用户名: 密码: 验证码:
Pb(Zr,Sn,Ti)O_3基反铁电陶瓷场致热释电效应与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆钛锡酸铅(PZST)基反铁电陶瓷由于优异的场诱相变和可调变的介电及压电性能,被广泛的应用于大位移致动器、爆电换能器及高密度储能电容器中。此外,PZST基反铁电材料具有介电场致增强效应,被看作是用来制备非制冷红外探测器的重要备选材料之一。为此,本文基于解决目前PZST基反铁电陶瓷用于非制冷红外探测器过程中遇到的可加工性能不好、热释电性能偏低、温区过窄、居里点太高等问题,从反铁电陶瓷体系的选择、可加工及热释电性能的提高、温区的展宽、居里温度的降低四个方面对PZST基反铁电陶瓷的场致热释电效应进行了系统研究,在此基础上探讨了低温烧结高热释电性能反铁电陶瓷的可行性,为厚膜基非制冷红外探测器的制备奠定了基础。
     基于La调节的PZST基反铁电陶瓷具有宽的FER-AFET相界组分调节范围,本文首先确立了以La掺杂的PZST基反铁电陶瓷作为研究对象,在此基础上研究了La改性的Pb_(0.9-x)La_(2x/3)Ba_(0.1)(Zr_(0.7)Sn_(0.22)Ti_(0.06))O_3体系的铁电及介电性能,探讨了La含量的变化对陶瓷场致热释电特性的影响。研究了铁电/反铁电相界处,外电场对不同Zr/Ti比的反铁电、铁电陶瓷的介电常数及介电损耗的影响,揭示了反铁电陶瓷介电场致增强效应的内在机理,通过组分的调控,实现了反铁电/铁电陶瓷场致热释电效应的最优化。
     基于解决铅基陶瓷在烧结过程中由于铅挥发而引起的可加工能力和热释电性能下降问题,在反铁电陶瓷的制备过程中添加了过量的氧化铅。研究了过量的氧化铅对(Pb_(0.87)La_(0.02)Ba_(0.1))(Zr_(0.7)Sn_(0.24_Ti_(0.06))O_3反铁电陶瓷的晶体结构、微观形貌、介温特性及场致热释电效应的影响。实验发现由于过量氧化铅的添加减少了反铁电陶瓷在烧结过程中焦绿石相的含量,因此反铁电陶瓷的密度和场致热释电性能都得到了提高。800V/mm电场下氧化铅添加量为9wt%的反铁电陶瓷的场致热释电系数达到了7500μC/m~2K,显示了在非制冷红外探测器方面好的利用前景。
     针对反铁电陶瓷在应用过程中热释电温区过窄的问题,通过组分和结构的设计制备出了热释电温区较宽的反铁电陶瓷。基于热处理的粉料活性比较低,不易发生反应的原理,通过将两种不同居里点的反铁电粉料预处理后相混合,制备出了具有双热释电峰的反铁电复相陶瓷。采用在陶瓷压片过程中放置分割层防止粉料之间相互反应的方法,制备出了热释电温区在20-50℃范围内并且在400V/mm电场下探测率优值可达2×10~(-5)Pa~(-0.5)的双组分和三组分复相陶瓷,拓展了热释电高灵敏度的温区。
     基于解决目前反铁电陶瓷的居里点远高于非制冷红外探测器使用温度的问题,通过利用具有惰性气体型外层电子云结构的Ba~(2+)对Pb(Zr,SnTi)O_3中具有非惰性气体型外层电子云结构的Pb~(2+)的取代来降低反铁电陶瓷的居里温度。研究了Ba~(2+)的添加量对反铁电陶瓷的铁电、介电及场致热释电性能的影响,揭示了反铁电陶瓷、发生一级相变的铁电陶瓷及发生二级相变的铁电陶瓷在外电场下介电常数变化的一般规律。基于反铁电陶瓷容忍因子越小,反铁电态越稳定的理论依据,通过采用离子半径较大的Mn离子取代反铁电陶瓷中的Ti离子制备出了在室温附近具有优异热释电性能的反铁电陶瓷。通过选取合适的Ba含量及Mn掺杂量,室温附近,在Mn掺杂量为0.2mol%的(Pb_(0.832)Ba_(0.138)La_(0.02))(Zr_(0.7)Ti_(0.05)Sn_(0.24))O_3反铁电陶瓷中获得了25×10~(-5)Pa~(-0.5)的探测率优值,室温附近大的探测率优值为反铁电材料用作非制冷红外探测器奠定了基础。
     针对目前反铁电陶瓷由于烧结温度过高从而限制了其在厚膜基非制冷红外探测器方面利用的问题,通过采用低熔点的PbO-B_2O_3玻璃作为助烧剂,在低温条件下制备出了热释电性能良好的反铁电陶瓷。通过研究玻璃的添加量、烧结时间及不同氧化铅含量的玻璃对反铁电陶瓷的微观结构、介电、铁电及场致效应的影响,揭示了反铁电陶瓷的介电及场致热释电性能与结构和晶相控制间的关系,最终实现了具有良好热释电性能的反铁电陶瓷在1000℃的烧结。实验发现添加0.5PbO-0.5B_2O_3玻璃的Pb_(0.87)Ba_(0.1)La_(0.02)(Zr_(0.65)Sn_(0.28)Ti_(0.07))+6wt%PbO反铁电陶瓷在玻璃添加量为1wt%,烧结时间为9小时具有最好的热释电性能,700V/mm电场下的热释电系数为5835μC/m~2K,探测率优值为21.59×10~(-5)Pa~(-0.5)。添加0.8PbO-0.2B_2O_3玻璃的Pb_(0.87)Ba_(0.1)La_(0.02)(Zr_(0.7)Sn_(0.24)Ti_(0.06))+6wt%PbO反铁电陶瓷在添加量为1wt%,烧结时间为12h时具有最好的热释电效应,600V/mm的电场下热释电系数为9050μC/m~2K,探测率优值为20.7×10~(-5)Pa~(-0.5)。
Lead zirconate stannate titanate (PZST) based antiferroelectric ceramics was widelyused in high strain actuators, shock-activated energy transducer and high-density capacitorowing to their outstanding field induced phase transitions and adjustable dielectric andpiezoelectric properties. In addition, PZST based antiferroelectric material was seen as oneof the important alternative materials used in infrared detector because of its dcfield–induced dielectric enhancement effect. Therefore, this article conducted a systematicresearch on the dc field-induced pyroelectric effect of PZST based antiferroelectric throughthe selection of the material system, the improvement of machinability and pyroelectricproperties, the broadening of temperature zone and the decrease of the Curie temperature tosolve the bad machinability and pyroelectric properties, narrow temperature zone, highCurie temperature and other problems of PZST based antiferroelectric ceramics used inuncooled infrared detectors. Furthermore, the feasibility of low temperature sinteringantiferroelectric with high pyroelectric properties was discussed and thus laying a basis fordeveloping thick film based uncooled infrared detectors.
