用户名: 密码: 验证码:
耐高低温柔性多层隔热材料结构与隔热性表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔性防护材料是人类探索世界和宇宙时,在特殊场合下仍能正常操作移动的必要条件。实际应用中亦已提出对在高、低温环境下性能保持柔性、轻质材料的需求,如空间技术、探险、运动、特殊工程等。柔性超薄隔热材料是人体热防护或可变形隔热的基本用材。柔性或运动无障碍隔热材料一般通过两种途径实现:一是纤维集合体物质,但厚度偏大,密封性差;一是薄膜多层组合物,但柔性和隔热性会受到影响。
     本文主要研究柔性多层复合隔热材料,用于对高温(150℃)环境、低温(-150℃)环境的温场隔绝。依据对隔热材料本身性能与传热关系的分析,整体设计出由反射屏与间隔材料组合的柔性多层隔热材料的结构,实现了超薄、柔性、高效的隔绝目标,并对柔性多层隔热材料的制备与加工工艺做了简单的介绍。与金属箔相比,镀金属薄膜强度高、重复使用性好,且金属铝与聚酯的结合性能好且价格低,故选择镀铝聚酯薄膜作为反射屏。分别对六种规格的镀铝聚酯薄膜做了性能测试,从而选择复合膜(6μm PET+0.03μm Al+8μm PET)作为多层隔热材料的反射屏;在反射屏相同的情况下,分别添加四种不同间隔材料,对组合而成的柔性多层隔热材料的导热系数和热阻进行比较,从而选择涤纶丝网状织物(网孔内添加羽绒)作为柔性多层隔热材料的间隔物;进而对多层复合膜与间隔物的组合方式与接触状态做了相应的研究,得出了隔绝性能较好的组合形式。
     通过对多层隔热材料小样的性能测试,得出满足课题要求的最终成型小样,其结构为:外层织物+中间层(11层复合膜,相邻屏间间隔涤纶衬网,为提高隔热性能,衬网间添加羽绒)+外层织物;同时。对复合膜进行揉皱处理,以达到材料最优的隔热性质。这使最终成型小样的单位面积重量为475.52 g/m2,导热系数为0.0326 W/m·K,保温率为87.72%,传热系数均值为1.333 W/m2-℃,克罗值为4.862。当成型小样外层承受160℃的高温环境2小时后,其内层的温度大约保持在43.2℃;当成型小样外层承受-120℃~-110℃的低温环境2小时后,其内层的温度大约保持在-5.4℃,其中在-110℃左右的条件下,经纬向柔软度下降均小于6%,且试样无微观龟裂和脆性破坏现象产生。通过对材料在高、低温下的机械性能及气密性的测试,证实材料在规定的温场及微压条件下,满足动态弯曲、压作用和一般悬挂等使用,柔性变化在3%以内,且为气密性材料。
     在前人研究的基础上,首先提出了多层隔热材料的理想传热模型和固体导热模型两种简易的传热模型。采用牛顿迭代法,计算了多层隔热材料中反射屏的温度分布与传热热流。在多层隔热系统简易传热模型的基础上,考虑了反射屏与间隔物的导热系数随温度的变化,反射屏的表面发射率随温度的变化,从而提出了本课题所研究的多层隔热材料的理想传热模型与实际传热模型,该模型是一个层间固体导热、层间气体传热和辐射传热三种传热途径相复合的逐层传热模型。采用二分法计算了实际传热模型中多层隔热材料中反射屏的温度分布与传热热流。并将模型计算结果与实验测量结果相比较,得出模型计算的多层层合隔热材料的热流量和导热系数与实验测量结果相吻合,导热系数的计算误差在10%以内,热流量的计算误差在3%以内。这表明本文提出的数值计算模型用于分析多层隔热材料的传热过程是可行的。
     通过理论分析计算得出了相邻反射屏间只有辐射传热的理想传热模型,连续固体导热模型,以及用推导公式求得的实际传热模型,三者从低温(123K)到273K、从高温(433K)到273K两种情况下多层隔热材料中反射屏的温度分布。实际中多层隔热材料靠近冷端的温度变化比理想传热模型计算的温度变化小,而在接近热端的温度变化比理想传热模型计算的温度变化大。实际多层隔热材料中反射屏的温度分布介于理想传热模型和连续固体导热模型计算的温度值之间。
     在本课题所研究的多层隔热材料的基础上,针对高温到273K、低温到273K两种情况下,讨论了多层隔热材料层间固体导热、气体传热与辐射传热三种传热方式的热流量,及其各自所占比重量。在常压下,层间气体的传热量与通过多层材料的总传热量之比大于0.6,辐射传热热阻最大,传热量较小。相对层间气体传热与固体导热来说,辐射传热热流量几乎可以忽略。通过理论计算进一步讨论了通过降低层间气体压强来降低气体传热,降低层间间隔物的导热系数来降低层间的固体导热。对多层隔热材料的表观导热系数及传热过程进行了分析。随着气体传热与层间固体导热的降低,辐射传热所占的比重增大,辐射传热所占的比重越大,多层隔热材料的隔热性能就越接近于真空多层隔热的理想状态。
Flexible protective material is a fundamental condition for normal moving in special occasions to explore the world and the universe. There is much demand to develop light weight materials with stability and flexibility under high/low temperature in practical applications, such as space technology, adventure, sport, special engineering etc. Flexible thin thermal insulation material is the basic material of personal thermal protection and deformable thermal insulation. Flexibility or movement without obstacle can be realized through two methods usually. One is fiber aggregate which is thick and has poor airproof properties. The another is multilayer films combination material which will impact the flexibility and thermal insulating performance in applications.
