用户名: 密码: 验证码:
绝缘子超疏水涂层制备方法与防冰性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于冻雨、湿雪、霜冻等原因导致的输电线路覆冰,是影响电力系统安全的主要问题之一。输电线路覆冰,通常可导致线路停电、断线、倒塔、导线舞动、绝缘子闪络等事故,从而产生巨大的经济损失。因此,输电线路防冰与除冰技术研究具有重要的学术意义与应用价值。本文研究了一种新的绝缘子超疏水涂层制备方法,测量并分析了绝缘子超疏水涂层的疏水特性,通过覆冰实验研究了绝缘子超疏水涂层的防冰特性。论文的主要内容有:
     ①通过分析超疏水涂层润湿理论,对防冰超疏水涂层需具备的表面微结构和化学成分进行研究,提出了一种能够在具有大面积、复杂外形基体上制备超疏水涂层的方法,即纳米粒子表面自组装法;利用纳米粒子表面自组装法制备出改性纳米二氧化硅超疏水涂层,并对超疏水涂层的表面微结构、化学成分和憎水性进行分析,证明纳米粒子表面自组装法能够制备出二元微纳粗糙结构,分析并说明了改性纳米二氧化硅超疏水涂层的缺陷和制备方法的不足。
     ②提出了在纳米二氧化硅自组装体与基体之间引入聚二甲基硅氧烷(Polydimethylsiloxane, PDMS)过渡层的方法,解决了改性纳米二氧化硅超疏水涂层的表面固化龟裂问题,制备出PDMS/纳米二氧化硅杂化超疏水涂层,并对PDMS/纳米二氧化硅杂化超疏水涂层的表面微观结构、化学成分、酸碱耐受性及其疏水稳定性进行研究,进一步通过试验研究了PDMS/纳米二氧化硅杂化超疏水涂层的基本绝缘性能,重点研究了涂覆PDMS/纳米二氧化硅杂化超疏水涂层的绝缘子的淋雨闪络特性。
     ③提出了一种测量超疏水涂层的过冷却水滴捕获率的试验方法,采用该方法成功测量出PDMS/纳米二氧化硅杂化超疏水涂层的过冷却水滴捕获率;研究了覆冰温度与涂层倾斜角度对PDMS/纳米二氧化硅杂化超疏水涂层覆冰过冷却水滴捕获率的影响,分析了PDMS/纳米二氧化硅杂化超疏水涂层过冷却水滴捕获率随覆冰进程的演变。研究结果表明,PDMS/纳米二氧化硅杂化超疏水涂层具有非常小的过冷却水滴捕获率。
     ④研究了超疏水涂层覆冰粘结强度,设计出覆冰粘结强度测量装置,采用万能力学试验机测试了PDMS/纳米二氧化硅杂化超疏水涂层的垂直覆冰粘结强度和剪切覆冰粘结强度,测试结果表明,PDMS/纳米二氧化硅杂化超疏水涂层具有非常小的覆冰粘结强度。通过研究覆冰与PDMS/纳米二氧化硅杂化超疏水涂层的复合接触面的微观结构,分析了超疏水涂层具有微小覆冰粘结强度的原因;并且,对脱冰后的PDMS/纳米二氧化硅杂化超疏水涂层进行的微观形貌与憎水性进行了分析与测试,结果表明脱冰过程不会破坏该涂层的表面微观结构与超疏水性。
     ⑤分别在人工气候室和自然环境中对PDMS/纳米二氧化硅杂化超疏水涂层的防冰性能进行实验研究。通过对涂覆PDMS/纳米二氧化硅杂化超疏水涂层的绝缘子的覆冰形貌、覆冰重量以及覆冰闪络电压的试验研究与分析,证明了PDMS/纳米二氧化硅杂化超疏水涂层具备延缓覆冰与减小覆冰量的能力,涂覆超疏水涂层的绝缘子在覆冰过程中具有较高的绝缘强度,过冷却水滴持续或长时间的冲刷以及覆冰粘结不会破坏涂层的超疏水特性。
     上述研究过表明,纳米粒子表面自组装法能够制备出疏水性能稳定的PDMS/纳米二氧化硅杂化超疏水涂层,该涂层具备了输电线路防冰的能力,并在人工气候室与现场自然环境覆冰实验中显示出良好的防冰效果。
Ice accumulation on transmission lines, caused by freezing rain, wet snow or frost, is one of major problems influencing safety of electric power system. Ice accumulation may lead to outage, conductor break, tower collapse, conductor galloping, and insulator flashover of transmission lines, which can lead to great economic losses. Therefore, research on the anti-icing and de-icing of transmission lines has great academic significance and application value. The dissertation presents the preparation, hydrophobicity, and anti-icing performances of a new type of superhydrophobic coating.
