水解产物H2S被氧化的大致过程可以归纳为:H2S→单质硫/RSOR→RS02R→RS020R→SO42-/硫酸盐。与此同时,随着反应的进行,硫沉积现象明显,催化剂表面的硫酸盐占据了催化剂大量的活性位,破坏了催化剂表面的碱性基团,同时由于活性组分的不断减少,最终导致了催化剂的失活。
Phosphorus chemical industry is one of the industries of important economy pillar. Recently, the output of yellow phosphorus can achieve to80million tons every year in our country. The off-gas of yellow phosphorus is containing plenty of CO, in the process of one ton yellow phosphorus, the off-gas is2500-3000m3, and the CO content is high to85%-95%. In recent years, with the development of one carbon (C1) chemical industry, it is possible to synthesize many organic compounds with economic value from one carbon chemical industry. However, organic sulfurs (COS, CS2, etc.) in the yellow phosphorus off-gas are the harmful gas which can pollute the environment and result in the deactivation of catalysts. For example, in the off-gas of yellow phosphorus, COS content is700-1000mg/m3, CS2content is20~80mg/m3. Thus, yellow phosphorus off-gas is as the virgin gas of one carbon chemical industry, the COS and CS2must be removed. COS and CS2are coexistent in the yellow phosphorus off-gas, little research focuses on simultaneous catalytic hydrolysis of COS and CS2.
     On account of above problems and according to the characters of yellow phosphorus tail gas, the COS and CS2can be removed simultaneously by catalytic hydrolysis method in this research. The main research contents include:development of modified microwave coal-based activated carbon (MCAC), development of modified microwave coconut shell activated carbons (MCSAC), regeneration performance research of modified microwave coconut shell activated carbons, kinetic studies on simultaneous catalytic hydrolysis of COS and CS2, the reaction mechanism of simultaneous catalytic hydrolysis of COS and CS2. The main research contents and conclusions as follows:
     Development study of modified MCAC:A series of MCAC catalysts loaded by metal oxides were prepared by sol-gel method and tested for the simultaneous catalytic hydrolysis of COS and CS2at relatively low temperatures. The influences of preparation conditions on catalytic activity were studied, which were the kinds and amount of the first additive, calcination temperatures, types and content of alkali, the kinds and amount of the second additive, the kinds and amount of the third additive. The influences of reaction temperatures, O2concentration, relative humidity (RH) and inlet concentration ratio of COS/CS2on catalytic hydrolysis activity were investigated. The results show that catalysts with5.0%Fe2O3, n(Fe):n(Cu):n(Ni)=10:2:0.5after calcining at300℃for3h and13%KOH have superior activity for the simultaneous catalytic hydrolysis of COS and CS2. When the reaction temperature was above50℃, catalytic hydrolysis activity of COS could be enhanced, but catalytic hydrolysis activites of CS2was inhibited. Too high RH and O2content also could inhibit the simultaneous catalytic hydrolysis activities of COS and CS2. In addition, when the inlet concentration ratio of COS/CS2decreased from40:1to3:1, the simultaneous catalytic hydrolysis activities of COS and CS2decreased evidently.
     Development study of modified MCSAC:The catalytic hydrolysis activity of blank MCAC was lower than that of blank MCSAC. The MCAC and MCSAC loading with metal oxides were prepared by sol-gel method for simultaneous catalytic hydrolysis of COS and CS2and their catalytic hydrolysis performances at the relatively low temperature of50℃were investigated. The sulfur capacity of Fe-Cu-Ni/MCAC and Fe-Cu-Ni/MCSAC are38.54mgS/g and56.77mgS/g, respectively. The influences of operational conditions on simultaneous catalytic hydrolysis activity of Fe-Cu-Ni/MCSAC were investigated. The results showed that:The sulfur capacity of Fe-Cu-Ni/MCSAC was increased with the increased of reaction temperatures, but when the reaction temperature was above50℃, increasing the amplitude of sulfur capacity was not obvious. The sulfur capacity of Fe-Cu-Ni/MCSAC catalyst was highest when the RH was32%, and sulfur capacity was decreased with the increased of RH from32%to96%. The sulfur capacity of Fe-Cu-Ni/MCSAC catalyst could maintain about60mgS/g in the RH range of17%-49%, so it was the ideal RH range. When the O2content was0%, the sulfur capacity of Fe-Cu-Ni/MCSAC catalyst achieved maximum, and sulfur capacity was decreased with the increased of O2contents. The catalytic hydrolysis activities of Fe-Cu-Ni/MCSAC were relatively stable in the space velocity range of8000h-1~20000h-1. In addition, when the inlet concentration ratio of COS/CS2decreased from40:1to3:1, the sulfur capacity of Fe-Cu-Ni/MCSAC catalyst decreased evidently, and the sulfur capacity was highest when the inlet concentration ratio of COS/CS2was40:1.
