用户名: 密码: 验证码:
中温烧结钛酸钡锶基电容器陶瓷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以(Ba,Sr)TiO_3为基(简称为BST),采用传统电容器陶瓷制备工艺和常规电容器陶瓷原料,借助正交设计法研究各种掺杂助剂的种类和用量对中温烧结BST基电容器陶瓷介电性能的影响,确定了影响中温烧结的BST基陶瓷介电性能的主次因素,其性能随各因素水平影响的趋势,得到最佳配方。
     在正交实验的基础上用单因素变量法研究铅硼玻璃、Bi_2O_3/Li_2O固溶体、CaZrO_3、Nb_2O_5/Co_2O_3及其加入量对(Ba,Sr)TiO_3基陶瓷中温烧结、性能以及结构的影响,研究其作用机制,认为4PbO.B_2O_3、Bi_2O_3/Li_2O固溶体在烧结过程中形成液相,使得晶粒发生重排,强化晶粒接触,气孔充分排出,促进晶粒发育,提高瓷体致密度,从而达到降低烧结温度的目的,并通过成分起伏相变影响瓷料的介电温度特性,添加不同量的CaZrO_3对瓷料的改性机理不一,掺杂少量CaZrO_3使得样品发生叠峰现象,提高样品的介电常数,掺杂过量的CaZrO_3则是通过固溶缓冲展宽机制和粒界缓冲展宽机制影响瓷料的介电性能。掺杂Nb_2O_5和Co_2O_3的压峰和展宽作用较为明显,分析其原因是形成了壳一核结构,限制晶粒长大。讨论分析了各掺杂物的作用机理。采用传统工艺和常规原料制备电容器陶瓷,通过调整配方和工艺,得到一系列中温烧结介电性能优良的BST电容器陶瓷配方。
     采用正交设计实验、Bi_4Ti_3O_(12)单因素变量法掺杂实验、Dy_2O_3单因素变量法掺杂实验研究了各组分对高压X7R特性钛酸钡锶基电容器陶瓷介电性能、显微结构和烧结温度的影响,探讨了各组分对钛酸钡锶基电容器陶瓷性能影响机理,为研制高压X7R特性多层陶瓷电容器用介质材料提供了依据。得到介电性能好的晶粒尺寸在1μm左右的高压X7R型中温烧结多层陶瓷电容器用介质材料。
     CdO的引入有利于Nb_2O_5和Dy_2O_3的固溶和扩散,从而有效的降低了材料的烧结温度,提高材料的介电常数,同时可以改善陶瓷中晶粒的形貌,抑制晶粒的长大。过量的Nb_2O_5偏析于晶界,阻止晶界移动,抑制晶粒生长,从而形成细晶结构。Ca~(2+)和Zr~(4+)分别进入晶格中部分Ba~(2+)和Ti~(4+)位置,都能降低居里点处的介电常数峰值,使居里温度向低温方向偏移,并能抑制晶粒的长大,提高介电常数。
     Bi_4Ti_3O_(12)玻璃相包裹晶粒和填充粒间,构成瓷体的复杂非均匀结构。异相对BaTiO_3铁电相的制约作用,使B位阳离子所处的势阱深度变浅,表现为ε-T特性曲线较平坦。
     在钛酸钡基陶瓷中微量掺杂稀土氧化物Dy_2O_3可以抑制晶粒生长,产生细晶效应,使得居里峰在整个工作温区内弥散展宽,获得较高的介电常数和良好的容量温度特性,满足X7R特性,可以大幅度提高钛酸钡锶基陶瓷的耐压强度。
     在钛酸锶钡基陶瓷中微量掺杂稀土氧化物Y_2O_3可以抑制晶粒生长,产生细晶效应,使得居里峰在整个工作温区内弥散展宽,获得较高的介电常数和良好的容量温度特性,并可以大幅度提高钛酸钡锶基陶瓷的耐压强度。当Y_2O_3掺杂量为0.6wt%和Dy_2O_3掺杂量为1.0 wt%时,分别得到中温烧结综合性能较好的电容器陶瓷。Yb_2O_3的加入没有改变BST陶瓷的晶体结构,大大提高BST陶瓷的介电常数。当Yb_2O_3的加入量为0.9 wt%时,采用碳酸锂作为烧结助剂,得到介电常数高达10000的中温烧结BST电容器陶瓷。
     MgO掺杂后的样品的介电峰被压抑和展宽,表现出扩散相变。从XRD谱图可知,MgO掺杂后的样品仍为单一的钙钛矿结构。当MgO掺杂量为0.2wt%和1.0wt%时,分别得到综合性能较好的中温烧结的钛酸钡锶陶瓷。
     Bi_2Sn_2O_7掺杂物包裹晶粒和填充晶粒间,构成瓷体的复杂非均匀结构。这种异相对(Ba,Sr)TiO_3铁电相有制约作用,使B位阳离子所处的势阱深度变浅,表现为ε-T特性曲线较平坦。当Bi_2Sn_2O_7掺杂量为30wt%时,得到综合性能好的符合X7R特性烧结温度为1150℃的中温烧结钛酸钡锶陶瓷。
     在Ba(CH_3COO)_2-Sr(NO_3)_2-Cd(NO_3)_2-Ti(OC_4H_9)_4-H_2O-CH_3COOH-CH_3CH_2OH体系中,采用溶胶凝胶法研究了(Ba_(0.70)Sr_(0.25)Cd_(0.05))TiO_3(BSCT)超细粉体的制备。采用x-射线衍射仪和比表面积测定仪研究了加水量、热处理温度等对BSCT纳米粉体的颗粒尺寸、物相组成和比表面积的影响,用扫描电镜和透射电镜观察了BSCT纳米粉体的颗粒尺寸和形貌。得到多层陶瓷电容器用BSCT纳米粉体,粉体的平均粒径为80nm左右,比表面积为13.64m~2/g。干凝胶经过950℃热处理即可形成钙钛矿相,比传统固相合成法低250℃~300℃。
     采用溶胶-凝胶法制备的(Ba_(0.70)Sr_(0.25)Cd_(0.05))TiO_3超细粉体研究了(Ba_(0.70)Sr_(0.25)Cd_(0.05))TiO_3超细陶瓷的制备,其平均晶粒尺寸约为1μm;得到综合性能较好的(Ba_(0.70)Sr_(0.25)Cd_(0.05))TiO_3超细陶瓷。随着晶粒尺寸的减小,(Ba_(0.70)Sr_(0.25)Cd_(0.05))TiO_3陶瓷材料介电常数峰值有大幅度的提高,相变温区有变窄趋势。
     采用柠檬酸-硝酸盐燃烧法研究了超细钛酸钡锶(BST)粉体和掺杂BST粉体的制备;研究了柠檬酸量、溶液的PH值、热处理温度和分散剂对超细BST粉体的物相和形貌及颗粒大小的影响,确定了最佳的柠檬酸量、PH值、热处理温度和分散剂(乙二醇)的量。得到超细BST粉体,其相结构为立方相钙钛矿结构,平均粒径约为50-100nm,颗粒形貌为不规则球形。同时还得到掺杂的超细BST粉体,平均粒径约为70nm。
     采用溶胶-凝胶法研究了Bi_4Ti_3O_(12)粉体的制备,得到的超细Bi_4Ti_3O_(12)粉体相结构为铋层状结构,粒径约为70nm左右。
     在超细BST粉体及含有Mn、Mg、Zn、Y和Co掺杂的BST粉体中掺杂超细Bi_4Ti_3O_(12)粉体制备了混合BST粉体。利用BST混合粉体进一步研究了超细晶BST陶瓷的制备。研究了烧结温度、Bi_4Ti_3O_(12)掺杂量和微量元素掺杂对超细晶BST陶瓷表面显微结构和介电性能的影响。得到了具有好的介电性能超细BST电容器陶瓷,其烧结温度为1200℃和1150℃,陶瓷的平均粒径为0.5μm。
The traditional preparation method and the conventional raw materials of capacitor ceramics have been used in these experiments.The influence of different dopants and doping amount on the dielectric properties of medium temperature sintering (Ba,Sr) TiO_3(BST) series capacitor ceramics has been investigated by means of orthogonal design experiments. The major secondary influencing factors and the influencing tendency of various factors levels for the dielectric properties of BST ceramics have been obtained,at the same time ,the optimum formula forε、for tanδand for withstand voltage have been obtained in the experimental conditions.The BST ceramics having optimum comprehensive properties has been obtained by means of orthogonal design experiments。The influencing mechanism of various components on the dielectric properties of BST ceramics is studied.
     On the basis of orthogonal design experiments, the influence of 4PbO.B_2O_3 glass、Bi_2O_3/Li_2O solid solution CaZrO_3、Nb_2O_5/Co_2O_3 doping amount and Nb/Co ratio on the dielectric properties .structure and medium temperature sintering of (Ba,Sr) TiO_3(BST) series capacitor ceramics has been investigated by means of single factor variable design experiments。The results show that the 4PbO.B_2O_3 and Bi_2O_3/Li_2O solid solution doping can form liquid,arrange crystal grain,make crystal grain contacting,make pore removing, make crystal grain size increasing,enhance ceramics density,and decrease sintering temperature in sintering process.The dielectric constant temperature property is influenced by component increasing and decreasing and phase changing.The doped mechanism is not the same by doping various amount CaZrO_3,little CaZrO_3 doping amount make dielectric peak overlapping phenomenon and increasing dielectric constant of BST ceramics,excessive doping CaZrO_3 amount influence the dielectric properties by means of solid solution cushioning widen mechanism and grain boundary cushioning widen mechanism .The effect of depressing dielectric peak and widening dielectric peak is obvious,this is because of forming core and shell structure and depressing crystal grain growing up.The acting mechanism of dopants doping has also been investigated.A series formulas of medium temperature sintering BST capacitor ceramics with high dielectric performance have been obtained by means of conventional technique and conventional raw materials.
     With the help of the orthogonal design experiment, the single factor variable experiments doped with Bi_4Ti_3O_(12) and Dy_2O_3, the influence of various components on the dielectric performance,capacitance temperature characteristic, sintering temperature of barium and strontium titanate(BST) based high voltage capacitor ceramics with X7R specification has been investigated.The influencing mechanism of various components on the dielectric properties of barium titanate based capacitor ceramics is studied. These provide the basis for preparation of BST based capacitor ceramics with high voltage and X7R specification.
     The capacitor ceramics with good dielectric properties has been obtained,which the size of crystal grain is about 1μm, the sintering temperature is 1120℃, the capacitance temperature property is suited for X7R,dielectric constant e is 1324.2, dielectric loss is 0.0070, the withstand voltage is larger than 10kv/mm,.