     The work focuses mainly on the following contents:
     ①The microstructure and chemical components, required for superhydrophobic coatings, was studied through analyzing the wetting theory of superhydrophobic coatings. A simple approach, named as the surface self-assemble of nano-particles (SSNP), was proposed to prepare superhydrophobic coatings economically on substrates with large surface area and complicate shapes. A nano-silica superhydrophobic coating was prepared by the approach and its surface microstructure, chemical component, and hydrophobicity were investigated. The research results show that a dual micro- and nano-scale hierarchical structure was fabricated on the nano-silica super-hydrophobic coating by the SSNP. Several drawbacks of the nano-silica super-hydrophobic coating were also presented.
     ②An improved approach to insert a Polydimethylsiloxane (PDMS) transition layer between nano-silica self-assemblies and substrates was proposed to prevent cracks of curing surface of the nano-silica superhydrophobic coating. A PDMS/nano-silica hybrid superhydrophobic coating was prepared by the improved approach. Microstructure, chemical components, and hydrophobicity stability of the PDMS/nano-silica hybrid superhydrophobic coating were investigated.
     ③An experimental method was proposed to measure the super-cooled water droplet capture rate of the superhydrophobic coating. The experimental method was used to measure the super-cooled water droplet capture rate of the PDMS/nano-silica hybrid superhydrophobic coating. The influences of the icing temperature and surface inclined angle to the super-cooled water droplet capture rate were investigated. The change of the super-cooled water droplet capture rate of the PDMS/nano-silica hybrid superhydrophobic coating was also investigated during the ice accumulation. The results show that the PDMS/nano-silica hybrid superhydrophobic coating possesses a very small super-cooled water droplet capture rate.
     ④Ice adhesion strength of the superhydrophobic coating was investigated. Testing devices to measure ice adhesion strength of the superhydrophobic coating were designed. The vertical and shearing forces of ice adhesion to the PDMS/nano-silica hybrid superhydrophobic coating were measured through the approach. Testing results show that the superhydrophobic coating possesses very small ice adhesion strength. The analysis to microstructure of the interface between ice layer and the superhydrophobic coating show the reasons why the very small ice adhesion strength exists on the superhydrophobic coating. Furthermore, the microstructure and hydrophobicity of the PDMS/nano-silica hybrid superhydrophobic coating were measured and analyzed. The results show that shedding influences little on the surface microstructure and hydrophobicity of the superhydrophobic coating
     ⑤Ice accumulation experiments both in laboratory and in filed were carried out to investigate the ice accumulation properties on insulator strings coated with the PDMS/nano-silica hybrid superhydrophobic coating. Morphology and weight of the accumulated ice on the coated insulator strings were both studied. Flashover testes were also carried out on the coated insulator strings. The results show that the ice accumulation on insulators is inhibited and reduced by the superhydrophobic coating.
     The insulator strings with the superhydrophobic coating possesses very high insulation strength. And the hydrophobicity of the superhydrophobic coating was influenced slightly by impact of the super-cooled rain and shedding of ice.
     The above results revealed that the PDMS/nano-silica hybrid superhydrophobic coating was prepared through the SSNP method. The PDMS/nano-silica hybrid superhydrophobic coating is capable of anti-icing for transmission lines. The experimental results in both laboratory and filed show the good anti-icing properties of the superhydrophobic coating.
引文
[1]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力, 2005,38(11): 27-30.
    [2]陈斌,郑德库.架空送电线路导线覆冰破坏问题分析[J].吉林电力, 2005, 6: 25-27.
    [3]中国南方电网公司.电网防冰融冰技术及应用[M].北京:中国电力出版社, 2010.
    [4]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001.
    [5]李再华,白晓民,周子冠,等.电网覆冰防治方法和研究进展[J].电网技术, 2008, 4(32): 7-22.
    [6]蒋兴良,卢杰,苑吉河,等.输电线路绝缘子串防冰闪措施研究[J].电网技术, 2008, 32(10): 19-24.
    [7]李军.湖南电网三相短路融冰利弊分析[J].湖南电力, 1998, 18(4): 20-24.
    [8]蒋兴良,万启发,吴盛麟,等.输电线路除冰新技术—低居里(Lc)磁热线在线路除冰中的应用[J].高电压技术, 1992, (3):55-58.
    [9]蒋兴良. LC磁热线在线路除冰中的应用[R].武汉:电力部武汉高压研究所, 1993: 5-11.
    [10]王小强,龙毅,叶荣昌,等.新型低居里温度防覆冰材料LaFe10.78Co0.92Al1.3的研究[C].全国磁热效应材料和磁制冷学术研讨会论文集, 33.
    [11]龙小乐,鲍务均,郭应龙.导线防覆冰居里丝绕线机设计[J].湖北电力, 1996, 3: 26-29.
    [12]曹建,徐慧.输电线防冰热敏磁性芯线发热量测量仪的研制[C].首届中国功能材料及其应用学术会议论文集, 1992: 258-259.
    [13]蒋兴良,输电线路覆冰机理与防冰新技术研究[C].中国科学技术协会首届青年学术年会论文集(工科分册·上册), 1992:110-115.
