用户名: 密码: 验证码:
六角孔网格絮凝设备处理不同浊度源水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国水资源面临严峻形势,人均淡水资源量低,淡水资源的时空分布不均衡,水资源利用效益差、浪费严重。在水污染治理工程技术发展过程中,新的环境问题不断出现。我国新实施的《生活饮用水卫生标准》(GB5749-2006)中,水质监测指标由原来的35项增加到了107项,且浑浊度限定值由原来的3NTU降为1NTU,这就对水污染的治理提出了更高的要求。
     针对目前源水水质恶化,水量变化大,提出了新型絮凝设备-六角孔网格絮凝设备的开发与应用。六角孔网格絮凝设备可以根据水质和水量的变化进行方便而有效的调整网片的数量,网眼的尺寸。本文介绍了六角孔网格絮凝设备的设计制作。利用六角孔网格絮凝设备对10NTU,20NTU,100NTU,500NTU的源水进行了反复实验,取得了很好的处理效果。当进水浊度10NTU、色度60PCU时,最佳出水浊度1.96NTU,色度6PCU;当进水浊度20NTU、色度90PCU时,最佳出水浊度2.27NTU,色度10PCU;当进水浊度100NTU、色度500PCU时,最佳出水浊度5.56NTU,色度10PCU;当进水浊度500NTU、色度1800PCU时,最佳出水浊度9.96NTU,色度60PCU。10NTU、20NTU、100NTU、500NTU水的絮体的分析维数分别是2.033,2.335,2.113,2.515,絮体强度分别为0.02136(N·m-2),0.02671 (N·m-2),0.02320 (N·m-2) 0.02980 (N·m-2)。
     实验表明水流和絮凝剂通过六角孔网格后能够形成更强的涡旋,大大提高水流的紊乱度,使絮凝剂水解产物向极邻近地区扩散速率提高,达到良好的絮凝效果。同时增大水流的有效过水面积,减小水头损失,缩短絮凝时间,提高出水水质。六角孔网格絮凝设备具有絮凝效果好,絮凝时间短,药剂投加量小,占地少,成本低,抗冲击能力强的的优点。
Water resource in our country faces severe situation:per-person holding rate is very low; water resource can not balance from time and space; the rate of water-using is low. Even though, water pollution seriously happens in our country. In the development of the water processing technology, new environment problem appeared. In the new carried out standard drinking water hygienic standard (GB 5749-2006), the water quality monitoring standard added from 35 items to 107 and turbidity limit from 3NTU to 1NTU, water processing has much higher requirement.
     To be directed against the worsen of the water pollution and water quantity change constantly, a new flocculating equipment named Six Kok Perforation Grid Flocculation was developing in this experiment in order to improve those situations. The number and siae of mesh can be changed according to the quality of raw water. In this thesis, the design and make of hexagonal-hole grid system was introduced. The hexagonal-hole grid system is very efficient to deal with 10NTU,20NTU,100NTU,500NTU raw water. The hexagonal-hole grid system is very efficient to deal with different turbidity water. The results show that when turbidity is 10NTU and color is 60PCU, turbidity decreased to 1.96NTU and color to 6.0PCU. When turbidity is 20NTU and color is 90PCU, turbidity decreased to 2.27NTU and color to 10PCU. When turbidity is 100NTU and color is 500PCU, turbidity decreased to 5.56NTU and color to 10PCU. When turbidity is 500NTU and color is 1800PCU, turbidity decreased to 9.96NTU and color to 60.0PCU. Fractal dimension is 2.033,2.335,2.113,2.515. The flocs strength is 0.02136 (N·m-2),0.02671 (N·m-2),0.02320 (N·m-2) 0.02980 (N·m-2)。
     Experiments show that raw water and flocculation chemical can form stronger vortex in hexagonal-hole grid system. Turbulence is caused by continuous vortex motion. That can increase the probability of particle collision. So quality of flocculation is very well. Flow area is increased and head loss is decreased. Flocculation time is shorten and quality of effluent water is improved. Hexagonal-hole grid system have a lot of merit, such as good flocculation quality, short flocculation time, little flocculation chemical, little area, low cost, excellent adaptability.
引文
[1]高延耀,陈洪斌,夏四清等.我国水污染控制的思考[J].给水排水,2006,32(5):9-13.
