用户名: 密码: 验证码:
覆冰环境条件下空气横掠导线对流换热问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境气候的变化,架空导线覆冰事故频繁发生,对高压线、通信线路、电气化铁路的接触线形成了很大的危害。受气候和地形等因素的影响,我国是世界上架空导线覆冰最为严重的国家之一,每年的导线覆冰事故给我国带来巨大的经济损失,已成为电力、通信等行业急需解决的问题。
     本文首先对国内外架空导线覆冰研究现状进行综述,介绍了现阶段各种导线防、除冰技术的特点和方法,提出了导线覆冰的几个关键问题以及本文主要的工作和安排。
     其次介绍了架空导线覆冰的基本概念与机理,导线只有在合适的气温(0℃~-10℃)、较高的湿度(85%以上)和适当的风速下才会形成覆冰,覆冰的形式也是多种多样,不同的气象条件下,覆冰类型也不相同,有雨凇、雾凇、湿雪等不同的表观特征,覆冰的物理性质也随之发生变化。
     再次,对导线覆冰过程中不同气象条件下的收集系数进行实验研究,收集系数反应的是导线捕获空气中过冷液滴的能力,直接影响导线覆冰量的多少。本文通过实验方法,测定在覆冰环境条件下模拟导线收集系数的大小,以及收集系数的影响因素和随实验工况条件变化收集系数的变化规律。
     接着,通过对导线覆冰表面传热过程的分析,得到导线表面对流换热的理论分析式,以此式为实验原理,在覆冰环境条件下,对导线表面对流换热系数进行实验研究。通过实验,得到对流换热系数随电流、风速、温度等气象参数的变化规律,对流换热系数随风速的增加而增大,随电流增大而增大,环境温度对对流换热基本没有影响。
     最后,在覆冰环境下,实验得到模拟导线局部对流换热系数的变化情况,局部对流换热系数随空气横掠导线角度呈现先减小、再增大的变化趋势;在此基础上对架空导线局部对流换热与空气横掠旋转圆柱体对流换热进行比较,验证了对流换热实验的可靠性。
     本文的研究结果对防止导线覆冰有很重要的意义,对导线表面收集系数和对流换热进行了详尽的实验理论研究,为使用临界电流防冰提供理论依据。
With the changes of the environment and climate, the electrical transmission lines icing occurs frequently. Atmospheric ice accretion on conductors is becoming one of the major problems in planning and construcing power transmission lines and communications networks. China is one of the countries where ice accretion is very serious affected by climate and terrain. The electrical transmission lines icing causes great economic loss in china every year,it has becoming an urgent problem in power and communications industry.
     Firstly, the article reviewed the research status of conductor icing at home and abroad,introduced various anti-icing、de-icing technology features and methods and some existing problems about ice accretion. The main content of this article are proposed.
     Secondly, this article introduced the basic concept and mechanism of icing. ice accretion will be formed only at the right temperature(0℃~-10℃)、humidity(above 85%)and wind velocity. Icing forms are not the same in different weather conditions, such as glaze、rime、wet snow and so on. The apparent characteristics and physical properties of icing are different.
     Thirdly,the collection coefficient is obtained through a number of experimental tests. The reaction of the collection coefficient is the ability that wires capture the supercooled droplets in the air. Through changing the air temperature, wind speed, droplet diameter and other meteorological parameters, we obtained the law of conductor icing collection coefficient under different meteorological conditions and influencing factors of the collection coefficient.
     Then, through analysis the heat balance equation of the heated wires and the different characteristics of the heat transfer process in the ice accretion process on overhead transmission wires, the theoretical formula of heat transfer coefficient is obtained. The convection heat transfer is calculated through experimental study in the icing environmental conditions. Ultimately, we obtained that the convective heat transfer coefficient increased with the increasing of wind speed and the current which pass through lines and the air temperature have a little effect.
     Finally, we obtained the low of local convective heat transfer coefficient through experimental study. The local convective heat transfer coefficient is decreased first and then increased with increasing angle. On this basis, verified the reliability of the experiment compared with the local convection heat transfer when air across rotating cylinder.
     The results of this article have very important meaning of the mechanism of anti-icing. This article was carried out a detailed experimental and theoretical study about the collection coefficient and the convection heat transfer. The experimental results can be used to provide theoretical support for anti-icing based on the Joule effect.