    [14]蒋兴良,范松海,孙才新,等.低居里点铁磁材料在输电线路防冰中应用前景分析[J].南方电网技术, 2008, 2(2), 19-22.
    [15]谷山强,陈家宏,蔡炜,等.输电线路激光除冰技术试验分析及工程应用设计[C].高电压技术, 9(35):.
    [16]朱卫华,朱晓,朱长虹,等. C02激光热熔法除冰的研究[J].光学与光电技术, 2007, 5(3): 41-42.
    [17] J. W. Lane, S. J. Marshall. De-icing using lasers[C]. US:US Army Cold Regions Research and Engineering Laboratory, 1976.
    [18]刘磊,朱晓,激光除冰研究[C].光散射学报, 2006, 18(4): 379-385.
    [19] M. Landry, R. Beauchemin, E. A. Venn. De-icing EHV overhead Transmission Lines Using Electromagnetic Forces Generated by Moderate Short-circuit Currents[C]. Transmission and Distribution Construction, Operation and Live-Line Maintenance Proceedings of IEEE 9thInternational Conference, Montreal, Canada, 2000.
    [20] R. I. Egbert, R. L. Schrag, W. D. Bernhart, et al. An Investigation of Power Line De-icing by Electro-impulse Methods[J]. IEEE Trans on Power Delivery, 1989, 4(3): 1855-1861.
    [21]胡小华,重庆大学硕士学位论文[M]. 2006
    [22]李成榕,吕玉珍,崔翔,等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):7-13.
    [23]上田晴宜.太阳热吸收板用涂料[J].涂装技术, 1984, 10(增刊): 127-133.
    [24] Karkika. Preparation of Waterp Roof Coating. US, 4123591[P]. 1978-10-31.
    [25]刘胜锋.太阳光谱选择性吸收涂层新型颜料的合成研究[J].太阳能学报, 1994, 15(3): 300-304.
    [26] H. Ramlov. Aspects of Natural Cold Tolerance in Ecothermic Animals. Hum Reprod 2000, Suppl, 15: 26-46.
    [27] S. A. Kulinich, M. Farzaneh. How Dynamic Hydrophobicity of Superhydrophobic Surfaces Governs Evaporation of Small Water Droplets[C]. IWAIS XIII, Andermatt, September 8 to 11, 2009.
    [28] V. K. Croutch, R. A. Hartley. Adhesion of Ice to Coating and the Performance of Ice release Coating[J]. J. Coat. Technol., 1992, 64: 41-52.
    [29] L. O. Andersson, C. G. Golander, S. Persson. Ice Adhesion to Rubber Materials[J]. J. Adhes. Sci. Technol., 1994, 8: 117-132.
    [30] E. H. Andrews, H. A. Majid, N. A. Lockington. Adhesion of Ice to a Flexible Substrate[J]. Mater. Sci., 1983, 19: 73-81.
    [31] J. Barrett. Thermal Hysteresis Proteins[J]. Int J Biochem Cell Biol. 2001: 33(2): 105-17;
    [32] V. F. Petrenko, S. Peng. Reduction of Ice Adhesion to Metal by Using Self-assembling Monolayers (SAMs)[J]. Can. J. Phys, 2003, 81: 387-393.
    [33] M. Landy, A. Freiberger. Studies of Ice Adhesion. I. Adhesion of Ice to Plastics[J]. J. Colloid Interface Sci. 1967, 25: 231-244.
    [34] C. Laforte, J. L. Laforte, J. C. Carrier. How a Solid Coating can Reduce the Adhesion of Ice on a Structure, Proceedings of the International Workshop on Atmospheric Icing of Structures (IWAIS X), 2002. 1-5.
    [35] V. F. Petrenko. Study of the Surface of Ice, Ice/solid and Ice/liquid Interfaces with Scanning Force Microscopy[J]. J. Phys. Chem. B 101 (1997) 6276.
    [36] V. F. Petrenko, I. A. Ryzhkin. Surface States of Charge Carriers and Electrical Properties of the Surface Layer of Ice[J]. J. Phys. Chem. B 101 (1997) 6285.
    [37] A. Kuhn. PTFE Coating vs. Impregnation Analyzing what Works Best for AnodizedAluminum[J]. Met. Finish. 102 (2004) 12.
    [38] N. Rehfeld, D. B. Weber. Progress in Anti-ice Technologies–Coating Concepts and Evaluation, Section 7, International Workshop on Atmospheric Icing of Structures (IWAIS) XIII[C]. Andermatt, Swizerland, September 8 to 11, 2009.
    [39] J.Ayres, et al. Characterization of Titanium Alkoxide Sol-gel Systems Designed for Anti-icing Coatings:II. Mass loss kinetics[J]. J. Coat. Technol. Res, 2007, 4(4): 473-481.