     In this paper, the flexible multilayer insulation composite materials which are mainly used for high (150℃), low (-150℃) temperature insulation were discussed. Based on the analysis about the relationship between the properties of the insulation materials and their heat transfer process, the structure of the flexible multilayer insulation material which is combined by reflecting shields and spacers was designed. And the ultra-thin, flexible and high efficient insulation materials were obtained. Furthermore, the preparation and the processing technology for the materials were introduced simply. Compared with the metal foils, the films evaporated with metal are high strength and good reusability. Especially, the performance of aluminum and polyester is much better and low price. So it is reasonable to choose the aluminized polyester film as a reflecting shield. The performance of six different aluminized polyester films were tested. As a result, the composite film (6μm PET+0.03μm Al+8μm PET) was selected as the reflecting shield of the flexible multilayer insulation composite material. The thermal conductivity and thermal resistance of multilayer insulation materials with four different spacers were compared, and the best spacer structure is the polyester mesh that had down added into the mesh. Meanwhile, the properties of the multilayer insulation material with different surface contact state and different combination structures were studied, and then the optimal combination structure of the multilayer insulation materials was obtained.
     The final forming sample which met the requirements were obtained through the experiments about the multilayer insulation samples. The structure of the final forming sample is outer fabric+ the middle layers (11 composite films with polyester mesh between adjacent reflecting shields, and down was fixed into the mesh in order to improve the insulation performance)+inner fabric. Meanwhile, the composite films were crumpled in order to achieve the best insulating effect. The weight per unit area of the final forming sample is 475.52 g/m2, the thermal conductivity is 0.0326 W/m-K, the temperature preservation rate is 87.72%, the average heat transfer coefficient is 1.333 W/m2·℃, and the clo value is 4.862. After the forming sample at 160℃two-hours treating, the temperature of inner side of fabric remained at about 43.2℃. After the forming sample treating under a low temperature -120℃~-110℃for 2 hours, the temperature of inner side of the fabric remained at about -5.4℃. Under the low temperature -120℃~110℃, the flexibility decreases of both warp and weft directions were less than 6%, and there was no frost and low temperature embrittlement phenomenon. The mechanism and airtight properties of the multilayer insulation material at high/low temperature condition were measured. And it can be found that the multilayer insulation materials could meet the requirements of bending, compressing, the hanging etc applications. Furthermore, the change rate of flexibility was less than 3%, and there was no leaking phenomenon of the samples.