     When the CO was as carrier gas instead of N2, the effect of CO on simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst was studied. The experimental results showed that the catalytic hydrolysis activities of COS and CS2under the CO environment were lower than those of under the N2environment, but the downtrend was not obvious. Thus, CO could reduce the catalytic hydrolysis activity, but the effect was limited. Meanwhile, the influence of H2S on simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst was investigated. When H2S was introduced the reaction system, the catalytic hydrolysis activity of Fe-Cu-Ni/MCSAC catalyst was decreased. The downtrend of catalytic hydrolysis efficiencies of COS and CS2were more and more obvious with the increased of H2S concentration, but when the H2S concentration was not so high (70mg/m3), the downtrend of catalytic hydrolysis activity of catalyst was not obvious. This demonstrated that Fe-Cu-Ni/MCSAC had the certain adsorption capacity for H2S, the effect of low concentration H2S on the simultaneous catalytic hydrolysis of COS and CS2Over Fe-Cu-Ni/MCSAC catalyst was not evident.
     It is a systematic research on the regeneration of exhausted Fe-Cu-Ni/MCSAC catalysts. The results showed that "water scrubbing+N2calcinations purging+alkaline regeneration" method was the best one, and the N2calcinations purging temperature was500℃, the KOH content was13%. The reasons of activities difference among the regeneration processes were studied by BET, XPS, XRD, TG-DTA methods,"water scrubbing+N2calcinations purging+alkaline regeneration" was consist of "water scrubbing","N2calcinations purging" and "alkaline regeneration". First, a small quantity of S/sulfate on the exhausted catalyst's surface could be removed with the "water scrubbing" process; parts of sulfate could be decomposed to SO2in the process of "N2calcinations purging", active component Fe2O3on the catalyst's surface could be recovered,"alkaline regeneration" could provide the alkaline groups for catalytic hydrolysis reaction. After regenerating by this way, the catalyst was close to the fresh catalyst, so the recovery of catalytic hydrolysis activity was the most obvious. Besides, the catalytic hydrolysis activity was decreased with the increased of regeneration frequency, but the effect of regeneration frequency was limited. Thus, this regeneration method was feasible and good stability.
     The reaction kinetics of simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst was calculated and analysed. First, the reaction kinetics of COS catalytic hydrolysis and CS2catalytic hydrolysis were analyzed and fitted respectively by power function dynamic equivalent model. The reaction kinetics equations of COS catalytic hydrolysis and CS2catalytic hydrolysis were obtained:(?)
     On this basis, through the relationship between the two reaction kinetics equations and the deduction of simultaneous catalytic hydrolysis of COS and CS2, we deduced and calculated the reaction kinetics equation of simultaneous catalytic hydrolysis of COS and CS2:(?)
     Meanwhile, the comparison and verification between the actual and the calculation formula of the simultaneous catalytic hydrolysis reaction rates showed that:the relative error was increased with the decreased of inlet concentration ratio of COS/CS2. But the relative error could keep about5%, so the error was not obvious. Thus, the above reaction kinetics equation of simultaneous catalytic hydrolysis of COS and CS2was applicative.
     The research on the reaction mechanism of simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst:Basis on the activity evaluation of catalysts, effect of reaction conditions, characterization tests of different catalysts (BET, SEM/EDS, XPS), regeneration analysis, the reaction mechanism of simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst was obtained. The reaction process of simultaneous catalytic hydrolysis of COS and CS2over Fe-Cu-Ni/MCSAC catalyst included two steps:hydrolysis reaction process of COS/CS2and the oxidation process of H2S. COS and CS2could be catalytic hydrolyzed to H2S (intermediate product of CS2catalytic hydrolysis included COS, but COS could be further catalytic hydrolyzed to H2S), and H2S could be oxidized to sulfate with O2conditions. First of all, on the conditions of no H2O or lower RH (RH=49%), CS2and H2O could be adsorbed on the surface of catalyst, catalytic hydrolysis of CS2could be achieved on the actions of alkaline groups and active components, but most of gaseous COS and a small quantity of the adsorption state COS could react with adsorbed water. The catalytic hydrolysis of CS2was the control step. However, at the conditions of high RH (RH=96%), COS and H2O could be adsorbed on the surface of catalyst, catalytic hydrolysis of COS could be achieved, and no CS2or a small quantity of CS2could be adsorbed on the surface of catalyst, most of gaseous CS2and a small quantity of the adsorption state CS2could react with adsorbed water. When the O2was introduced in the system, the oxidation process of H2S was:H2S→S/RSOR→SO2R→RSO2OR→SO42-/sulfate. Meanwhile, the contents of SO42-/sulfate were increased during the reaction, and they could occupy the activity sites of catalyst's surface, the alkaline groups were destroyed, the active components were deleted which could result in the deactivation of catalysts.