引文
[1]刘和云.架空导线覆冰防冰的理论与应用[M],北京:中国铁道出版社,2001
    [2]肖彬.架空输电线路在重冰区设计及运行的分析.云南电力技术,2007:第35卷,12~13
    [3]蒋兴良,张丽华.输电线路除冰防冰技术综述.高电压技术,1997,23(1):73~76
    [4]蒋兴良,易辉.输电线路覆冰及防护[M],北京:中国电力出版社2002
    [5]侯荣升,肖红霞,柯磊.输电线路融冰技术探讨.江西电力. 2008 2(2): 29~32
    [6]梅冰笑,潘学明.输电线路防覆冰临界电流密度预测模型研究.电网技术38~40
    [7] L.Makkonen. Models for the growth of rime, glaze icicles and wet snow on structures. Philos. Trans. R. Soc, London, 2000, Ser. A358, 2913
    [8] Yukichi Sakamoto. Snow accretion on overhead wires. Phil. Trans. R. Soc. London, A 2000 358 , 2941-2970
    [9] Joe C. Pohlman. Present state-of-the-art of transmission line icing. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-101, No. 8 August 1982, 2443~2450
    [10] James W Hall, Ice storm management on an electrical utility system, Proceedings of the 7th IWAIS, Canada, 1996, 225—230
    [11] P. Personne,J.-F. Gayet. Prevention of wire icing by Joule heating. 1986, Proc. 3rd IWAIS, Vancouver, BC, Canada, 429–433
    [12] Prud Homme P. Determination of Current Required to De-Ice Transmission Line Conductors. Proc 11th International Workshop on Atmospheric Icing of Structures, Montreal, 2005
    [13] Maurice Huneault. A Dynamic Programming Methodology to Develop De-Icing Strategies During Ice Storms by Channeling Load Currents in Transmission Networks, IEEE Transactions on power delivery, 2005, 20(2): 1604-1610
    [14] Maurice Huneault. Combined Models for Glaze Ice Accretion and De-Icing of Current-Carrying Electrical Conductors. IEEE Transactions on power delivery, 2005, 20(2): 1611-1616
    [15] G.F. Naterer. Coupled liquid film and solidified layer growth with impinging super cooled droplets and Joule heating. Philos. International Journal of Heatand Fluid Flow, 2003, 24:223-235
    [16]易辉,查宜萍,何慧雯.防覆冰涂覆材料的应用分析与研究.电力设备, 2008,9(6):16-19
    [17]顾广新,武利民.防覆冰涂料的研究与进展.供用电, 2008, 25(3):25-27
    [18] Laforte C, Beisswenger A. Ice phobic Material Centrifuge Adhesion Test. Proc 11th International Workshop on Atmospheric Icing of Structures, Montreal 2005,1-6
    [19] J.L.Laforte,M.A.Allaire,J.Laflamme,State-of-the-art on power line de-icing,Atmospheric Research 46(1998)143–158
    [20]侯荣升,肖红霞,柯磊.输电线路融冰技术探讨.江西电力,2008,第32卷,增刊,29-32
    [21]蒋兴良,范松海,孙才新,舒立春.低居里点铁磁材料在输电线路防冰中应用前景分析.南方电网技术,2008,第2卷,第2期,19-22
    [22] Sullivan, CR, Petrenko, et al. Using Dielectric Losses to De-Ice Power Transmission Lines with 100 kHz High-Voltage Excitation. Conf on IEEE Industry Applications Magazine, 2003, 9(5): 49–54
    [23]输电线路导线除冰综合研究,高电压技术译文,武汉高压研究所.1990.5
    [24]谭冠日.应用气象.上海:上海科学技术出版社,1985
    [25]蒋兴良、张丽华.导线覆冰碰撞率及最大覆冰直径分析。中国电机工程学报,Vol.19,No.9, 1999.9
    [26]刘和云,付俊萍,黄素逸.导线覆冰时收集系数的量纲分析.华中科技大学学报, 2001, 29(10):76-77
    [27] P.Personne, J. Gayet. Ice Accretion on Wires and Anti-Icing Induced by Joule Heating. Journal of Applied Meteorology, 1988 , 27:101-11