     Firstly, the ideal heat transfer model and the solid thermal conductivity transfer model of multilayer insulation material were given based on previous studies. And the temperature distributions of reflecting shields and heat fluxes through the materials were calculated using Newton's iterative method. Then, for the dependence of the thermal conductivity of the temperature about reflecting shields and spacers, and the dependence of the surface reflecting emission of the temperature, the ideal heat transfer model and practical heat transfer model of the materials which discussed in this paper were investigated on the basis of the simple heat transfer models. Heat transfer fluxes through the material which consists of thermal radiation flux, solid heat transfer flux and gas heat transfer flux have been investigated according to the practical heat transfer model. The temperature distributions and heat fluxes of multilayer insulation materials have been solved by practical heat transfer model using iterative method combining with dichotomy method. The comparison between the experimental results and the calculated values which are obtained from the model shows that the model is feasible to be applied in engineering. The errors between experimental thermal conductivity and the theoretical results by heat transfer model are less than 10%, and errors between experimental heat fluxes and the calculated results by model in this paper are below 3%. So the numerical model of the flexible multilayer material can be applied to practical engineering.
     The theoretical temperature distributions of reflecting shields of multilayer insulation materials from high temperature (433K)/low temperature (123K) to 273K were obtained using ideal heat transfer model, solid heat transfer model and the practical heat transfer model. The increase of the temperature gradient of practical model is smaller than that of ideal model approaching the cold boundary. And the decrease of the temperature gradient of practical model is larger than that of ideal model approaching the hot boundary. The results show that the temperature distribution of practical heat transfer model is between distribution of ideal heat transfer model and solid conductive heat transfer model.
     The heat fluxes and the ratios of heat fluxes for radiation heat transfer, solid conductive heat transfer, and gas heat transfer have been discussed in this paper from high temperature (433K)/ low temperature (123K) to 273K were calculated and analyzed. In atmospheric pressure, the ratio of gas heat transfer flux through multilayer insulation material is less than 0.6; the radiation resistance is the largest; and the heat transfer flux is the least. The radiation heat transfer flux is almost negligible compared with the gas and solid heat transfer fluxes. While the gas heat transfer flux was reduced by reducing gas pressure, and the solid heat transfer flux was reduced by reducing the thermal conductivity of the material, the apparent thermal conductivity and heat transfer process of the multilayer insulation material were analyzed. When the gas and solid heat transfer fluxes were reduced, the radio of radiation heat transfer flux increases. With the increase of the proportion of radiation thermal transfer flux for multilayer insulation materials, the insulation performance of the material would be more closed to the ideal state of vacuum multilayer insulation.
引文
[1]张世俊.纺织柔性热防护材料[J].北京纺织.2001,22(2):40-42.
    [2]孙渭卿,姚星月.金属镀膜复合絮片织物的保暖性能[J].中国纺织大学学报.1994,20(4):125-131.
    [3]Keiser C. and Rossi Rene M. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radiation [J]. Textile Research Journal.2008,78(11):1025-1035.
    [4]夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展状况[J].宇航材料工艺.2003,33(6):1-6.
    [5]Ohmori T., Nakajima M. and Yamamoto A.. Thermal performance of multilayer insulation fabricated around a horizontally supported cylinder [J]. Advances in Cryogenic Engineering. 2004,710:595-604.
    [6]张世俊.纺织刚性热防护材料[J].北京纺织.2001,22(4):47-50.
    [7]Rangvald A.. Multi-layer flexible insulation comprising a pair of closed-cell insulation sheets [P]. PCT Int. No. WO 98/10216. March 12,1998.
    [8]Manankov V. M. and Yusupov K.K.. Method for production of flexible multilayer heat-insulating construction materials with sound insulating capacity [P]. Russ. No. RU 2327565. June 27,2008.