    [2]沈光范.关于城市污水治理政策的思考[J].中国环保产业,2004(2):16-18.
    [3]李海英.浅谈低温低浊水处理技术[J].环境科学导刊(增刊),2009(28):84-86.
    [4]汪彩文,孙士权,任伯帜等降低低温低浊湘江源水中浊度试验研究[J].环境科学与技术,2008,31(12)63-66.
    [5]王东田.低温低浊水混凝沉淀处理研究[J].给水排水,2005,31(11),32-34.
    [6]Hanson A T. The effects of temperature on turbulent flocculation:Fluid Dynamics and Chemistry. [J]. J. AWWA.1990,82 (11) 37-39.
    [7]Morris J K. Temperature effects on the use of metalion coagulants for water treatment [J]. J. AWWA. 1984,76 (3) 54-58.
    [8]李卓文,龙银慧.低温低浊水处理[J].广西轻工业,2008,4,77-79.
    [9]张建弟.关于低温低浊水混凝沉淀机理的探讨[J].净水技术,2003,22(2):40-41.
    [10]张海龙.复合铝铁代硫酸铝净化低温低浊水比较[J].低温建筑技术,2002,(3):69-70.
    [11]张跃军,赵晓蕾,李潇潇等.处理低温、低浊宁波白溪水库水的混凝剂优化.[J].中国给水排水,2007,23(13):52-55.
    [12]BauerD, Killmann E, JaegerW. Flocculation and stabilization of colloidal silica by the adsorp tion of poly-dially-dimethyl-ammoniumchloride (PDADMAC) and of copolymers of DADMAC with N-methyl-Nvinyl-acetamide(NMVA) [J]. Colloid Polym Sci,1998,276 (8):698-708.
    [13]王静.浮沉池滤池工艺在低温低浊水处理应用[J].低温建筑技术,2002,(4):47-48.
    [14]张永宏.微絮凝接触过滤处理低浊度含藻水的研究[J].工业水处理.2002,22(2),46-48.
    [15]王兴戬,赵丽君.微絮凝过滤工艺预处理低浊度海水[J].中国给水排水,2004,20(3):47-49.
    [16]Park Y K, Lee C H, Lee S H, et al. Combination of coagulation and ultrafiltration for advanced water treatment[J]. Desalination,2002,145 (6):237-245.
    [17]Guigui C, Rouch J C, Durand-Bourlier L, et al. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production [J]. Desalination,2002,147(5):95-100.
    [18]孙丽华,李圭白.用混凝-超滤法处理低温低浊水.[J].膜科学与技术.2007,27(6):59-62
    [19]黄廷林,栾新晓,解岳等.增效澄清池处理低温低浊水的中试研究[J].中国给水排水,2009,25(1):78-81.
    [20]孙志民,赵洪宾,马军.新型侧向流斜板浮沉池处理低温低浊水的试验研究[J].给水排水,2004,30(11):19-21.
    [21]刘丽君,改进机械加速澄清池对提高水处理能力的作用[J].内蒙古科技与经济,2005,16,68-69.
    [22]KEMPENEERS S, Van M F,GILLE L. A decade of large scale experience in dissolved air flotation [J]. Wat Sci Tech.,2001,43(8):27-34.
    [23]SCHOFIELD T. Dissolved air flotation in drinking water production [J]. Wat Sci Tech,2001,43(8):9-18.
    [24]王永磊,贾瑞宝,张克峰.新型浮滤池净水装置处理引黄水库水试验研究[J].水处理技术.2009,35(6):67-70.
    [25]王琴,刘杰,王辉.高浊水混凝净化技术探讨[J].第十届全国水处理化学大会暨海峡两岸水处理化学研讨会,2010.8.8-10,哈尔滨,72-75.
    [26]王一鸣,刘国全.高浊度给水处理技术的研究现状[J].山西建筑.2009,35(6):201-202.
    [27]Imene Bekri-Abbes, Sami Bayoudh and Mohamed Baklouti. A technique for purifying wastewater with polymeric flocculantproduced from waste plastic Desalination,2007,204(3):198-203.
    [28]张有威,方晞,聂建校.高浊度水的高效絮凝沉淀(澄清)工艺及其装置的研究[R].西安:长安大学科技处,1988,40-42.