    [40] H. H. G. Jellinek, H. Kachi, S. Kittaka, et al. Ice Releasing Block-copolymer Coatings[J]. Coll. Polym. Sci., 256 6, 544–551.
    [41] B. Hanamoto. Application of a Block Copolymer Solution to Ice-prone Structures[C]. Proceedings of the 1st International Workshop on Atmospheric Icing of Structures, Hanover. US Army Corps of Engineers, Cold Region Research and Engineering Laboratory, 1982, 155–158.
    [42] R. Charles. Icing and Offshore Arctic Oil Operations Safety, Section 7, International Workshop on Atmospheric Icing of Structures (IWAIS) XIII[C]. Andermatt, Swizerland, September 8 to 11, 2009.
    [43] E. A. Thowless. Ice-phobic Coatings Applied to Saline-ice-covered Whip-type Antennas. Proceedings of the 1st International Workshop on Atmospheric Icing of Structures[C]. Hanover. US Army Corps of Engineers, Cold Region Research and Engineering Laboratory, 1982, 159–161.
    [44] B. Somlo, V. Gupta. A Hydrophobic Self-assembled Monolayer with Improved Adhesion to Aluminum for Deicing Application[J]. Mech. Mater., 2001, 33: 471-480.
    [45] R. Menini, M. Farzaneh. Elaboration of Al2O3/PTFE Icephobic Coatings for Protecting Aluminium Surfaces[J]. Surf. Coat. Technol., 2009, 203: 1941-1946.
    [46] S. A. Kulinich, M. Farzaneh. Hydrophobic Properties of Surfaces Coated with Fluoroalkylsiloxane and Alkylsiloxane Monolayers[J]. Surf. Sci., 2004, 573: 379-390.
    [47] V. K. Croutch, R. A. Hartley. Adhesion of Ice to Coatings and the Performance of Ice Release Coatings[J]. J. Coatings Technol., 1992, 64(815): 41–53.
    [48] R. Menini, M. Farzaneh. Elaboration of Al2O3/PTFE Icephobic Coatings for Protecting Aluminium Surfaces[J]. Surf. Coat. Technol., 2009, 203: 1941-1946.
    [49] S. Noormohammed. Nanostructured Thin Films for Icephobic Applications[C]. PhD Thesis, University of Quebec at Chicoutimi, Canada, 2009.
    [50] J. F. Drapeau, M. Farzaneh, M. Roy, et al. An Experimental Study of Flashover Performance of Various Post Insulators under Icing Conditions[C]. 2000 Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), 2000, 359-364.
    [51] N. D. Mulherin, R. B. Haehnel. Progress in Evaluating Surface Coatings for Icing Control at Corps Hydraulic Structures, Ice Engineering Technical Note, 2003. 3-4.
    [52] H. Saito, K. Takai, G. Yamauchi. Water and Ice-repellent Coatings[J]. Surf. Coat. Int., 1997, 80: 168-172.
    [53] C. Laforte, A. Beisswenger. Icephobic Material Centrifuge Adhesion Test[J]. Proc. IWAIS XI, 2005: 357-360.
    [54] H. H. G. Jellinek, G. E. Frankenstein, B. Hanamoto. Method for Reducing the Adhesion of Ice to the Walls of Navigation Locks[J]. US Patent, No. 4-301-208, 1981.
    [55] M. J. Mashmool, C. Volat, M. Farzaneh. A New Method for Measuring Ice Adhesion Strength at an Ice-substrate interface[J]. Hydrol. Process, 2006, 20: 645-655.
    [56] C. Laforte, A. Beisswenger. Icephobic Material Centrifuge Adhesion Test’, in 10th International Workshop on Atmospheric Icing of Structures[C]. Montréal, (QC), Canada, 2005: 12-16.
    [57] S. Farhadi, M. Farzaneh, S. A. Kulinich. Ice-Repellent Performance of Alkyl-Grafted Aluminium Alloy Surfaces[C]. IWAIS XIII, Andermatt, September 8 to 11, 2009, section6.
    [58]蒋兴良,杜辕,林峰,等.持久性就地成型防污闪复合涂料对绝缘子覆冰及交流冰闪电压的影响[J].电网技术, 32(1): 71-75.
    [59] X. L. Jiang, J. Ma, Z. J. Zhang. Effect of Hydrophobicity Coating on Insulator Icing and DC Flashover Performance of Iced Insulators[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(2): 351-359.
    [60] F. Arianpour, M. Farzaneh, S. A. Kulinich. Ice Adhesion and Hydrophobic Properties of Coatings Based on Doped RTV Silicone Rubber[C]. IWAIS XIII, Andermatt, June 8-11, 2009, section6.
    [61] W. Y. Liao, Z. D. Jia, Z. C. Guan, et al. Reducing Ice Accretion on Insulators by Applying Semiconducting RTV Silicone Coating[C]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(6): 1446-1454.
    [62]吴小敏,许旺发,王维城,等.冷面上水珠冻结及影响因素的实验研究[C].中国工程热物理学会传热传质学学术会议论文集, 2003, 325-328.