     Doping CdO helps Nb_2O_5 and Dy_2O_3 dissolve and diffuse, reducing material's sintering temperature effectively, raising dielectric constant improving the shape look of crystal grain of ceramics, restraining crystal grain from growing up. Excessive Nb_2O_5 segregates in crystal boundary, preventing crystal boundary from moving, restraining the growth of crystal grain, thus forming fine grain structure. Ca~(2+) and Zr~(4+) respectively enter into some Ba~(2+) and Ti~(4+) location in the crystal lattice, reducing the dielectric constant peak value in the curie point, making curie temperature moving towards low temperature, restraining crystal grain growing up ,elevating dielectrical constant.
     Bi_4Ti_3O_(12) glass phases parcel crystal grain and are filled with between grains, forming the complex and not even structure of ceramic body. Different phases restricts barium titanate ferroelectric phases, making the depth of potential well of B position cation change shallow,and showing dielectric constant(ε) temperature(T) characteristic curve rather smooth.
     In BST based ceramics, doping small rare earth oxide Dy_2O_3 can keep back the growth of crystal grain, producing fine grain effect, making curie summit in entire work temperature range scatter and spread, get higher dielectric constant and good capacity temperature property,satisfy X7R property, raising the withstand voltage of BST based ceramics greatly.
     In barium-strontium titanate based ceramic, doping small amount rare earth oxide Y_2O_3 can keep back the growth of crystal grain, producing fine grain effect, making curie summit in entire work temperature range scatter and spread, get higher dielectric constant and good capacity temperature property, raising the withstand voltage of barium strontium titanate based ceramic substantially. When Y_2O_3 doping amount is 0.6wt% and Dy_2O_3 doping amount is 1.0 wt%, the medium temperature sintering BST ceramics with good dielectric properties has been obtained respectively.
     X-ray diffraction analysis shows that the crystal structure of barium-strontium titanate ceramics is not affected by Yb_2O_3 doping. The dielectric constant of barium-strontium titanate ceramics become elevating greatly while Yb_2O_3 doping. When Yb_2O_3 doping amount is 1.2wt%, the BST capacitor ceramics with high dielectric constant has been obtained ,which dielectric constant is 10000 and dielectric loss is 0.021.
     The temperature dielectric constant temperature peak is depressed and broadened while MgO doping. XRD paterns show that a single perovskite phase in samples. When MgO doping amount is 0.2wt% and 1.0 wt%,the BST ceramics with good comprehensive dielectric properties has been obtained respectively.
     The results show that Bi_2Sn_2O_7 parcel crystal grain and are filled between grains, forming the complex and not even structure of ceramics. Different phases restricts barium-strontium titanate ferroelectric phases, making the depth of potential well of B position cation change shallow and showing dielectric temperature characteristic curve rather smooth. When Bi_2Sn_2O_7 doping amount is 30wt%, the BST ceramics with good comprehensive dielectric properties has been obtained,which is suitable for X7R and sintered at 1150℃.
     Nanometer (Ba_(0.7)Sr_(0.25)Cd_(0.05))TiO_3 (BSCT) powder is prepared by sol-gel method from Ba(CH_3COO)_2-Sr(NO_3)_2-Cd(NO_3)_2-Ti(OC_4H_9)_4-H_2O-CH_3COOH-CH_3CH_2OH system. The influence of water volum and heat treatment temperature on the particle size .material phase composition and specific surface area of the BSCT nanometer powder was investigated using x-ray diffraction and specific surface area measurement instrument.The nanometer BSCT powder used for multilayer ceramic capacitor has been obtained,which The average particle size of the powder is 80 nm , the specific surface area is 13.64m~2/g .Heat treatment at 950℃can form perovskite strucrure,which is low 250℃-300℃than traditional solid phase synthesis.
     The (Ba_(0.7)Sr_(0.25)Cd_(0.05))TiO_3 superfine ceramics which the grain size is approximately 1μm are prepared using (Ba_(0.7)Sr_(0.25)Cd_(0.05))TiO_3 namometer powder. The superfine BSCT ceramics with good comprehensive dielectric properties has been obtained. With decreasing of the grain size,phase changing temperature region decreases greatly, while the maximum dielectric constant increases greatly.
     The ultra-fine BST powders and doped ultra-fine BST powders prepared by citrate-nitrate combustion method were studied. The influence of citrate acid volume、pH value、heat-treating temperature and dispersant(ethylene alcohol) volume on the material phase ,morphology and particle size of ultra-fine BST powders were investigated, to obtain the optimum amount of citrate acid volume and dispersant(ethylene alcohol) volume, the proper pH value and heat-treating temperature. The superfine BST powders was obtained ,which the phase structure of BST powders is cubical phase, the average grain size is about 50-100nm,the particle morphology is irregularity spherical shape with conglobationAt the same time , the doped ultra-fine BST powders was obtained, the average grain size is about 70nm.
     Ultra-fine Bi_4Ti_3O_(12) powders were prepared by Sol-gel method . The results indicate that the phase structure of Bi_4Ti_3O_(12) powders is bismuth layer-structure and the average grain size is 70nm.
     BST mixed-powders were prepared by ultra-fine BST powders and doped BST powders doped with ultra-fine Bi_4Ti_3O_(12) powders. The preparation of superfine BST ceramics using BST mixed powders was studied. The surface topography, microscopic structure and phase structure of ultra-fine BST ceramics were analysed systematically. The effects of sintering temperature and the doped amount of Bi_4Ti_3O_(12) and trace elements doping on the surface microscopic structure and dielectric properties of superfine BST ceramics were studied. The superfine BST capacitor ceramics with good dielectric properties has been obtained ,which the sintering temperature is 1200℃and 1150℃,the grain size is about 0.5μm.
引文
[1] 田靓.介电温度稳定型钛酸钡基介电材料的制各[D].西北大学硕士学位论文,2006,8.
    