引文
[1]吴洪波,王晓,陈建民等.羰基硫与气溶胶典型组分的复相反应机制[J].科学通报,2004,49(8):739-743.
    [2]刘永春,刘俊锋,贺泓等.羰基硫在矿质氧化物上的非均相氧化反应[J].科学通报,2007,52(5):525-532.
    [3]张峰.COS在氧化物上的反应研究[D].[硕士论文].复旦大学:2003.
    [4]余春,上官炬,梁丽彤等.Ti02和V205改性A1203催化剂催化有机硫化物水解的性能[J].石油化工,2009,38(4):384-388.
    [5]朱世勇.环境与工业气体净化技术[M].化学工业出版社,2001.
    [6]王琳,张峰,宋国新等.CS2在大气颗粒物表面上的催化氧化反应研究[J].宁夏大学学报(自然科学版),2001,22(2):169-171.
    [7]Li X H, Liu J S, Wang J D, et al. Biogeochemical cycle of Sulfer in the Calamagrostis angustifolia wetland ecosystem in the Sanjiang Plain, China [J]. Acta Ecologica Sinica, 2007,27(6):2199-2207.
    [8]邱晓林.炼油厂LPG脱硫技术新进展[J].化工进展,2000,20(20):55-59.
    [9]梁丽彤.改性氧化铝基高浓度羰基硫水解催化剂研究[D].[硕士论文].太原理工大学:2005.
    [10]何丹,易红宏,唐晓龙等.低温催化水解二硫化碳技术的研究进展[J].化学工业与工程,2011,28(3):62-66.
    [11]汪海涛,胡长江,牟玉静.二硫化碳气体近紫外吸收截面积测定[J].光谱学与光谱分析,2009,29(6):1586-1589.
    [12]金谷大.化纤行业废气的污染及治理[J].环境保护,1994,15(10):19-21.
    [13]Todd J T, Mark C. New sulfur adsorbents derived from layered double hydroxides II: DRIFTS study of COS and H2S adsorption [J]. Applied Catalysis B:Environmental, 2008,82(3-4):199-207.
    [14]Sparks D E, Morgan T, Patterson P M, et al. New sulfur adsorbents derived from layered double hydroxides I:Synthesis and COS adsorption [J]. Applied Catalysis B: Environmental,2008,82(3-4):190-198.
    [15]郭波,李春虎,谢克昌.活性炭吸附二硫化碳的红外研究[J].煤炭转化,2004, (1):54-57.
    [16]孔渝华,王国兴,王先厚等.常温精脱硫工艺的新进展及其应用[J].中氮肥,1995(2):8-12.
    [17]Andrew R B, Victoria S H. Review of the toxicology of carbonyl sulfide, a new grain fumigant [J]. Food and Chemical Toxicology,2005,43(12):1687-1701.
    [18]杨克敌,陈国元,王光祖等.二硫化碳致畸作用及其机理的研究[J].中国公共卫生学报,1993,12(3):177-180.
    [19]陈国元,杨克敌,张招弟等.二硫化碳对大鼠F2后代后遗影响的研究[J].同济医科大学学报,1991,20(1):55-58.
    [20]贾丽丽,胡典明,孔渝华.脱除二氧化硫的研究进展[J].辽宁化工,2008,3(3):184-186.
    [21]王红妍.类水滑石衍生复合氧化物催化水解COS研究[D].[硕士论文].昆明理工大学:2011.
    [22]周之江.二硫化碳生产[M].北京:纺织工业出版社,1982.
    [23]刘亚敏.微波改性活性炭及微波解吸二硫化碳工艺研究[D].[硕士论文].南昌大学:2007.
    [24]王晓鹏.中温二硫化碳水解催化剂制备及其动力学研究[D].[硕士论文].太原理工大学:2007.
    [25]Paris D, Svoronos N, Thomas J B. Carbonly sulfide:a review of its chemistry and properties [J]. Industrial and Engineering Chemistry Research,2002,41:5321-5336.
    [26]Hinderaker G, Orville C S. Absorption of Carbonyl Sulfide In Aqueos Diethe-nolamine [J]. Chemical Engineering Science,2002,55:5813-518.