    [9]Elfving and Martin T.. Multilayer thermal insulation [P]. US No.2406815. September 3,1946.
    [10]Bodendorf, Warren J. and David W. Multilayer thermal insulation [P]. US No.3199714. August 10,1965.
    [11]David L., Alain B.. Laminated thermal insulating material comprising a silicone-based adhesive [P]. FR No.2912489. August 15,2008.
    [12]于伟东,黄鹤等.一种隔热复合膜、制备及用途[P].专利(申请号):200510024710.9,2005.03.29.
    [13]于伟东,袁琴华等.一种隔热保温柔软薄型复合织物、制备方法及其用途[P].中国国家专利:授权号ZL 200410066650.2,2004.09.24.
    [14]韩鸿硕.国外航天运输系统防热系统、结构和材料的总体分析研究[J].宇航材料工艺.1997,4:1-4.
    [15]李宏.吸附性间隔材料改善真空多层绝热性能的试验研究[D].上海交通大学硕士学位论文.2004,55-58.
    [16]夏刚,程文科,秦子增.充气式再入飞行器柔性热防护系统的发展状况[J].宇航材料工艺.2003,33(6):1-6.
    [17]闰长海,孟松鹤,陈贵清,杜善义.金属热防护系统隔热材料的发展与现状[J].导弹与航天运载技术.2006,4:48-52.
    [18]Cherevatova A. V., Shapovalov N. A. and Gashchenko E. O.. Method for producing multilayer thermal-insulating material based on highly concentrated siliceous suspension [P]. Russ. No. RU2006012204420060622. July 20,2009.
    [19]Manankov V. M. and Yusupov K. K.. Multilayer heat and sound insulating material for construction utilizing polyethylene foam production waste [P]. Russ. No. RU 2327575. June 27,2008.
    [20]Kymala inen H-R and Sjoberg A-M. Flax and hemp fibres as raw materials for thermal insulations [J]. Building and Environment.2007,3(6):1-8.
    [21]Kamran inen H-R. Design of high temperature multi-layer insulation for reusable launch vehicles [C]. A dissertation presented to the faculty of the graduate school of engineering and applied science at the university of Virginia,2000,05. pp.1437-1469.
    [22]Reim M., Korner W., Manara J., Korder S., Arduini-Schuster M., Ebert H.-P.and Fricke J.. Silica aerogel granulate material for thermal insulation and daylighting [J]. Solar Energy. 2005,79:131-139.
    [23]Paivanas and John A.. Multilayer thermal insulation [P]. US No.3199715. August 10,1965.
    [24]Eskind, Larry G., Aanestad and Rangvald. Multilayered flexible fire-retardant insulative sheets comprising laminates of insulation layers and fire-retardant glass fiber layers and aluminum foil films [P]. WO No.2001043972. April 5,2001.
    [25]Ahluwalia, Younger, Kiik, Matti, Karol and Thomas D.. Flexible multilayer composite material with a metal foil layer and thermal-insulation foam layer [P]. US No.2004229053. November 18,2004.
    [26]Squires, James L., Woodbridge and Timothy. Multilayer thermal insulation system [P]. WO No.2006043092. April 27,2006.
    [27]Michel M., Thierry Y. and Bertrand B.. Rigid multilayer material for thermal insulation [P]. US No.2003207075. November 6,2003.
    [28]Vorob'ev V.N. and Vorob'ev A.V.. Flexible multilayer heat-insulating material [P]. RU No. 2194915. March 15,2003.
    [29]Vorob'ev V. N. and Vorob'ev A. V.. Method for production of a flexible multilayer polyimide lacquer-metal foil material [P]. RU No.2240921. October 24,2004.
    [30]Shigeru N.. Heat-resistant composite sheet and container formed of the same [P]. USP No. 43459, July 24,1990.