    [2] 范家成.我国片式元件市场研究[J].电子元件与材料,1995,14(2):1-6.
    
    [3] 蒋渝,刘家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学 报,2003,9(1):100-104.
    
    [4] 陈祥冲,黄新友.贱金属内电极多层陶瓷电容器研发进展[J].材料导报,2004,18(11):16-18.
    
    [5] 王森,张跃,周成,等.MLCC用高介电常数陶瓷介质材料的研究现状及发展趋势[J].材 料与冶金学报,2003,2(3):227.
    
    [6] Kishi H,Mizuno Y,Chazono H. Japanese Journal of Applied Physics,2003,42(1):1-5.
    
    [7] 陆锁链.从数字看发展片式电容器面临的机遇和挑战[J].电子元件与材料,2003,22(6):48.
    
    [8] 陈祥冲,黄新友.多层陶瓷电容器研究现状和发展展望[J].材料导报,2004,18(9):12-14.
    
    [9] Pascal Le Gal. France Patent,FR-2529709Al,2000.
    
    [10]蒋渝,陈家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学 报,2003,9(1):103.
    
    [11]张启龙,杨辉,王家邦,等.多层片式陶瓷电容器容量命中率的研究[J].材料科学与工 程学报,2003,21(1):72.
    
    [12] L.Dai, F.CLin, Z.F.Zhu, et al. Electrical characteristics of high energy density multilayer ceramic capacitor for pulse power application [J]. IEEE TMagn, 2005,41(1): 281-284.
    
    [13]杨邦朝,冯哲圣,卢云.多层陶瓷电容器技术现状及未来发展趋势[J].电子元件与材 料,2001,20(6):17-19.
    
    [14] CHAZONO H,FUJIMOTO M.Sintering characteristics and formation mechanism of "Core shell" structure in BaTiO_3-Nb_2O_3-Co_3O_4 ternary system[J].Jpn J Appl Phys,1995,34(9): 5354-5359.
    