    [27]Little R J, Versteeg G F, Van Swaaij W P M. Kinetic study of COS with tertiary alkanolamine solutions. I. Experiments in an intensely stirred batch reactor [J]. Industrial and Engineering Chemistry Research,1992,31:1262-1269.
    [28]陈杰,李春虎,赵伟等.羰基硫水解转化脱除技术及面临的挑战[J].现代化工,2005,25(增刊):293-295.
    [29]王丽,吴迪镛,王树东等.稀土氧化物CeO2脱除二硫化碳的研究[D].[博士论文].中国科学院上海冶金研究所材料物理与化学:2000.
    [30]Aboulayt A, Mauge F, Hoggan P E, et al. Combined FTIR reactivity and quantum chemistry investigation of COS hydrolysis at metal oxide surfaces used to compare hydroxyl group basicity [J]. Catalysis Letters,1996,39(3-4):213-218.
    [31]West J, William B P, Young N C, et al. Ni-and Zn-Promotion of γ-Al2O3 for the hydrolysis of COS under mild conditions [J]. Catalysis communications,2001,2(3-4): 135-138.
    [32]Bachelier J, Aboulayt A, Lavalley J C, et al. Activity of Different Metal Oxides Towards COS Hydrolysis. Effect of SO2 and Sulfation [J]. Catalysis Today,1993, 17(1-2):55-62.
    [33]Laperdrix E, Justin I, Costentin G, et al. Comparative study of CS2 hydrolysis catalyzed by alumina and titania [J]. Applied Catalysis B:Environmental,1998,17(1-2): 167-173.
    [34]Lee S C, Snodgrass M J, Park M K, et al. Kinetics of Remoavl of Carobonyl Sulfide by Aqueous Monoethanolmaine [J]. Environmental Science and Technology,2001, 35(11):2352-2357.
    [35]Dalleska N F, Colussi A J, Hyldahl A M, et al. Rate and mechanism of carbonyl sulfide oxidation by peroxides in concentrated sulfuric acid [J]. The Journal of Physical Chemistry A,2000,104(46):10794-10796.
    [36]李秀平.CO气氛中高浓度COS水解转化的研究[D].[硕士论文].中国海洋大学:2007.
    [37]王会娜,上官炬,王晓鹏等.羰基硫催化水解研究进展[J].工业催化,2007,15(2):18-21.
    [38]Rhodes C, Riddle S, West J, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:A review [J]. Catalysis Today,2000,59(3):443-464.
    [39]王国兴,孔渝华,叶敬东,等.活性炭精脱硫剂及制备:CN:961180137[P].1996.11.13.
    [40]杜彩霞.有机硫加氢转化催化剂的使用[J].工业催化,2003,11(9):13-17.
    [41]黄洪发,许娟,裴进群等.有机硫加氢转化催化剂CT16-1的研究[J].石油与天然气化工,2006,35(6):44-47.
    [42]李新学,刘迎新,魏雄辉.羰基硫脱除技术[J].现代化工,2004,24(8):19-22.
    [43]黄新伟,王国兴,叶敬东.不同活性炭精脱H2S和COS性能比较[J].化工设计 通讯,1995,21(4)12-14:41.
    [44]王祥光.COS、CS2水解技术[J].小氮肥设计,2005,26(5):1-8.
    [45]赵海,王芳芳,伍星亮等.复合金属氧化物脱除羰基硫的研究[J].煤炭转化,2007,30(2):31-35.
    [46]Clark P D, Dowling N I, Hvuang M. Conversion of CS2 and COS over alumina and titania under Claus process conditions:reaction with H2O and SO2 [J]. Applied Catalysis B:Environmental,2001,31:107-112.
    [47]张益群,肖忠斌,马建新等.02和SO2对稀土氧硫化物上羰基硫水解反应的影响[J].复旦学报,2003,42(3):379-380.
    [48]肖忠斌,张益群,马建新等.硫化稀土氧化物上羰基硫水解反应的研究[J].复旦学报,2003,42(3):372-374.
    [49]张益群,肖忠斌,马建新等.稀土氧硫化物上的羰基硫水解反应[J].高等学校化学学报,2004,25(4):721-724.
    [50]赵传军,黄吉,陈井轩等.水煤气、半水煤气系统气体脱硫影响因素[J].气体净化,2006,6(4):13-16.
    [51]王丽,李福林,吴迪镛等.低温催化水解二硫化碳的研究[J].天然气化工,2005,30:1-5.