    [31]Hirofumi K., Kimio K., Kengo H., Koichi Y. and Takahiko Y.. Formed thermal insulator and process for preparation of same [P]. USP No.5242723, Sempemter 7,1993.
    [32]程银兵,姚兰芳,吴广明.Al/PI/SiO2多层隔热膜制备与性能研究[J].材料科学与工学报.2003,21(2):221-223.
    [33]倪星元,黄耀东.气凝胶复合柔性保温隔热膜及其制备方法[P].中国国家专利:授CN1546312A.2003.10.10.
    [34]李丹之,陈华君.防水隔热阻燃复合膜[P].中国国家专利:申请号02136922.4, 2002.09.10.
    [35]于伟东,储才元.纺织物理[M].中国纺织大学出版社,2001,12.pp.228.
    [36]Amano T.. Thermal Performance of Multilayer Insulation. Part 1. Derivation of a Prediction-Based Heat-Flux Equation [J]. Heat Transfer-Japanese Research.1993,22(8): 747-762
    [37]Amano T.. Thermal Performance of Multilayer Insulation. Part 2[J]. Heat Transfer—Japanese Research,1994,23(4):381-398.
    [381 Matsuda A. and Yoshikiyo H.. Simple structure insulation material preperties for multilayer insulation [J]. Cryogenics.1980,3:135-138.
    [39]Jacob S.. Investigations into the thermal performance of Multilayer Insulation (300-77K), Part2:Thermal analysis [J]. Cryogenics.1992,32(12):1147-1153.
    [40]Tien C.L. and Cunnington G.R.. Cryogenic insulation heat transfer[J]. Adv. Heat Transfer. 1993.9:349-917.
    [41]Streed E.R., Cunnington G..R. and Zierman C.A.. Performance of multilayer insulation System for 300-800K temperature range [J]. Prog Aero.1965,18:735-772.
    [42]Bell GA., Nast T.C. and Wedel R.K.. Thermal performance of multilayer insulations applied to small cryogenic tankage[J]. Advance Cryogenics Enginering,1975,22:265-273.
    [43]符锡理.真空多层绝热理论研究和传热计算[J].低温工程.1989,2:1-11.
    [44]朱公先.多层绝热中一个新的比热流理论计算公式的建立和实验[J].低温工程.1986,1:77-85.
    [45]Hofmann A.. The thermal conductivity of cryogenic insulation materials and its temperature dependence [J]. Cryogenics.2006,46:815-824.
    [46]王珏,沈军,Fricke J..高效隔热材料掺TiO2及玻璃纤维硅石气凝胶的研制[J].材料研究学报.1995,9(6):568-572.
    [47]Reim M., Korner W., Manara J., Korder S., Arduini-Schuster M., Ebert H.-P.and Fricke J.. Silica aerogel granulate material for thermal insulation and daylighting[J]. Solar Energy. 2005,79:131-139.
    [48]Markus S., Edgar R.F., Raymond V. and Thomas S.. Theoretical studies of high-temperature multilayer thermal insulations using radiation scaling [J]. Journal of Quantitative Spectroscopy & Radiative Transfer.2004,84:477-491.
    [49]Krishnaprakas C.K., Badari Narayana K. and Dutta P.. Heat transfer correlations for multilayer insulation systems [J]. Cryogenics.2000,40:431-435.
    [50]Thermal Properties of Spacecraft Materials-Data Bank, Doc. No. ISRO-ISAC-TR-0372. Thermal Properties Measurement Section, Thermal Testing Division, Thermal Systems Group, ISRO Satellite Centre, Bangalore,1999:57-84.
    [51]Youming C., Shengwei W. and Zheng Z.. A procedure for calculating transient thermal load through multilayer cylindrical structures [J]. Applied Thermal Engineering.2003,23(16): 2133-2145.
    [52]Alifanov O. M., Nenarokomov A. V. and Gonzalez V. M.. Study of multilayer thermal insulation by inverse problems method [J]. Acta Astronautica.2009,65(9-10):1284-1291.