    [15] KISHI H,OKINO Y,HONDA M,et al. The effect of MgO and rare earth oxide on formation behavior of Core-shell structure in BaTiO_3[J]. Jpn J Appl Phys ,1997,36(9):5954-5957.
    
    [16]王宁,赵梅瑜,殷之文.无机材料学报[J],2002,17(5):915.
    
    [17]徐廷献.电子陶瓷材料.第一版.天津大学出版社,1997.
    
    [18]徐廷献.电子陶瓷材料.第一版.天津大学出版社,1997.
    
    [19]吴顺华,张杰,张志萍,等.压电与声光,2001,23(4):283-285.
    
    [20]崔靖杰.X7R特性低频高压BaTiO_3基ML瓷料的研究.天津大学硕士学位论文,2001.
    
    [21] Om.Parkash etal.J.Am.Ceram.Soc.l989.72 (8) :1520.
    
    [22] Makoto Kuwakara. J.Am.Ceram.Soc. 1997.80 (10) :2590.
    
    [23] 山路昭彦.Rev.Lectr.Commun.Lab.1974.24:787.
    
    [24] Huang Xinyou,Gao Chunhua,Chen Xiangchong,et al.Dielectric properties of CeO_2-dopedBa(Zr,Ti)O_3 ceramics[J].Journal of Rare Earths,2004,22:219-222.
    
    [25] Sakabe,Ken-ichi etal.US Patent-4764494.1988.
    
    [26]郭炜,李玲霞,吴霞宛,等.稀土掺杂对细晶BaTiO_3系统耐压及介电性能的影响[J],中国稀土 学报,2003,21(2):209-213.
    
    [27]薄占满.天津大学学报.1994(1):24.
    
    [28] Hennings DFKetal.J Euro Ceram Soc.1994 (14) :463-471.
    
    [29] OkineY.etal.Jpn J Appl Phys.1994.R133 (9B) :5393-5396.
    
    [30]吴顺华,张杰,张志萍等.中温烧结BaTiO_3铁电-玻璃陶瓷介电性能[J].压电与声光.2001.23 (4):283-285.
    
    [31]李龙士.桂治轮等.CeO_2掺杂BaTiO_3基X7R材料的介温特性[J].功能材料.2001.31(增刊).
    
    [32]李小图,崔靖杰,吴霞宛.玻璃-细晶BaTiO_3MLC瓷料的介电性能[J].天津大学学报.2001.34 (1):69-71.
    
    [33]靳正国、陈湘渝.中温烧结改性BaTiO_3陶瓷的介电性能与显微结构[J].硅酸盐通报,1990, 9(6):20-24.
    
    [34] Sung Min Rhim,Seokmin Hong.Effect of B_2O_3 Addition on the Dielectric and Ferroelectric Properties of Ba_(0.7)Sr_(0.3)TiO_3Ceraraics[J].J.Am.Ceram.Soc. 2000.83 (5) :1145-1148.
    
    [35]成都电讯工程学院《电子陶瓷编译组》.电子陶瓷技术.成都电讯工程学院出版社,1988.
    
    [36] Dean TC.US Patent.No.5029042,1991.
    
    [37] Hennings DFK etal.J Euro Ceram Soc.1994 (14) :463-471.
    
    [38] Manfred Kahn.J Am Ceram Soc ,1971,54(9):452-454.
    
    [39] Manfred Kahn.J Am Ceram Soc ,1971,54(9):455-457.
    
    [40] Arlt D,et al.J Appl Phys ,1985,58(4):1619-1625.
    
    [41] Park Y,Kim Y H,Kim H GMaterials Letters,1996,28:101-106.
    
    [42] P.Bowen,C.Carry.Powder Technology,2002,128:248-255.
    
    [43] P.L. Chen,I.W.Chen.J.Am.Ceram.Soc.,1996,79(12):3129-3141.
    
    [44] M.N. Rahaman.New York:Marcel Dekker Inc.,1995:38-145.
    
    [45]苏毅,杨亚玲,李国斌.化工进展,2001,2:48-51.
    
    [46] S.Indris,D.Bork,P.Heitjans.Joumal of Materials Synthesis and Processing.2000,8:245-250.
    
    [47] M.J.Mayo.International Materials Review,1996,41(3):85-112.
    
    [48]史慧.溶胶-凝胶法制备(NaBi)_(1/2)TiO_3压电陶瓷及性能分析[D].清华大学硕士学位论 文,2004.
    
    [49] James O.Eckert Jr.,Catherine C.et alJ. Am. Ceram.Soc.,1996,79(11):2929-2939.
    
    [50]黄祥卉,陈振华.材料导报,2003,17(1):30-32.
    
    [51]邹晨,金向朝,鲍婕,等.绝缘材料,2004,2:25-27.
    
    [52] M.Stockenhuber,H.Mayer,J.A.Lercher.J.Am.Ceram.Soc.,1993,76(5):1185-1190.
    
    [53]郭志余.无机盐工业,2001,33(5):27-28.
    
    [54]叶正芳,李彦峰,李军荣.压电与声光,1998,20(5):335-338.
    
    [55]杨飞宇,赵浩峰,等.钛酸钡粉体制备方法研究进展[J].粉末冶金工业.2003,13(6):27-31.
    
    [56]游咏,匡加才.溶胶—凝胶法在材料制备中的研究进展[J].高科技纤维与应 用.2002,27(2):12-16.
    
    [57] Tsuzuki A , Kato k , Kusumoto K , Toii Y . Preparation and characterization of (Ba_(1-x) , Sr_x)TiO_3 films by sol-gel processing[J].Journal of Materials Science 1998,33(12):3055-3058.
    
    [58] Boyle Timothy J , Clem Paul G , Rodriguez Mark A, Turtle Bruce A, Heagy Michael D . Neo-pentoxide precursor synthesis,solution preparation ,and Electronic Properties of (Ba , Sr)TiO3 thin films derrived from a solution route[J] Journal of Sol-Gel Science and Technology.l999,16(1/2):47-55.
    
    [59]付兴华,侯宪钦,等.Sr_(1-X)Ba_XTiO_3超细微粉的溶胶—凝胶制备与表征[D].硅酸盐通 报.2003,No.1:3-7.
    