    [63] K. Tadanaga, N. Katata, T. Minami. Super-Water-Repellent A12O3Coating Films with HighTransparency [J]. J. Am. Ceram. Soc., 1997, 80: 1040.
    [64] K. Tadanaga, N. Katata, T. Minami. Formation Process of Super-water-repellent A1203 Coating Films with High Transparency by the Sol-Gel Method [J]. J. Am. Ceram. Soc., 1997, 80: 3213-3219.
    [65] K. Tadanaga, K. Kitamuro, A. Matsuda. Formation of Superhydrobic Alumina Coating Filmswith High Transparency on Polymer Substrates by the Sol-gel Method [J]. J. of Sol-Gel. and Techn., 2003, 26: 705-408.
    [66] K. Tadanaga, K. Kitamuro, J. Morinaga, et al. Preparation of Super-water-repellent Alumina Coating Films with High Transparency on Poly (ethylene terephthalate) by the Sol-Gel Method [J]. Chemistry Letters. 2000: 864-865.
    [67]郭志光,周峰,刘维民.溶胶凝胶法制备仿生超疏水性薄膜[J].化学学报, 2006, 64(8): 761-766.
    [68]薛再兰,杨武,郭昊,等.溶胶凝胶法制备超疏水性OTSSiO2复合薄膜[J].西北师范大学学报, 2008, 44(12): 65-73.
    [69] V. Stelmashuk, H. Biedeman, D. Slavinska, et al. Plasma Polymer Films Puttered From PTFE under Various Argon Pressures[J]. Vacuuzn, 2005, 77(2): 131-137.
    [70] Y. Zhou, X. Song, M. Yu, et al. Superhydrophobic Surfaces Prepared by Plasm Fluorination of Lotus-leaf-like Amorp-houscarbon Films[J]. Surfaces Review and letters, 2006, 13(l): 117-122.
    [71] J. D. Miller, S. Veeramasuneni, J. Drelieh,et al. Effect of Roughness as Determined by Atomic Force Microscopy on the Wetting Properties of PTFE Thin Films[J]. Polym. Eng. SCi., 1996,36: 1849-1855.
    [72] A. Duparr, M. Flenuning, J. Steinert, et al. Optical Coatings with Enhanced Roughness for Ultrahydrophobic, Low Scatter Application[J]. Appl. Optics., 2002, 41(6): 3294-3298.
    [73] Y. Wu, H. Suginuna, O. Takai, et al. Preparation of Hard and Ultra-water-repellent Silicon Oxide Films by Mircrowave Plasma-enhaneed CVD at Low Substrate Temperatures[J]. Thin Solid Films, 2003, 435(7): 161-164.
    [74] A. Hozumi, O. Takai. Preparation of Ultra Water-repellent Films by Microwave Plasma-enhanced CVD [J]. Thin Solid Films, 1997, 303: 222-225.
    [75] N. Ogawa, M. Soga, Y. Takada, et al. Development of a Transparent and Ultrahydrophobic Glass Plate [J]. Jpn. J. Appi. Phys., 1993, 32: 614-615.
    [76] O. Takai, A. Hozumi, N. Sugimoto. Coating of Transparent Water-repellent Thin Films by Plasma-enhanced CVD [J]. Journal of Non-Crystalline Solids, 1997, 218: 280-285.
    [77] A. Hozumi, O. Takai. Preparation of Silicon Oxide Films Having a Water-repellent Layer by Multiple-step Microwave Plasma-enhanced Chemical Vapor Deposition[J]. Thin Solid Films, 1998, 334: 54-59.
    [78] D. Oner, T. J. McCarthy. Ultrahydrophobic Surfaces: Effects of Topography Length Scales on Wettability[J]. Langmuir, 2000, 16: 7777-7782
    [79] S. Minko, M. Müller, M. Motornov. Two Level Structured Self-adaptive Surfaces WithReversibly Tunable Properties[J]. J. Am. Chem. Soc., 2003, 125: 3896-3900
    [80] H. Y. Erbil, A. L. Demirel, Y. Avci, et al. Transformation of a Simple Plastic into a Superhydrophobic surface [J]. Science, 2003, 299: 1377-1380
    [81] N. Zhao, Q. D. Xie, J. Xu, et al. Superhydrophobic Surface from Vapor-induced Phase Separation of Copolymer Micellar Solution[J]. Macromolecules, 2005, 38: 8996-8999.
    [82] F. Shi, Z. Q. Wang, X. Zhang. Combining a Layer-by-layer Assembling Technique with Electrochemical Deposition of Gold Aggregates to Mimic the Legs of Water Atriders[J]. Adv.Mater., 2005, 17: 1005-1009.
    [83] X. Yu, Z. Q. Wang, Y. G. Yang, F. Shi, X. Zhan. Reversible PH-responsive Surface: from Superhydrophobicity to Superhydrophilicity[J]. Adv. Mater., 2005, 17: 1289-1293.