    [53]Chorowski M. and Polinski J.. Necessary input parameters for accurate modeling of heat transfer through multilayer insulation [C]. CryoPrague 2006, Multiconference, Proceedings, Praha, Czech Republic, July 17-21,2006. pp.1356-1358.
    [54]汪荣顺鲁雪生,顾安忠,周充.层间压强对多层绝热性能的影响[J].低温工程.1999,4:147-153.
    [55]Yuen W.W., Takara E and Cunnington G. R.. Combined conductive/radiative heat transfer in high porosity fibrous insulation material:Theory and experiment [C]. In proceedings of the sixth ASME-JSME thermal engineering joint conference, TED-AJ03-126, Hawaii Island, Hawaii,2003. pp.1958-1960.
    [56]Stauffer T., Jog M. and Ayyaswamy P.. The effective thermal conductivity of multi-foil insulation as a function of temperature and pressure [C]. AIAA paper 92-2939, AIAA 27th thermophysics of opaque and heat transfer, Vol. Ⅱ, No.4, October-December 1997, pp. 533-539.
    [57]Bapat S.L.. Performance prediction of Multilayer Insulation [J]. Cryogenics.1990,30 (8): 700-710.
    [58]任亚杰.多层隔热体设计[J].汉中师范学院学报,2000,18(1):28-31.
    [59]江经善.多层隔热材料及其在航天器上的应用.宇航材料工艺[J].2000,30(4):17-25.
    [60]赵镇南.传热学(第二版)[M].高等教育出版社.2008.6.pp.267-274.
    [61]Siegel R.. Temperature distribution in a composite of opaque and semitransparent spectral layers[J]. Journal of thermophysics of opaque and heat transfer,1997,11(4):533-539.
    [62]赵兰萍.低温固体界面间接触传热的研究[D].上海交通大学.2000.pp.85-89.
    [63]费逸伟,黄之杰,唐卫红.颜料对低发射率涂料红外辐射特性的影响[J].材料科学与工程.2002,20(3):449-452.
    [64]姚红艳,周文孝,程之强.硅酸铝纤维/石英复合隔热材料的研制[J].硅酸盐通报.2006,25(4):180-183.
    [65]Daryabeigi K.. Design of high temperature multi-layer insulation for re-entry launch vehicles[D]. PhD. dissertation, University of Virginia,2000:56,39-40.
    [66]Markus S., Edgar R.F., Raymond V. and Thomas S.. Theoretical studies of high-temperature multilayer thermal insulations using radiation scaling[J]. Journal of Quantitative Spectroscopy & Radiative Transfer.2004(84):477-491.
    [67]楚晖娟,朱宝库,徐又一.聚酰亚胺泡沫材料在航空航天飞行器中应用进展[J].宇航材料工艺,2006(3):1-3.
    [68]Thermal Properties of Spacecraft Materials-Data Bank, Doc.No. ISRO-ISAC-TR-0372, Thermal Properties Measurement Section, Thermal Testing Division, Thermal System Group, ISRO Satellite Centre, Bangalore,1999:57-84.
    [69]闰长海,孟松鹤,陈贵清,杜善义.金属热防护系统隔热材料的发展与现状[J].导弹与天运载技术.2006(4):48-52.
    [70]岳素娟.羽绒/PTFE膜复合保暖材料的研究与开发[D].天津工业大学,2003.pp.45-49.
    [71]谭晓华.带材真空镀铝设备蒸发源与最佳膜厚分布探讨[J].真空.1999,2:18-22.
    [72]袁峰.塑料复合包装薄膜复合工艺探讨[J].包装世界.1999,2:56-57.
    [731 Paulo, Augusto A., Castelo-Grande T., Augusto P. and Barbosa D.. Optimization of refrigerated shields using multilayer thermal insulation [J]. Cryostates design—analytical solution. Cryogenics.2006,46(1):449-457.