    [60]杨文,常爱民,杨邦朝.微波烧结法制备Ba_(0.65)Sr_(0.35)TiO_3热释电陶瓷[J].红外与毫米波学 报.2002,24(3):171-174.
    
    [61]张磊,赵生双,等.SAG法Sr_(1-X)ba_XTiO_3介电性质[J].山东大学报(自然科学 版).1996,31(1):110-114.
    
    [62]王应民,陈志坚.溶胶凝胶法制备PTCR材料用(Ba,Sr)TiO_3粉末[J].江西科学.2003,21 (1):34-36.
    
    [63]刘江华,章天金等.Sol—gel法制备BST粉体的化学机理和晶化过程研究[J].湖北大学学报 (自然科学版).2004,26(3):222-225.
    
    [64]沈彩,刘庆峰,刘茜.柠檬酸—硝酸盐燃烧法制备Ba_(0.5)Sr_(0.5)TiO_3介电材料[J].无机材料学 报.2004,19(3):681-685.
    
    [65] Cai shen , qing-Feng Liu , Qian Liu . sol-gel synthesis and spark plasma sintering of Ba_(0.5)Sr_(0.5)TiO_3 materials letters.2004,58:2302-2305.
    
    [66]谢永怀.核动力工程,1994,15(4):365-369.
    
    [67]王辉,崔斌,畅柱图,等.软化学法制备钛酸钡粉体的研究进展[J],材料科学与工程学 报,2003,21(5):773-776.
    
    [68] Li W,Qi J Q,Li L T,et al.Doping behaviors of Nb_2O_5 and Co_2O_3 in temperature stable BaTiO_3-based ceramics[J],Materials Letters ,2002,57 :1-5.
    
    [69]田靓.介电温度稳定型钛酸钡基介电材料的制备[D],西北大学硕士学位论文,2006,8.
    
    [70] Wang S F,Gordon O D.Dielectric properties of fine grained barium titanate based X7R materials[J].J Am Ceram Soc, 1999,82(10) :2677-2682.
    
    [71]蒋渝,陈家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学 报,2003,9(1):100-104.
    
    [1] BEITOLLAHI A, MOKTAZAVI S A. Effect of the level of addition of Nb_2O_5/Co_2O_3 and Ba(Nb_(2/3)Co_(1/3))O_3 on the structure,microstructure ,and dielectric properties of BaTiO_3[J], J. Materials Science .Materials in Electronics, 2003. 14:129-134.
    
    [2] Wang S F,Gordon O D.Dielectric properties of fine-grained barium titanate based X7R materials[J].J Am Ceram Soc[J].1999,82(10):2677-2682.
    
    [3] Hu T, Jantunen H,Uusimaki A,et al.Mater Sci Semicond Process[J].2003,5:215.
    
    [4] 王宁,赵梅瑜,殷之文.无机材料学报,2002,17(5):915.
    
    [5] BEITOLLAHI A, MORTAZAVI S A. Effect of the level of addition of Nb_2O_5/Co_2O_3 and Ba(Nb_(2/3)Co_(1/3))O_3 on the structure,microstructure ,and dielectric properties of BaTiO_3[J], J. Materials Science :Materials in Electronics, 2003. 14:129-134.
    
    [6] Wang Sea-Fue ,Gordon O.Dayton . Dielectric Properties of Fine-Grained Barium Titanate Based X7R Materials[J] J. Am. Ceram. Soc. 1999, 82[10]2677-82.
    
    [7] 黄新友,牛宾,江晓霞,等。高介、低损耗Ba(Ti,Zr)O_3基电容器陶瓷的研究[J]。江苏理 工大学学报(自然科学版),2001,22(1):66-70.
    
    [8] 黄新友,高春华。工业化(Ba,Sr,Ca)(Ti,Zr)O_3基电容器陶瓷的研究[J]。仪器仪表学报,??2003, 24 (1): 45-48.
    
    [9] Hirokazu Chazono,Hiroshi Kishi.Sintering characteristics in BaTiO3-Nb2O5-Co3O4 ternary system:I Electrical Properties and Microstructure[J].J. Am.Ceram.Soc., 1999,82(10): 2689-2697.
    
    [10]王宁,赵梅瑜,殷之文.无机材料学报,2002,17(5):915.
    
    [11] U.SYAMPRASAD , A.R.SHEEJANAIR , M.S.SARMA , P.GURUSWAMY , P.S.MUKHERJEE, A.D.DAMODARAN.Multilayer capacitor ceramics in the PMN-PT-BT system: effect of Mgo and 4Pbo.B_2O_3 additions.JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS. 1997 (8): 199-205
    
    [12] Hirokazu Chazono and Hiroshi Kishi.Sintering Characteristics in BaTiO_3-Nb_2O_5-Co_3O_4 Ternary System: I Electrical Properties and Microstructure. Am.Ceram.Soc. 1999.82 (10):2689-2697
    
    [13]黄欣,梁辉,徐廷献.高压陶瓷电容器发展概况及其应用.河北陶瓷.2000.28(1):15
    
    [14]吴顺华,张杰,张志萍等.中温烧结BaTiO_3铁电-玻璃陶瓷介电性能.压电与卢光.2001.23 (4):284
    
    [15] U.SYAMPRASAD , A.R.SHEEJANAIR , M.S.SARMA , P.GURUSWAMY , P.S.MUKHERJEE, A.D.DAMODARAN.Multilayer capacitor ceramics in the PMN-PT-BT system: effect of Mgo and 4Pbo.B_2O_3 additionsJOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS.1997 (8): 200
    
    [16]李标荣,莫以豪等.无机介电材料.第一版.上海科学技术出版社,1986
    
    [17]徐廷献.电子陶瓷材料.第一版.天津大学出版社,1997
    
    [18]徐廷献.电子陶瓷材料.第一版.天津大学出版社,1997
    
    [19]赵梅瑜,王依琳.低温烧结微波介质陶瓷.电子元件与材料.2000.21(2):31
    
    [20]关振铎,张中太,焦金生.无机材料物理性能.第五版.北京.清华大学出版社,2001
    
    [21] U.SYAMPRASAD , A.R.SHEEJANAIR , M.S.SARMA , P.GURUSWAMY , P.S.MUKHERJEE, A.D.DAMODARAN.Multilayer capacitor ceramics in the PMN-PT-BT system: effect of Mgo and 4Pbo.B_2O_3 additionsJOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS.1997 (8): 203
    