    [52]Erik C R, Evan J G, Dennis C S. Catalytic formation of carbonyl sulfide during warm gas clean-up of simulated coal-derived fuel gas with Pd/ γ-Al2O3 sorbents, Fuel,2012, 92:211-215.
    [53]肖建华,彭勇,肖安陆.COS、CS2低、常温水解脱除技术进展[J].气体净化,2004,4(1):2-5.
    [54]Sasaoka E, Taniguchi K, Hirano S, et al. Catalytic Activity of ZnS Formed from Desulfurization Sorbent ZnO for Conversion of COS to H2S [J]. Industrial and Engineering Chemistry Research,1995,34(4):1102-1106.
    [55]陈亚宾.NCT-1有机硫水解催化剂的研制[J].北学工业与工程技术,1997,18(3):9-11.
    [56]Yue Y, Zhao X, Hua W, et al. Nanosized titania and zirconia as catalysts for hydrolysis of carbon disulfide [J]. Applied Catalysis B:Environmental,2003,46:561-572.
    [57]金国杰,樊惠玲,上官炬等.活性炭对二硫化碳和水的共吸附动力学的热重研究 [J].环境科学学报,1999,19(4):379-381.
    [58]张金昌,李学令,王树东等.改性活性炭低温脱除COS的实验研究[J].辽宁化工,1998,27(2):102-104.
    [59]He D, Yi H H, Tang X L, et al. Carbon disulfide hydrolysis over Fe-Cu/AC catalyst modified by cerium and lanthanum at low temperature [J]. Journal of Rare Earths,2010, 28:343.
    [60]Yegiazarov Y, Clark J, Potapova L, et al. Adsorption-catalytic process for carbon disulfide removal from air [J]. Catalysis Today,2005,102-103:242-247.
    [61]Fan H L, Li C H, Guo H X. A study on removal of organic sulfur compound with modified activated carbon [J]. Journal of Natural Gas Chemistry,1999,8(2):151-156.
    [62]Wang L, Wang S, Yuan Q, et al. Removal of carbon disulfide via coupled reactions on a bi-functional catalyst:Experimental and modeling results [J]. Chemosphere,2007,69: 1689-1694.
    [63]Yi H H, Yu L L, Tang X L, et al. Catalytic Hydrolysis of Carbonyl sulfide over Modified Coal-based Activated Carbons [J]. Journal of central south university,2010, 17:985-990.
    [64]王红妍,易红宏,唐晓龙等.改性活性炭催化水解羰基硫[J].中南大学学报,2011,42(3):848-852.
    [65]Tan S, Li C, Liang S, et al. Compensation effect in catalytic hydrolysis of carbonyl sulfide at lower temperature [J]. Catalysis Letters,1991, (8):155-168.
    [66]Wang L, Guo Y, Lu G Z. Effect of activated carbon support on CS2 removal over coupling catalysts [J]. Journal of Natural Gas Chemistry,2011,20:397-402.
    [67]于丽丽.活性炭基催化水解羰基硫催化剂的筛选及动力学研究[D].[硕士论文].昆明理工大学:2009.
    [68]Thomas B, Williams B P, Young N, et al. Ambient temperature hydrolysis of carbonyl sulfide using γ-alumina catalysts:effect of calcination temperature and alkali doping [J]. Catalysis Letters,2003,86(4):201-205.
    [69]柯明,许赛威,刘成翠等.常温羰基硫水解催化剂的研究进展[J].石油与天然气化工,2007,36(4):271-274.
    [70]West J, Williams B P, Young CN, et al. New directions for COS hydrolysis:Low temperature alumina catalysts [J]. Studies in Surface Science and Catalysis,1998,119: 373-378.
    [71]Huang H M, Young N, Williams B. P, et al. COS hydrolysis using zinc-promoted alumina catalysts [J]. Catalysis Letters,2005,104(1-2):17-21.
    [72]黄镕.LYT-511氧化钛基中温有机硫水解剂的开发与应用[C].贵阳:全国气体净化信息站2006年技术交流会论文集,2006.
    [73]Shang G J, Li C, Guo H. Hydrolysis of carbonyl sulfide and carbon disulfide over alumina based catalysts I. Study on activities of COS and CS2 hydrolysis [J]. Journal of Natural Gas Chemistry,1998,7(1):24-30.
    [74]Krishna K P. Reactivities of carbonyl sulfide (COS), carbon disulfide (CS2) and carbon dioxide (CO2) with transition metal complexes [J]. Coordination Chemistry Reviews, 1995,140:37-114.
    [75]严明佳,肖忠斌,张益群等.LA/堇青石蜂窝状催化剂上COS的水解反应[J].华东理工大学学报(自然科学版),2005,31(1):130-132.