    [84] R. M. Jisr, H. H. Rmaile, J. B. Schlenoff. Hydrophobic and Ultra-hydrophobic Multilayer Thin Films from Perfluorinated Polyelectrolytes[J]. Angew. Chem. Int. Ed., 2005, 44: 782-785.
    [85] W. Ming, D. Wu, R. V. Benthem, G. With. Superhydrophobic Films from Raspberry-like Particles[J]. Nano Letters, 2005, 5: 2298-2301.
    [86] H. J. Li, X. Wang, Y. Song, et al.Super-hydrophobic Aligned Carbon Nanotube Films[J]. Angew. Chem. Int. Ed., 2001, 40: 1743-1746
    [87] Y. LI, W. Cai, G. Duan, et a1. Superhydrophobicity of 2D ZnO Ordered Pore Arrays Formed by Solution-dipping Template method[J]. J. Coll. Inter. Sci., 2005, 287: 634-639
    [88] N. Wang, J. Xi, S. Wang, et al. Long-term and Thermally Stable Superhydrophobic Surfaces of Carbon Nanofibers[J]. J. Coll. Inter. Sci., 2008, 320: 365-368.
    [89] W. Chen, A. Y. Fadeev, M. C. Hsieh, et al. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples[J]. Langmuir,1999, 15: 3395-3399.
    [90] J. P. Youngblood, T. J. McCarthy. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma[J]. Macromolecules, 1999, 32: 6800-6806.
    [91] P. Favia, G. Cicala, A. Milella, et al. Deposition of Super-hydrophobic Fluorocarbon Coatings in Modulated RF Glow Discharges[J]. Surface and Coatings Technology, 2003, 169-170.
    [92] S. R. Coulson, I. Woodward, J. P. S. Badyal. Super-Repellent Composite Fluoropolymer Surfaces[J]. J. Phys. Chem.B., 2000, 104: 8836-8840.
    [93] A. Hozumi, O. Takai. Preparation of Ultra Water-repellent Films by Microwave Plasma-enhanced CVD[J]. Thin Solid Films, 1997, 303(1-2): 222-225.
    [94] O. Takai, A. Hozumi, N. Sugimoto. Coating of Transparent Water-repellent Thin Films by Plasma-enhanced CVD[J]. Journal of Non-Crystalline Solids, 1997, 218:280-285.
    [95] A. Hozumi, O. Takai. Preparation of Silicon Oxide Films Having a Water-repellent Layer[J]. Thin Solid Films, 1998, 334, 54-59.
    [96] K. Teshima, H. Sugimura, O. Takai, et al. Wettablity of Polyethylene Terephthalate Substrates Modified by a Two-step Plasma Process:ultra Water Repellent Surface Fabrication[J]. Chem.Vapor Depos., 2004, 10: 295-297.
    [97] L. Jiang, Y. Zhao, J. Zhai, etal. A Lotus-leaf-like Superhydrophobic Surface: A Porous Microsphere/Nano Fiber Composite Film Prepared by Electrohydrodynamics[J]. Angew. Chem. Int. Ed., 2004,43:4338-4341.
    [98] J. Zheng, A. He, J. Li, Xu J., et al. Studies on The Controlled Morphology and Wettability of Polystyrene Surfaces by Electrospinning or Electrospraying[J]. Polymer, 2006, 47: 7095-7102
    [99] Y. Zhu, J. Zhang, Y. Zheng, et al. Stable Superhydrophobic and Conductive Polyaniline/polystyrene Films for Corrosive Environments[J]. Adv. Funct. Mater., 2006,16: 568-574.
    [100] Y. Zhu, J. Zhang, J. Zhai, et al, Multifunctional Carbon Nanofibers with Conductive, Magnetic and Superhydrophobic Properties[J]. ChemPhysChem.,2006,7:336-341.
    [101] M. Ma, R M. Hill, J L. Lowery, et al., Electronspun Poly(styrene-block-dimethylsiloxane) Block Copolymer Fibers Exhibiting Superhydrophobicity[J]. Langmuir,2005,21:5549-5554.
    [102] M. Zhu, W. Zou, H. Yu, et al. Superhydrophobic Surface Directly Created by Electrospinning Based on Hydrophilic Material[J]. J. Mater. Sci., 2006, 41:3793-3797.
    [103] A. Singh, L. Steely, H. Allcock. Poly[bis(2,2,2-trifluoroethoxy)phosphazene] Superhydrophobic Nanofibers[J]. Langmuir, 2005, 21:11604-11607.
    [104] W. Chen, A. Fadeev, M. Hsieh, D. ?ner, J. Youngblood and T. McCarthy. Ultrahydrophobic and Ultralyophobic Surfaces some Comments and Examples[J]. Langmuir, 1999, 15(10): 3395–3399.
    [105] D. Kner, J. McCarthy. Langmuir 2000, 16: 7777.