    [22]李标荣,莫以豪,等.无机介电材料.第一版.上海科学技术出版社,1986
    
    [23] Hirokazu Chazono. Sintering Characteristics and Formation Mechanism of "Core-Shell"structure in BaTiO_3-Nb_2O_5-Co_3O_4 Ternary System.Jpn.J.Appl.Phys. 1995 (34), Part I .No.9B: 5354-5359
    
    [24] Hirokazu Chazono and Hiroshi Kishi.Sintering Characteristics in BaTiO_3-Nb_2O_5-Co_3O_4 Ternary System: I Electrical Properties and Microstructure.J.Am.Ceram.Soc. 1999.82??(10):2689-2697
    
    [25] Hirokazu Chazono. Sintering Characteristics and Formation Mechanism of "Core-Shell"structure in BaTiO_3-Nb_2O_5-Co_3O_4 Ternary System.JpnJ.Appl.Phys.1995 (34), Part I .No.9B:5354-5359
    
    [26] Hirokazu Chazono and Hiroshi Kishi.Sintering Characteristics in BaTiO_3-Nb_2O_5-Co_3O_4Ternary System: I Electrical Properties and Microstructure.Am.Cerarn.Soc.1999.82 (10):2689-2697
    
    [27] H.J.Hagemann.Reversible Weight Charge of Acceptor-Doped BaTiO_3.Jap.J.Am.Ceram. Soc.1981[9], 64 (10) :590-594.
    
    [28]陈大任.添加Nb_2O_5,CoO的BaTiO_3系介质陶瓷ε_r-t稳定原理.电子元件与材料.1991[8].10 (1),Feb:41-42
    
    [29]陈大任.添加Nb_2O_5,CoO的BaTiO_3系介质陶瓷ε_r-t稳定原理.电子元件与材料.1991[8].10 (1),Feb:41-42
    
    [30]范义源.高介X7R电容器介质瓷料的的研究.电子科技大学硕士学位论文,2002
    
    [31]电子元器件专业技术培训教材编写组.实用电子陶瓷(下).第一版.电子工业出版社,1986
    
    [32]徐廷献,沈继跃,薄占满,等.电子陶瓷材料[M].天津:天津大学出版社,1993,274.
    
    [33]黄新友,高春华.仪器仪表学报[J],2003,24(1):45.
    
    [1] 齐建全,李雯,王永力,等.中低温烧结的温度稳定型Ba_(1-x)Cd_xTiO_3介电材料[J].无机材料 学报,2002,17(6):1199-1202.
    
    [2] 江涛,陈绍茂,郭育源.中温烧结BaTiO_3基陶瓷的非均匀结构对ε_r-t特性的影响.电 子元件与材料.1996,15(4):30.
    
    [3] 黄新友,罗民华,梁萍萍,等.三种无铅高压陶瓷电容器瓷料的研制[J].中国陶 瓷,1994,30(6):7-12.
    
    [4] 齐建全,李雯,王永力,等.中低温烧结的温度稳定型Ba_(1-x)Cd_xTiO_3介电材料[J].无机材料 学报,2002,17(6):1199-1202.
    
    [5] 黄新友,高春华.仪器仪表学报,2003,24(1):45-48.
    
    [6] Mitic V,Mitrovic I. Journal of the European Ceramic Society,2001,21:2693.
    
    [7] 黄新友,高春华,陈祥冲,等.稀有金属材料与工程[J],2004,vol33,Suppl 1:146-149.
    
    [8] Beitollahi A,Mortazavi S A. Journal of Materials Science[J],2003:129-134.
    
    [9] Brzozowski E,Castro M S. Journal of Materials Science[J],2003:471-476.
    
    [10]江涛,陈绍茂,郭育源.中温烧结BaTiO_3基陶瓷的非均匀结构对εr-T特性的影响[J].电 子元件与材料.1996,15(4):30.
    
    [11]江涛,陈绍茂,郭育源,等.中温烧结BaTiO_3基多相铁电瓷料X7R特性[J].华南理工 大学学报(自然科学版).1996,24(3):124-128.
    
    [12] Hennings D, Rosenstein G. Temperature stable dielectric based on chemically inhomogeneousBaTiO_3[J]. J Am Ceram Soc, 1984,67(4):249-254.
    
    [13] Kahn Manfred. Influence of grain growth on dielectric properties of Nb-doped BaTiO_3[J]. JAm Ceram Soc, 1971,54(9):455-457.
    
    [14]杨小兵,李玲霞,吴霞宛,等.稀土氧化物Er_2O_3对钛酸钡基瓷料介电性能的影响[J].电 子元件与材料.2001,20(6):15-16.
    
    [15] Hiroshi Kishi,Noriyuki Kohzu,Junichi Sugino,et al. The effect of rare-earth (La,Sm,Dy,Ho and Er) and Mg on the microstructure in BaTiO_3[J]. Journal of the European Ceramic Society,1999,19:1043-1046.
    
    [16]戴维迪,苗海龙,程志捷,等.Dy_2O_3和La_2O_3掺杂对BaTiO_3铁电陶瓷介电特性的影 响[J].硅酸盐学报.2001,29(5):397-401.
    
    [17] Galeb H Maher, North Adams, Mass. Capacitor with fine grained BaTiO_3 body and method for making. US-5010443,1991.
    
    [1] 齐建全,李雯,王永力,等.中低温烧结的温度稳定型Ba_(1-x)Cd_xTiO_3介电材料[J].无机材料 学报,2002,17(6):1199-1202.
    
    [2] 江涛,陈绍茂,郭育源.中温烧结BaTiO_3基陶瓷的非均匀结构对εr-T特性的影响.电 子元件与材料.1996,15(4):30.
    
    [3] Itakura G , Iguchi T, Kuroda T .Ceramic dielectric materials with high dielectric constant for multilayer ceramic capacitors[J].Nation Tech Rep,1985,31(3): 145-156.
    