    [76]Zhang Y Q, Xiao Z B, Ma J X. Hydrolysis of carbonyl sulfide over rare earth oxysulfides [J]. Applied Catalysis B:Environmental,2004,48:57-63.
    [77]Gu Y Q, Zhen G L, Wei C, et al. Reativty of Pt/Al2O3 and Pt/CeO2/Al2O3 catalysts for partial oxidation of methane to syngas [J]. Journal of Natural Gas Chemistry,1998,7(1): 31-37.
    [78]Ning P, Yu L L, Yi H H, et al. Effect of Fe/Cu/Ce loading on the coal-based activated carbons for hydrolysis of carbonyl sulfide [J]. Journal of rare earth,2010,28(2):205.
    [79]毕研俊.Zn-Al类水滑石制备及其吸附去除水中阴离子表面活性剂性能研究[D]:[硕士学位论文].济南:山东大学,2007.
    [80]陈爱民.新型氧化锰催化剂用于苯甲酸甲酯加氢反应的研究[D]:[硕士学位论文].上海:复旦大学,2004.
    [81]王艳芹.MgAlFe类水滑石制备及其对水体中苯酚和对硝基苯酚的吸附性能研究[D]:[硕士学位论文],济南:山东大学,2006.
    [82]Hu Q H, Xu Z P, Qiao S Z, et al. A novel color removal adsorbent from heterocoagulation of cationic and anionic clays [J]. Journal of Colloid and Interface Science,2007,308(1):191-199.
    [83]Mikulova Z, Cuba P, Balabanova J, et al. Calcined Ni-Al Layered Double Hydroxide as a Catalyst for Total Oxidation of Volatile Organic Compounds:Effect of Precursor Crystallinity [J], Chemical Papers,2007,61(2):103-109.
    [84]Andersson P-O F, Pirjamalil M, Jaras S G, et al. Cracking catalyst additives for sulfur removl from FCC gasoling [J]. Catalysis Today,1999,53(4):565-573.
    [85]Greenwell H C, Stackhouse S, Coveney P V, et al. A Density Functional Theory Study of Catalytic trans-Esteriflcation by tert-Butoxide MgAl Anionic Clays [J]. The Journal of Physical Chemistry B,2003,107(15):3476-3485.
    [86]Hibin T, Tsunashima A. Characterization of repeatedly reconstructed Mg-Al hydrotalcite-like compounds:gradual segregation of aluminum from the structure [J]. Chemistry of Materials,1998,10(12):4055-4061.
    [87]Kooli F, Depege C, Ennaqadi A, et al. Rehydration of Zn-Al layered double hydroxides [J]. Clay and Clay Minerals,1997,45(1):92-98.
    [88]Wang H Y, Yi H H, Ning P, et al. Calcined Hydrotalcite-like Compounds as catalysts for Hydrolysis Carbonyl Sulfide at low temperature [J]. Chemical Engineering Journal, 2011,166:99-104.
    [89]Wang H Y, Yi H H, Tang X L, et al. Catalytic hydrolysis of COS over CoNiAl mixed oxides modified by lanthanum [J]. Fresenius Environmental Bulletin,2010,20(3): 773-778.
    [90]Yi H H, Wang H Y, Tang X L, et al. Effect of Catalyst Composition on catalytic hydrolysis of COS [J]. Asia-Pacific Power and Energy Engineering Conference (APPEEC2010), March 28-31,2010, Chengdu, China.
    [91]Wang H Y, Yi H H, Tang X L, et al. Effect of preparation conditions and adding Cerium on catalytic hydrolysis of COS. The 4th International Conference on Management and Service Science (MASS 2010), August 24-26,2010, Wuhan, China.
    [92]Yi H H, Zhao S Z, Tang X L, et al. Influence of calcination temperature on the hydrolysis of carbonyl sulfide over hydrotalcite-derived Zn-Ni-Al catalyst [J]. Catalysis Communications,2011,12:1492-1495.
    [93]Yi H H, Wang H Y, Tang X L, et al. Effect of Calcination Temperature on Catalytic Hydrolysis of COS over CoNiAl Catalysts Derived from Hydrotalcite Precursor [J]. Industrial and Engineering Chemistry Research,2011,50:13273-13279.
    [94]Zhao S Z, Yi H H, Tang X L, et al. Effect of Ce-doping on catalysts derived from hydrotalcite-like precursors for COS hydrolysis [J]. Journa of Rare Earths,2010,28: 329.
    [95]Eiji S. Characterization of Reaction between ZnO and COS [J]. Industrial and Engineering Chemistry Research,1996,35:2389-2394.