    [74]周充,王荣顺,鲁雪生.高真空多层绝热的主要影响因素[J].真空与低温.1998,4(1):5-8.
    [75].Krishnaprakas C.K and Badari Narayana K.. Combined conduction and radiation heat transfer in a gray anisotropically scattering medium with diffuse-specular boundaries [J]. Heat Mass transfer.2001,28(1):77-86.
    [76]Krishnaprakas C.K.. Radiation heat transfer in a participating medium bounded by specular reflectors [J]. Heat mass transfer.1998,25(8):1181-1188.
    [77]李汝勤,宋钧才.纤维和纺织品的测试原理和仪器[M].中国纺织大学出版社.1995,pp.421.
    [78]于伟东,储才元.纺织物理[M].东华大学出版社.2001.pp.406.
    [79]Cengel, Yunus A.. Heat transfer [M]. 北京高等教育出版社.2007. pp.168-175.
    [80]Shuyuan Z., Boming Z. and Xiaodong H.. Temperature and pressure dependent effective thermal conductivity of fibrous insulation [J]. International Journal of Thermal Sciences. 2009,48(2):440-448.
    [81]Jing G, Weidong Y, Ning P.. Research on the structure and performance of the down [C].83rd world conference. Shanghai, China. May 23-27,2004. pp.254-258.
    [82]Jinjing C., Weidong Y.. Structure designing and properties investigation of flexible multilayer thermal insulation materials [C].86th Textile Institute World Conference Proceedings 2008, 2008, pp.1456-1464.
    [83]谭沦海,熊扬恒,苏仁伟.多层反射型保温材料传热优化分析[J].核电工程与技术.2002.15(4):31-37.
    [84]Saleh A. and Al-Ajlan. Measurements of thermal properties of insulation materials by using transient plane source technique [J]. Applied Thermal Engineering.2006.26:2184-2191.
    [85]Ohmori T.. Thermal performance of multilayer insulation around a horizontal cylinder [J]. Cryogenics.2006.45:725-732.
    [86]Caren R.P., Cunnington G..R.. Heat transfer in multilayer insulation systems [J]. Chemical Engineering Progress Symposium Series.1968,64 (87):67-81.
    [87]张洪明.传热学基本知识[J].太阳能.1999(3):14-15.
    [88]邓蔚,钱立军..纳米孔硅质绝热材料[J].宇航材料工艺.2002(1):1-7.
    [89]江经善,张世伶.多层隔热材料的性能研究[J].中国空间科学技术.1988(1):64-70.
    [90]Markus S., Edgar R.F. and Raymond V.. Studies on high-temperature multilayer thermal insulations [J]. Heat and mass transfer.2004.47:1305-1312.
    [91]Peng L., Huier C.. Thermal analysis and performance study for multilayer perforated insulation material used in space[J]. Applied Thermal Engineering.2006.26:2020-2026.
    [92]Xiaoyan L., Weidong Y.. Evaluation of the tensile properties and thermal stability of ultrahigh-molecular-weight polyethylene fibers[J]. Journal of applied polymer science.2005. 97:310-315.
    [93]Tarrio-Saavedra J., Lopez-Beceiro J., Naya S. and Artiaga R.. Effect of silica content on thermal stability of fumed silica/epoxy composites [J]. Polymer Degradation and Stability. 2008,93(12):2133-2137.
    [94]于伟东,王锦成.纱线弯曲性能测试装置[P].中国国家专利.专利号:CN 2427530.2001.04.
    [95]Zhaoqun D., Weidong Y.. A simple method to measure bending properties of fabric [C]. Proceedings of the textile institute 83rd world conference. Shanghai, China. May 23-27,2004. pp.215-218.
    [96]Matsuda A. and Yoshikiyo H.. Simple structure insulation material preperties for multilayer insulation[J]. Cryogenics.1980,3:135-138.
    [97]Tien C.L. and Cunnington G.R.. Cryogenic insulation heat transfer[J]. Advanced heat transfer. 1993,9:349-352.