    [4] 黄新友,罗民华,梁萍萍.三种无铅高压电容器瓷料的研制[J].中国陶瓷,1994,26(6):7-12.
    
    [5] 黄新友,高春华.工业化(Ba,Sr,Ca)(Ti,Zr)O_3基电容器陶瓷的研究[J].仪器仪表学报, 2003,24(1):45-49.
    
    [6] Huang Xinyou,Zhao Chen,Chen Zhigang,et al.Influence of composition on properties of medium temperature sintering (Ba,Sr)TiO_3 series capacitor ceramics[J]. Journal of Rare Earths,2006,24(6):777-781.
    
    [7] 黄新友,高春华.工业化(Ba,Sr,Ca)(Ti,Zr)O3基电容器陶瓷的研究[J].仪器仪表学报, 2003,24(1):45-49.
    
    [8] Cho S B, Magdalena O , Richard E R . Hydrothermal synthesis of acicular lead zirconate titanate(PZT)[J]. J Cryst Growth, 2001,226(4): 313-326.
    
    [9] 李标荣,莫以豪.无机介电材料[M].北京:国防工业出版社,1980.
    
    [10] Zhang C , Qu Y F, Ma S C . Structural and dielectric properties of Sb_2O_3-doped(Ba_(0.992-x)Sr_xY_(0.008))TiO_3. ceramics[J]. Mater Sci&Engin B, article in press.
    
    [11]齐建全,桂治轮,王永力,等.Yb_2O_3掺杂方式对Ba(Ti_(1-y)Zr_y)O_3陶瓷介电性能的影响[J]. 无机材料学报,2001,16(5):989-992.
    
    [12] Jian M, Majumder S B, Katiyar R.S.,et al.Novel barium strontium titanatethin film composites for tunable microwave devices[J]. Mater Lett, 2003(57): 4232-4236.
    
    [13] Wang D Y, Mak C L, Wong K H,et al Optical properties of Ba_(0.5)Si_(0.5)TiO_3 thin films grown on MgO substrates by pulsed laser deposition [J].Ceram Inter, 2004,30(7):1745-1748.
    
    [14] Hutter B A, Vogt T. Bonding and structural variation in doped Bi_2Sn_2O_7[J]. J Solid State chem, 1997,131(2):317-325.
    
    [15]李军,黄新友.中温烧结(Ba,Sr)TiO_3电容器陶瓷[J].中国陶瓷工业,2004,11(2):24-27.
    
    [16] Souza I A, Simoes A Z, Cava S , Cavalcante L S, et al .Ferroelectric and dielectric properties??of Ba_(0.5)Sr_(0.5)(Ti_(0.08)Sn_(0.20))O_3 thin films grown by the soft chemical method[J]. J Solid State chem, 2006,179(10):2972-2976.
    
    [17]吴顺华,张杰,张志萍,等.中温烧结BaTiO_3铁电-玻璃陶瓷介电性能[J].压电与声 光,2001,23(4):283-285.
    
    [18]江涛,陈绍茂,郭育源,等.华南理工大学学报(自然科学版),1996,24(3):124-128.
    
    [19]陈绍茂,葛培盛,郭育源,等.高介高性能中温烧结片式多层瓷介电容器瓷料[P],中国专利, 专利申请号:97117286.2,1999,3,31.
    
    [20]陈绍茂,廖钦林,郭育源,等.高性能中温烧结片式多层瓷介电容器瓷料[P],中国专利,专利 申请号:97117287.0,1999,3,31.
    
    [1] WU Di,LI Aidong,LIN Huiqin,et al.Preparation of (Ba_(0.5)Sr_(0.5))TiO3 thin films by sol-gel method with rapid thermal annealing[J].Appl Surf Sci,2000,165:309-314.
    
    [2] 章天金,王纬.Ba_(0.64)Sr_(0.36)TiO_3薄膜的介电与热释电性能的研究[J].硅酸盐学报,2002,30(4): 443-446.
    
    [3] 杨文,常爱民,杨帮朝.晶粒尺寸对Ba_(0.80)Sr_(0.20)TiO_3陶瓷介电铁电性的影响[J】.硅酸盐学 报,2002,30(3):390-393.
    
    [4] 张磊,梁辉,徐廷献.钛酸锶钡电介质材料的掺杂改性及其应用[J].硅酸盐学 报,2002,30(6):785-788.
    
    [5] 齐建全,李雯,王永力,等.中低温烧结的温度稳定型Ba_(1-x)Cd_xTiO_3介电材料[J].无机材料学 报,2002,17(6):1199-1202.
    
    [6] Okino Y,Shizuno H,Kusuno S,et al.Dielectric properties of rare earth oxide doped BaTiO_3 ceramics fired in reducing atmosphere[J].Jpn J Appl Phys part1, 1994,33:5393-5396.
    
    [7] Konaka H,Sano H,Konoike T,et al.Microstructure control of BaTiO_3-based ceramics by the compositions[J].Key Eng Mater,2000,181-182:3-6.
    
    [8] Wang Sea-Fue,GORDON O D.Dielectric properties of fine grained barium titanate based X7R materials[J].J Am Ceram Soc,1999,82(10):2677-2682.
    
    [9] 蒋渝,陈家钊,刘颖,等.多层片式陶瓷电容器MLC研发进展[J].功能材料与器件学 报,2003,9(1):100-104.
    
    [10]付兴华,侯宪钦,周丽玮,等.Sr_(1-x)Ba_xTiO_3超细微粉的溶胶-凝胶制备与表征[J].硅酸盐通 报,2003,No.1,p3-7.
    
    [11]曾华荣,瞿翠凤,姚春华,等.溶胶-凝胶法制备Ba_xSr_(1-x)TiO_3热释电陶瓷材料[J].无机材料 学报,1999,14(1):101-106.
    
    [12]杨文,常爱民,杨帮朝.纳米(Ba,Sr)TiO_3粉体材料的制备[J].中国粉体技术,2002,8(2):22-24.
    
    [13]赵苏串,魏敏敏.溶胶凝胶法制备掺铌的SrTiO_3薄膜.电子元件与材料,2000,19(1): 5-6.
    