    [106] J. P. Youngblood, T. J. McCarthy. Macromolecules. Ultrahydrophobic Polymer Surfaces Prepared by Simultaneous Ablation of Polypropylene and Sputtering of Poly(tetrafluoroethylene) Using Radio Frequency Plasma[J]. 1999, 32(20): 6800–6806.
    [107] T. Onda, S. Shibuichi, N. Satoh, et al. Langmuir, 1996, 12: 2125;
    [108] S. Shibuichi, T. Onda, N. Satoh, et al. J. Phys. Chem. 1996, 100: 19512;
    [109] K. Tsujii, T. Yamamoto, T. Onda, et al, Angew. Chem. 1997, 109: 1042
    [110] S. Shibuichi, T. Yamamoto, T. Onda, et al. Super Water and Oil-Repellent Surfaces Resulting from Fractal Structure[J]. Colloid Interface Sci., 1998, 208: 287-294.
    [111] L. Tao, C. S. Gang, C. Sha, et al. Corrosion Behavior of Super-hydrophobic Surface onCopper in Seawater[J]. Electrochimica Acta, 2007, 52: 8003-8007.
    [112] M. Philip, Barkhudarov, B. Pratik Shah, B. Erik Watkins, et al. Corrosion Inhibition Using Superhydrophobic films[J]. Corrosion Science, 2008, 50: 897-902.
    [113] L. Feng, Z. Y. Zhang, Z. H. Mai, et al. Int. Ed., 2004, 43: 2012.
    [114] M. Li, J. H. Xu, Q. H. Lu. Creating Superhydrophobic Surfaces with Flowery Structures on Nickel Substrates Through A Wet-chemical-process[J]. J. Mater. Chem., 2007, 17: 4772-4776.
    [115] A. Scardino, R. De Nys, O. Ison, et al. Biofouling, 2003, 19: 221.
    [116] M. P. Schultz, C. J. Kavanagh, G. W. Swain, Biofouling. Hydrodynamic Forces on Barnacles: Implications on Detachment from Fouling-release Surfaces[J]. 1999, 13: 323.
    [117] B. Mahltig, H. Bottcher. J. Sol–Gel Sci. Technol., 2003, 27: 43.
    [118] A. E. Baillie, S. B. Warner, Q. G. Fan. AATCC Rev., 2005,5: 35.
    [119] G. N. Ramaswamy, B. Soeharto, W. R. Goynes, et al. Text.Chem. Color., 1997, 29: 22.
    [120] X. Hong, X. Gao, L. Jiang. Application of Superhydrophobic Surface with High Adhesive Force in no Lost Transport of Superparamagnetic Microdroplet[J]. J. Am. Chem. Soc., 2007, 129: 1478-1479.
    [121] K. Watanabe, Yanuar, H. Udagawa. Drag Reduction of Newtonian Fluid in a Circular Pipe with a Highly Water-repellent Wall[J]. J. Fluid Mech., 1999, 381: 225-238
    [122] J. Kim, C. J. Kim. Proceedings of the IEEE Conference MEMS[J]. Lasvegas, NV, IEEE, New York, 2002, 479.
    [123] J. Ou, J. P. Rothstein. Direct Velocity Measurements of the Flow Past Drag-reducing Ultrahydrophobic Surfaces[J]. Phys. Fluids., 2005, 17(103606): 1-10.
    [124] K. Fukagata, N. Kasagi, P. Koumoutsakos. A Theoretical Prediction of Friction Drag Reduction in Turbulent Flow by Superhydrophobic surfaces[J]. Phys. Fluids., 2006, 18: 051703.
    [125] C. Neinhuis, W. Barthlott. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces[J]. Annals of Botany, 1997, 79: 667-677.
    [126] W. Barthlott, C. Neinhuis. Purity of the Scared Lotus or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202: 1-8.
    [127]粟常红,陈庆民.仿荷叶表面研究进展[J].化学通报, 2007.
    [128] J. Zhai, H. J. Li, Y. S. Li, et al. Physics, 2002, 31,483.
    [129] S. Sunny and D. Ali. Superhydrophobic Conductive Carbon Nanotube Coatings for Steel[J]. Langmuir, 2009, 25:4311-4313.
    [130] L. Cao, K. Andrew. K. Vinod, et al. Antiicing Superhydrophobic Coating[J]. Langmuir, 2009,25:pp 12444–12448
    [131] T. Kako, A. Nakajima, H. Irie, et al. Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels[J]. J. Mat. Sci., 2004,39: 547– 555.
    [132] T. Kako, A. Nakajima, Z. Kato, etal. Adhesion and Sliding of Snow on Hydrophobic Solid Surface[J]. J. Ceram. Soc. of Jan., 2002, 110:186-192.
    [133] L. Feng, S. Li, Y. Li, H. Li, L. Zhang, et al. Super-hydrophobic Surfaces: from Natural to Artificial[J]. Adv. Mater., 2002, 14: 1857?1860.