    [98]汪荣顺.高真空多层绝热中接触导热数值计算和实验研究[D].上海交通大学.2006.pp.86-89.
    [99]陈国邦,张鹏.低温绝热与传热技术[M].科学出版社.2004.02.pp.59-62.
    [100]Amano T.. Thermal Performance of Multilayer Insulation. Part I. Derivation of a Prediction-Based Heat-Flux Equation [J]. Heat Transfer-Japanese Research.1993,22(8): 747-762.
    [101]Jacob S.. Investigations into the thermal performance of multilayer insulation (300-77K), Part Ⅱ. Thermal analysis[J]. Cryogenics.1992,32(12),1147-1153.
    [102]姜健飞,胡良健,唐俭.数值分析及其MATLAB实验[M].科技出版社.2004.06,pp.55-58.
    [103]Scurlock R.H., Saull. Development of multilayer insulation with thermal conductivities below 0.1 uw/cm*K [J]. Cryogenics.1976,5:303-311.
    [104]Jacob S.. Investigations into the thermal performance of multilayer insulation (300-77K), Part I:Calorimetric studies[J]. Cryogenics.1992,32(12):1137-1146.
    [105]Neumann H.. Concept for thermal insulation arrangement within a flexible cryostat for HTS power cables[J]. Cryogenics.2004,44:93-99.
    [106]Chorowski M., Grzegory P., Parente C. and Riddone G... Optimisation of multilayer insulation-an engineering approach [C]. Presented at the 6th IIR international conference"Cryogenics 2000". Praha, Czech Republic.10-13 October 2000. pp.967-969.
    [107]Chorowski M., Grzegory P., Parente C.and Riddone G. Experimental and mathematical analysis of multilayer insulation below 80K [C]. Presented at 18th ICEC (2000). Bombay, India.2000. pp.1234-1236.
    [108]曹玉璋译.热辐射传热[M].科学出版社.1990.pp.134-136.
    [109]王如竹,王荣顺.低温系统[M].上海交通大学出版社.2000.pp.34-37.
    [110]Price J.W.. Measuring the gas pressure within high-performance insulation blacket [J]. Advanced cryogenic engineering.1967,13:66.
    [111]张存泉,徐烈,邓东泉,赵兰萍.低温真空多层绝热结构热阻的理论分析[J].低温工程.2001(5):37-41.
    [112][美]沙夫S.A.,钱伯P.L..气体动力学基本原理H编稀薄气体的流动[M].科学出版社.1988.1.pp.151-162.
    [113]Song S., Yovannovich M.M.. Correlation of thermal accommodation cnefficient fnr engineering surfaces, in fundamentals of conduction and recent developments in contact resistance [C], Imber M, eds., ASME, United engineering center, New York,1987:107-116.
    [114]Kropschot R.H.. Multiple layer insulation for crvogenic application[J]. Cryogenics 1961,3: 171-177.
    [115]郭方中.低温传热学[M].机械工业出版社.1987.pp.135-136.
    [116]Cooper M.G., Mikic B.B.and Yovanovich M.M.. Thermal conductance[J]. International journal of heat and mass transfer.1969,12:279-300.
    [117]Majumdar A. and Tien C.L.. Fractal network model for contact conductance[J]. Journal of heat transfer.1991,113:516-525.
    [118]Bush A.W., Gibson R.D. andThomas T.R.. The elastic contact contact of a rough surface[J]. Wear.1975,35:87-111.
    [119]Hofmann A.. The thermal conductivity of cryogenic insulation materials and its temperature dependence[J]. Cryogenics.2006,46:817-818.
    [120]Reiss H.. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks. Part I: Stationary conditions [J]. Cryogenics.2004.44:259-271.
    [121]Reiss H.. A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks. Part II: Unstationary conditions (cool down period) [J]. Cryogenics.2006.46:873-880.
    [122]李庆杨.数值分析[M].华中科技大学出版社.2004.pp.158-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700