    [14]王雪文,张志勇,赵武,等.用溶胶凝胶法制备SrTiO_3纳米薄膜材料.西北大学学报(自 然科学版),2000,30(5):400-402.
    
    [15]杨文,常爱民,庄建文,等.(Ba_(0.65)Sr_(0.35))TiO_3陶瓷材料的制备及介电特性研究.无机材料学 报,2002,17(4):822-825.
    
    [16]黎先财,罗来涛,刘康强.纳米BaTiO_3的制备及其负载Ni基催化剂的应用研究.无机 材料学报.2003,18(3):686-690.
    
    [17] Cole M W. J Appl Phys,2002,92(1):475-483.
    
    [18] Lee S Y.Tseng TY. Appl Phys Lett,2002,80(10): 1797-1790.
    
    [19] Smolensky G A. Physical phenomena in ferroelectrics with diffuse phase transitions. J Phys SocJpn. 1970,28 Suppl:26-28.
    
    [1] 陈仁政.钛酸钡基温度稳定型陶瓷介电特性研究[D].清华大学博士学位论文,2003.
    
    [2] 王辉,崔斌,畅柱国,等.材料科学与工程,2003,21(5):773-776.
    
    [3] 全学军,李大成.无机材料学报,2001,16(5):853-860.
    
    [4] Baorong Li,Xiaohui Wang ,Longtu Li.Materials Chemistry and Physics,2003,78(1):292-298.
    
    [5] Nomura T,Nakano Y.Satoh A,et al.Multilayer ceramic capacitor,Int.CI:H01G7/00.US patent5319517.1994-06-07.
    
    [6] Bergan H E,Bruno S ABurn I.Ceramic dielectric composition and method forpreparation.Int.CI:C04B35/46.US patent 5082810.1992-1-21.
    
    [7] KAKJHANA M. Journal of Sol-Gel Science and Technology,1996,6:7-55.
    
    [8] Wu she-Huang,Su Hsiang-Jui. Mater.Chem.Phys.2002,78(1): 189-195.
    
    [9] 余桂郁,杨南如.溶胶—凝胶法简介[J].硅酸盐通报.1993,12(6):54-58.
    
    [10]龚红宇,范素华等.电子陶瓷粉钛酸锶铅的液相合成技术研究[J].复合材料学 报.1999,16(2):53-57.
    
    [11]Kazuo Nakamoto.无机和配位化合物的红外和拉曼光谱[M],第四版.北京:化学工艺出版 社,1991.117.
    
    [12]肖新,古风才,赵桂英.实用分析化学[M],修订版.天津大学出版社,2000.320.
    
    [13]刘大成.粉体团聚及解决措施[J].中国陶瓷.2000,36(6):33-35.
    
    [14]陈少贞,陈森凤.湿化学法制备ZrO_2超细粉的团聚机理、表征及控制[J].材料导报.1996,3: 39-45.
    
    [15]宋森,杨胜森等.微细导电粉体碘化亚铜在乙二醇中的分散性研究[J].功能高分子报. 2004,6(2):215-219.
    
    [16]彭会芬.钛酸钡铁电陶瓷和薄膜的溶胶凝胶法制备及表征[J].材料科学与工艺. 1998,16(1):64-68.
    
    [17]顾好爽,王世敏,吴新民等.溶胶—凝胶法制备高取向Bi_4Ti_3O_(12)/SrTiO_3薄膜[J].物理化学学 报.1996,12(1):63-66.
    
    [18] Gu hao shuang,Kuang an xiang,Wang shi min etal. Synthesis and ferroelectric properties of c-axis oriented Bi_4Ti_3O_(12) thin films by Sol-Gel process on platinum coated silicon. AppI phys Lett,1996,68(9):1209-1210.
    
    [19]周幼华,顾豪爽,田虎永等.Sol-Gel工艺合成Bi_4Ti_3O_(12)超细粉[J].湖北大学学报(自然科学 版).1997,19(4):355-358.
    
    [20]沈彩,刘庆峰,刘茜.脉冲电流烧结掺杂Ba_(0.5)Sr_(0.5)TiO_3陶瓷介电性能的研究[J].无机材料学 报.2004,19(6):1339-1344.
    
    [21]李卫,周科朝,杨华.氧化铋的应用研究进展[J].材料科学与工程学报.2004,1(22):154-156.
    
    [22]范恩荣.促进陶瓷烧成的新途径[J].电瓷避雷器.2002,2:6-9.
    
    [23]黄欣.高介电常数低变化率BaTiO3系陶瓷电容器瓷料的研究[D].天津大学硕士论文,天 津:天津大学,2000.
    
    [24]江涛,陈绍茂,郭育源.中温烧结BaTiO_3基陶瓷的非均匀结构对εr-T特性的影响[J].电 子元件与材料.1996,15(4):30.
    
    [25]江涛,陈绍茂,郭育源,等.中温烧结BaTiO_3基多相铁电瓷料X7R特性[J].华南理工 大学学报(自然科学版).1996,24(3):124-128.
    
    [26] Biggers J V. Am Ceram Soc Bull. 1974,53(11):809.
    
    [27]天津大学化工系.物理[M].天津大学出版社,1978.
    
    [28] B.S. Raual, et al. 34~(th) Electronic Components Conference :184.
    
    [29] Toru Nagai ,et al. J.Am. Ceram.soc.,2000,83(1):107.
    
    [30]田靓.介电温度稳定型钛酸钡基介电材料的制备[D],西北大学硕士学位论文,2006,8.
    
    [31]肖顺华,姜卫粉,李隆玉,等.钛酸锶钡纳米粉体的溶胶-凝胶自蔓延燃烧制备及其介电性能 研究[J],功能材料,2007,38(11):1814-1816.
    
    [32] Xiao-Hui Wang,Ren-Zheng Chen,Zhi-Lun Gui,et al.The grain size effect on dielectric properties of BaTiO_3 based ceramics[J],Materials Science and Engineering B99(2003): 199-202.
    
    [33]王辉,俞鹏飞,田靓,等。BaTiO_3纳米粉体及其陶瓷的制备和介电性能[J],宝鸡文理学 院学报(自然科学版),2005,25(1):29-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700