    [29]聂建校,方晞,韩文生等.受污染黄河高浊度水净化集成新技术的研究[J].西北建筑工程学院学报,2001,18(4):165-169.
    [30]章丽萍,何绪文.高浊度矿井水处理技术研究[J].矿业安全与环保.2009.35(6):14-16.
    [31]李晔,杜光.高碱高浊浮选废水混凝处理实验研究[J].工业安全与环保.2009.35(9):20-24.
    [32]岳钦艳,赵华章,高宝玉.二甲基二烯丙基氯化铵聚合物的除浊性能研究[J].工业水处理,2002,22(3):26-31.
    [33]杜春玲.高浊度水清水回流高效絮凝新工艺的研究[J].东莞理工学院报.2001.8(1):40-42.
    [34]胡连超,胡海修,李齐全.超滤净化高浊度水试验研究[J].西南给水排水,2006,28(1):17-20.
    [35]段元堂,吴克宏,霍争峰.氧化铝陶瓷膜分离高浊度水试验研究[J].云南环境科学2005,24(3):6-8.
    [36]张建锋,金同轨,金伟如.直接过滤方式的试验研究[J].中国给水排水,1999,15(5):55-56.
    [37]李德生,程国栋.强化水旋澄清池技术处理黄河高浊度水的试验研究[J].环境程学报,2008,2(2),214-219.
    [38]Chichuan Kan, Chihp in Huang, J ill Ruhsing Pan. Coagulation of high turbiditywater[J].The effects of rap id mixing. Journal of Water Supply,2002,51 (2):77-86.
    [39]谢钦.高密度澄清池工艺简介[J].给水排水,2006,32(1):38-39.
    [40]郎显华,施永生.改进管道混合器提高高浊水混凝效果[J].工业用水与废水,2006,37(1):71-72.
    [41]张敬东,李长征,张芳等.涡流低脉动混凝技术用于高浊度海水淡化预处理[J].净水技术,2005,24(6),60-63.
    [42]钟淳昌,戚盛豪.简明给水设计手册[M].北京:中国建筑工业出版社,1989,255-290.
    [43]蒋展鹏.环境工程学(第二版)[M].北京:高等教育出版社,2005,60-62.
    [44]单立志,施汉昌,王锐.网格反应、斜板沉淀水处理实验设备的设计制作[J].实验技术与管理,2006,23(10):55-57.
    [45]崔福义,徐勇鹏,赫俊国等.南方低浊高藻水的网格絮凝工艺优化[J].中国给水排水,2004,20(2):8-11.
    [46]陈建强,陈敏生.水厂混凝设备的选用和改造实践[J].净水技术,2001,20(2):42-44.
    [47]王文兴,祝辉.网格絮凝池与改型网格絮凝池的工艺设计探讨[J].冶金动力,2006,04:64-66.
    [48]刘丰珩,王晓芳.青岛白沙河水厂絮凝池的改造[J].中国给水排水,1999,15(1):48-49.
    [49]魏文章,周雪鹰.吉林市水务集团混凝沉淀工艺应用实践[J].技术与应用,2008,4:61-62.
    [50]Chakraborti, R.K., K. H. Gardner, J. F. Atkinson, et al. Changes in fractal dimension during aggregation[J].Water Reasearch,2003,37:873-883.
    [51]Bache D H, Rasool E, Moffat D et al., On the Strength and Character of Alumino-Humic Flocs[J]. Water Science and Technology,1999,40:81-88.
    [52]WANG Qin, LIU Jie. Flocculation behavior in hexagonal-hole grid system dealing with different turbidity water[J]. Civil Engineering in China-Current Practice and Research Report,2010 International Conference on Civil Engineering,2010.7.19-20, Baoding,857-861.
    [53]李冬梅,施周,梅胜等.絮凝条件对絮体分形结构的影响[J].环境科学,2006,27(3):489-492
    [54]朱哲,李涛,汤鸿霄等.阳离子型聚丙烯酰胺投加量对絮体性状特征的影响[J].环境化学,2007,26(2):175-179.
    [55]Jarvis P, Jeffers on B, Gregory J et al, A Review of Floc Strength and Breakage[J].Water Research, 2005,39 (14):3121-3132

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700