    [96]Sahibed-Dine A, Aboulayt A, Bensitel M, et al. IR study of CS2 adsorption on metal oxides:relation with their surface oxygen basicity and mobility [J]. Journal of Molecular Catalysis A:Chemical,2000,162:125-134.
    [97]林建英,郭汉贤,谢克昌.羰基硫水解催化剂的失活性为研究[J].宁夏大学学报,2001,22(2):192-194.
    [98]梁美生,李春虎,郭汉贤等.低温条件下羰基硫催化水解反应本征动力学的研究[J].催化学报,2002,23(4):357-362.
    [99]梁美生,李春虎,郭汉贤等.低温条件下二氧化碳存在时羰基硫催化水解本征动力学[J].燃料化学学报,2003,31(2):149-154.
    [100]上官炬,郭汉贤.氧化铝基COS、CS2水解催化剂表面碱性和催化作用[J].分子催化,1997,11(5):337-342.
    [101]Wang L, Wu D G, Wang S, et al. Coupling catalytic hydrolysis and oxidation for CS2 Removal [J]. Journal of Environmental Sciences,2008,20:436-440.
    [102]Liu J F, Liu Y C, Xue L, et al. Oxygen poisoning mechanism of catalytic hydrolysis of COS over AI2O3 at room temperature [J]. Acta Physico-Chimica Sinica,2007,23(7): 997-1002.
    [103]Colin R, Stewart A R, John W, et al. The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide:a review [J]. Catalysis Today,2000,59(3-4):443-464.
    [104]周广林,付元胜,周红军.常温COS水解催化剂的失活与再生[J].石油化工,2001,30(8):602-604.
    [105]周广林,周红军,付元胜.常温COS水解催化剂失活原因与对策[J].大氮肥,2000,23(2):119-120.
    [106]王国兴,黄新伟,叶敬东等.T504型常温COS水解催化剂的研制[J].湖北化工,1995,1:24-28.
    [107]黄劲,李小定,孔渝华.羰基硫水解催化剂失活研究的现状与进展[J].氮肥设计,1995,6(33):11-15.
    [108]于丽丽,易红宏,宁平等.改性活性炭水解COS催化剂的再生方法研究[J].中南大学学报,2011,42(3):841-847.
    [109]李建伟,李成岳,刘金盾等.还原气氛中γ-906型催化剂上羰基硫水解动力学研究[J].工业催化,1996,2:23.
    [110]李建伟,刘金盾,张永战等.C02气氛中T-24催化剂上羰基硫催化动力学研究[J].郑州工业大学学报,1996,17(4):19-26.
    [111]李建伟,张永战,方文骥.惰性气氛中能够活性氧化铝催化剂上羰基硫水解动力学研究[J].郑州工学院学报,1994,15(2):102-107.
    [112]郭汉贤,苗茂谦,张允强TGH-3Q羰基硫常低温水解催化剂及其应用[J].小氮肥设计技术,1999,20(3):18-21.
    [113]Williams B P, Young N C, John W, et al. Carbonyl sulphide hydrolysis using alumina catalysts [J]. Catalysis Today,1999,49:99-104.
    [114]Fiedorow R, Leaute R, Dalla Lana I G. A study of the kinetics and mechanism of COS hydrolysis over alumina [J]. Journal of Catalysis,1984,85(2):339-348.
    [115]Tong S. Catalytic hydrolysis of carbon disulfide and carbonyl sulfide [D]. Canada University of Alderta,1992:163.
    [116]上官炬,郭汉贤.氧化铝基催化剂上二硫化碳水解反应性的研究[J].燃烧化学学报,1997,25(3):277-283.
    [117]Huisman H M, Vander B P, Dillen A J. Hydrolysis of carbon sulfides on titania and alumina catalysts:The influence of water [J]. Applied Catalysis A:General,1994,115: 157-171.
    [118]Wang L, Wang S, Yuan Q. Removal of carbon disulfide:Experimental and modeling results [J]. Fuel,2010, (87):1716-1720.
    [119]George Z M. Kinetics of cobalt-molybdate-catalyzed reactions of SO2 with H2S and COS and the hydrolysis of COS [J]. Journal of Catalysis,1974,32(2):261-271.
    [120]Ivanov V A, Lavalley J C. Effect of sodium on the morphology and basicity of alumina [J]. Applied Catalysis A,1995:323-34.
    [121]Akimoto M, Dalla Lana I G. Role of reduction sites in vapor-phase hydrolysis of carbonyl sulfide over alumina catalysts [J]. Journal of Catalysis,1980, (62):84.