    [28] Ping Fu. Modeling and simulation of the ice accretion process on fixed or rotating cylindrical objects by the Boundary Element Method:[dissertation]. Quebec: Univ. of Quebec, 2004
    [29]于洋.一种计算覆冰导线局部收集系数的简化模型.广东电力,2008(5) :1-4
    [30] L.Makkonen. Modeling of ice accretion on wires .Climate and Applied Meteor, 1984, 23(7):929-939
    [31] Jouko Launiainen. Icing on a non-rotating cylinder under conditions of high liquid water content in the air. Journal of Glaciology,1986, VoL. 32, No. 110:12-19
    [32] Zsolt Péter, Masoud Farzaneh, LászlóI. Kiss. Assessment of the Current Intensity for Preventing Ice Accretion on Overhead Conductors. IEEETransaction on Power Delivery, 2007, VOL. 22, NO. 1, JANUARY: 565-574
    [33] J. E Clem. Currents required to remove Conductor sleet. Elect World, 1930, Dec: 1053-1057
    [34] Szilder, Lozowski. Measurement of the average convective heat transfer coefficient and the drag coefficient for ice shaped cylinders. Proc. of 4th International Workshop on Atmospheric Icing of Structures, Hungary, 1988, 147-151
    [35]陈及时.掌握导线覆冰临界电流做好预防措施.中国电力,1997,30(10):51-53
    [36] Liu Heyun, Zhou Di, Huang Suyi. Heat balance analysis on icing of wires and the current of preventing icing: International conference of energy application. Wuhan, 2001
    [37]汤文斌.模拟大气环境下铁路接触网覆冰融冰实验研究:[长沙理工大学硕士学位论文].长沙,2009
    [38]孙才新,蒋兴良.导线覆冰及其干湿增长临界条件分析.中国电机工程学报,2003, 23(3)
    [39] Yutak Yamada. Distribution of New Snow Density in Japan. Proceedings of 5th IWAIS'90, Japan, 1990; B5-2
    [40] G.Poots. Ice and Snow Accretian on Structures.England: Research Studieies Press LTD,1996
    [41]中国人民解放军总装备部军事训练教材编辑工作委员会.低速风洞试验.北京:国防工业出版社, 2002
    [42]蔡增基,龙天渝.流体力学泵与风机.北京:中国建筑工业出版社, 2004
    [43]高学平.高等流体力学.天津:天津大学出版社, 2005
    [44]易贤,桂业伟,肖春华,黄志祥,结冰风洞液态水含量测量方法研究.科技导报,2009,27(21),86-90.
    [45]贵州省电力工业局,贵州省气象科研所编著.覆冰文集,贵州电力技术,1992.
    [46]云南省电力设计院,云南省气象科学研究所编著.云南高海拔地区电线覆冰问题研究,云南:云南科技出版社,1993.
    [47] L.Makkonen. Estimating intensity of atmospheric ice accretion on stationary structures. Climate and Applied Meteor, 1981, 20(5):595-600
    [48] L.Makkonen. Modeling of ice accretion on wires .Climate and Applied Meteor, 1984, 23(7):929-939
    [49]刘和云,周迪,付俊萍等.防止导线覆冰临界电流的传热研究.中国电力,2001,(3):42-44
    [50] L.Makkonen. Models for the growth of rime, glaze icicles and wet snow on structures. Philos. Trans. R. Soc, London, 2000, Ser. A358, 2913
    [51]潘儒文李中樾,奥氏体不锈钢低温电阻率的测定.计量学报,1989.1,第十卷,第一期
    [52]于洋.防冰临界电流的研究与仿真.广东输电与变电技术, 2008(5):9-13
    [53]郭华.架空导线覆冰时捕获空气中过冷水滴规律研究:[长沙理工大学硕士学位论文].长沙,2010
    [54]沈维道,童钧耕.工程热力学(第四版).北京:高等教育出版社, 2007
    [55]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社, 1998
    [56]宋艺新,侯树鑫,段远源.空气横掠圆管强迫对流换热实验的研究.实验技术与管理,2008年5月,第25卷第5期
    [57]张卫军揭国鸾.空气横向对吹圆柱体时换热的研究.沈阳工业大学学报,1990年9月,第12卷,第3期

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700