    [134] W. Barthlott, C. Neinhuis. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[j]. Planta 1997,202: 1-8.
    [135] R. N. Wenzel. Resistance of Solid Surfaces to Wetting by Water[J]. Ind. Eng. Chem., 1936, 28: 988-994.
    [136] A. B. D. Cassie, S. Baxter. Wettability of Porous Surfaces [J]. Trans. Far. Soc., 1944, 40: 546-551.
    [137] D. ?ner, T. McCarthy, Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langumuir, 2000, 16: 7777-7782.
    [138] N. J. Shirtcliffe, G. McHale, M. I. Newton, et al. Dual-scale Roughness Produces Unusually Water Repellent Surfaces[J]. Adv. Mat., 2004, 16: 1929-1932.
    [139] S. H. Li, F. Lin, H. J. Li, et al. Super-hydrophobicity of Post-like Aligned Carbon Nanotube Films [J]. Chem. J. Chin. Univ., 2003, 24: 340-342. (In Chinese).
    [140] D. ?ner, T. J. McCarthy. Ultrahydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langmuir, 2000, 16: 7777-7782.
    [141]张福增,赵锋,王黎明,等.高海拔地区复合支柱绝缘子的污雨闪特性[J].中国电机工程学报, 2010, 30(1): 14-19.
    [142]孙才新,司马文霞,舒立春.大气环境与电气外绝缘[M].北京:中国电力出版社, 2001.
    [143]苑吉河,蒋兴良,易辉,输电线路导线覆冰的国内外研究现状[J].高电压技术, 2003, 30(1): 6-9.
    [144]刘和云,周迪,付俊萍,等.导线雨淞覆冰预测简单模型的研究[J].中国电机工程学报, 2001, 21(4): 44-47.
    [145] Int. Electrotechnical Commission,“High-voltage Test Techniques, Part 1: General Definitions and Requirements”, IEC Publication 60060-1 (1989).
    [146] IEEE Standard Techniques for High-Voltage Testing, IEEE Std. 4, IEEE Publication, 1995.
    [147] T. Fujimura, K. Natio, Y. Hasegawa, et al. Performance of Insulators Covered with Snow or Ice[J]. IEEE Trans. on Power Apparatus & Systems, 1979, PAS-98(5): 1621-1631.
    [148] C. L. Phan and H. Matsuo. Minimum Flashover Voltage of Iced Insulators[J]. IEEETransactions on Electrical Insulation, 1983, 18(6): 605-618.
    [149] M. M. Khalifa and R. M. Morris. Performance of Line Insulators under Rime Ice[J]. IEEE Transactions on Power Application and Systems, 1967, PAS-86(6): 692-698.
    [150] N. Sugawara, K. Takayama, K. Hokari, K. Yoshida and S. Ito. Withstand Voltage and Flashover Performance of Iced Insulators Depending on the Density of Accreted[C]. Proceedings of &h International Workshop on the Atmospheric Icing of Structures, Budapest, Hungary, 1993, 231-235.
    [151] M. Farzaneh and J. Kiernicki. Flashover Performance of Ice-covered Insulators[J]. Canadian Journal of Electrical and Computer Engineering, 1997, 22(3): 95 -109.
    [152] M. Farzaneh and J. Zhang. Behavior of DC Arc Discharge on Ice Surfaces[C]. Proceedings of 8th International Workshop on the Atmospheric Icing of Structures, Iceland, 1998. 193-197.
    [153] P. E. Renner, H. L. Hill and O. Ratz. Effects of Icing on DC Insulation Strength[C]. Proceedings of IEEE Summer Power Meeting and EHV Conference, Los Angeles, USA, 1970. 1201-1205.
    [154] L. C. Shu, L.G. Gu and C. X. Sun. A Study of Minimum Flashover Voltage of Iced Covered Suspension Insulators[C]. Proceedings of 7th International Workshop on the Atmospheric Icing of Structures, Chicoutimi, Canada, 1996. 87-92.
    [155]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素分析[D].重庆:重庆大学, 1997
    [156]蒋兴良,舒立春,张志劲,等.覆冰绝缘子长串交流闪络特性和放电过程研究[J].中国电机工程学报, 2005, 25(14): 158-163.
    [157]蒋兴良,孙才新,司马文霞,等. 10kV合成绝缘子覆冰交流闪络特性及冰闪过程的研究[J].中国电机工程学报, 2002, 22(8):51-54.
    [158]张志劲,蒋兴良,马俊,等.工作电压下110kV交流绝缘子串覆冰特性研究[J].中国电机工程学报, 2006, 26(4): 140-143.
    [159]胡建林.低气压下覆冰绝缘子(长)串闪络特性及直流放电模型研究[D].重庆:重庆大学, 2009.
    [160]杨大勇,评估憎水性涂料防冰效果的试验方法研究[M].重庆:重庆大学, 2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700