    [122]Hoggan P E, Aboulayt A, Pieplu A, et al. Mechanism of COS Hydrolysis on Alumina [J]. Journal of Catalysis,1994,149(2):300-306.
    [123]Wilson C, Hirst D M. High-level ab initio study of the reaction of OCS with OH radicals [J]. Journal of the Chemical Society, Faraday Trans.1995,91:793-798.
    [124]Hanaoka T, Minowa T. Simultaneous removal of H2S and COS using activated carbons and their supported catalysts [J].Catalysis Today,2005,104:94-100.
    [125]赵西平.纳米氧化物与CS2催化水解和VOC光催化氧化[D].[硕士论文].复旦大学:2003.
    [126]郭晓汾.CS2在氧化铝基催化剂上的吸附行为和水解机理的研究[D].[硕士论文].太原工业大学:1996.
    [127]王丽,李福林,吴迪镛等.催化水解-氧化耦合一步法脱除二硫化碳的研[J].燃料化学学报,2004,32(4):466-470.
    [128]Tsybulevskii A M, Kapustin G I, Brueva T R. The nature of activity of the alumina catalysis in thereaction of carbon disulfide hydrolysis [J]. Kinetics and Catalysis,1998, 39(1):138-145.
    [129]邹丰楼,李春虎,沈芳等.CS2水解催化剂活性与表面碱分布的研究[J].燃料化学学报,1998,26(3):234-237.
    [130]张文郁,解秀清,孙予罕.焙烧温度对TiO2-Al2O3催化剂制备的影响[J].燃料化学学报,2001,29(增刊):77-79.
    [131]邹丰楼,李春虎,郭汉贤.CS2水解催化反应动力学补偿效应[J].分子催化,1997,11(2):138-144.
    [132]Li W, Peng J H, Zhang L B, et al. Preparation of activated carbon from coconut shell chars in pilot-scale microwave heating equipment at 60 kW [J]. Waste Management, 2009,29:756-760.
    [133]Duan X H, Srinivasakannan C, Peng J H, et al. Preparation of activated carbon from Jatropha hull with microwave heating:Optimization using response surface methodology [J]. Fuel Processing Technology,2011,92:394-400.
    [134]Yang K B, Peng J H, Srinivasakannan C, et al. Preparation of high surface area activated carbon from coconut shells using microwave heating [J]. Bioresource Technology,2010,101:6163-6169.
    [135]何丹.活性炭基二硫化碳水解催化剂的筛选及动力学研究[D].[硕士论文].昆明理工大学:2012.
    [136]Yi H H, He D, Tang X L, et al. Effects of preparation conditions for active carbon-based catalyst on catalytic hydrolysis of carbon disulfide [J]. Fuel,2012,97: 337-343.
    [137]Ning P, Li K, Yi H H, et al. Simultaneous Catalytic Hydrolysis of Carbonyl Sulfide and Carbon Disulfide over Modified Microwave Coal-Based Active Carbon Catalysts at Low Temperature [J]. The Journal of Physical Chemistry C,2012,116(32): 17055-17062.
    [138]Kozlowski M. XPS study of reductively and non-reductively modified coals [J]. Fuel, 2004,83:259-265.
    [139]He D, Yi H H, Tang X L, et al. The catalytic hydrolysis of carbon disulfide on Fe-Cu-Ni/AC catalyst at low temperature [J]. Journal of Molecular Catalysis A: Chemical,2012,357:44-49.
    [140]Wang L, Wu D Y, Wang S D, et al. A Novel Desulfuring Agent for CS2 Removal by Couple Processing [J]. Journal of the Chinese rare earth society.2005,23:35-39. (China)
    [141]Wang X Q, Qiu J, Ning P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions [J]. Journal of Hazardous Materials,2012,229-230:128-136.
    [142]Hellmut G K, Dalla I G. IR studies of sulfur dioxide adsorption on a Claus catalyst by selective poisoning of sites [J]. The Journal of Physical Chemistry,1984,88: 1538-1543.
    [143]Huang C C, Chen C H, Chu S M. Effect of moisture on H2S adsorption by copper impregnated activated carbon [J]. Journal of Hazardous Materials,2006,136:866-873
    [144]Cavani F, Trifiro F, Vaccari A. Hydrotalcite-type anionic clays:Preparation, properties and applications [J] Catalysis Today,1991,11:173-301.
    [145]尹元根.多相催化剂的研究方法[M].北京:化学工业出版社,1988.
    [146]张毓明.甲醇生产中精脱硫工艺及脱硫剂的选择[J].工业催化,1994,(3):47-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700