     This article discussed about La-doped PZST based antiferroelectric ceramics withwide FE-AFE adjustment range near the phase boundary. On this basis, the dielectric andferroelectric properties of La-modified Pb_(0.9-x)La_(2x/3)Ba_(0.1)(Zr_(0.7)Sn_(0.22)Ti_(0.06))O_3were studied,the impact of La content on the dc field-induced pyroelectric properties of antiferroelectricceramics was investigated. Then, we studied the influence of the dc electric field ondielectric constant and dielectric loss of antiferroelectric ceramics and ferroelectricceramics with different Zr/Ti near FE/AFE phase boundary to reveal the mechanism of thedc field–induced dielectric enhancement effect of antiferroelectric ceramics, andconsequently the best pyroelectric effect was achieved by modifying the composition ofantiferroelectric.
     In order to solve the problem that the machinability and the pyroelectric propertieswere greatly reduced by the volatilization of lead during sintering, excessive PbO wasadded when antiferroelectric ceramics was prepared. The impacts of excessive PbO on the crystal structure, microstructure, dielectric and dc-induced pyroelectric properties ofantiferroelectric ceramics were explored. Experiments indicated that the density and thedc-field induced pyroelectric properties of antiferroelectric ceramics were greatly improvedbecause the pyrochlore phase decreased when excessive PbO was added. The pyroelectriccoefficient of7500μC/m~2K under an800V/mm dc bias field was obtained inantiferroelectric ceramics with9wt%excessive PbO, and good density and pyroelectricproperty were beneficial for the development of infrared detectors.
     Antiferroelectric ceramics with wide pyroelectric temperature zone was prepared bythe composition and structure designs, so as to solve the problem that the pyroelectrictemperature zone was too narrow when antiferroelectric was used in uncooled infrareddetectors. Because the activity of the powder was relatively low, it was not easy to react afterit was pretreated at a high temperature. Hence, antiferroelectric multi-phased ceramic withtwo pyroelectric peaks was prepared by mixing two different antiferroelectric powders.Antiferroelectric multi-phased ceramics composed of two compositions and threecompositions with20-50℃pyroelectric temperature zone and figure of merit of2×10~(-5)Pa~(-0.5)under a400V/mm dc bias field by inserting divided layer to prevent thereacting of powder when antiferroelectric ceramics was prepared.
     With a view to solve the problem that the curie temperature of antiferroelectricceramics was higher than the temperature of using uncooled infrared detector, Ba~(2+)with theouter electron cloud of inert gas-type placing Pb~(2+)with the outer electron cloud structure ofnon-inert gas type was used to decrease the curie temperature of antiferroelectric ceramics.The impact of Ba~(2+)content on the ferroelectric, dielectric and the dc field-inducedpyroelectric properties were studied and the laws of dielectric properties of antiferroelectric,ferroelectric ceramics undergoing a first-order phase transition and ferroelectric ceramicsundergoing a second-order phase transition were revealed. Because the less the tolerancewas and the more stable the antiferroelectric became, antiferroelectric ceramics with highpyroelectric properties near room temperature was prepared by Mn ion with large ionicradius placing Ti ion with small ionic radius. The figure of merit of25×10~(-5)Pa~(-0.5)under a500V/mm dc bias field was obtained in (Pb_(0.832)Ba_(0.138)La_(0.02))(Zr_(0.7)Ti_(0.05)Sn_(0.24))O_3antiferroelectric ceramics with0.2mol%Mn doping and the large figure of merit near room temperature provided a basis for antiferroelectric materials used in uncooled infrareddetector.
     To find a solution to the problem that antiferroelectric ceramics could not be used inthick-film based uncooled infrared detector because of its high sintering temperature,antiferroelectric ceramics was prepared at a low sintering temperature by using PbO-B_2O_3glass as a sintering aid. The relationship between crystal structure and dielectric, dc fieldinduced pyroelectric properties was known and antiferroelectric ceramics with highpyroelectric properties was prepared by probing into the impacts of addition of glass,sintering time, and glass with different PbO content on the microstructure, dielectric,ferroelectric and dc-field induced pyroelectric properties. The pyroelectric coefficient of5835μC/m~2K and the figure of merit of21.59×10~(-5)Pa~(-0.5)under a700V/mm dc bias fieldwere obtained in Pb_(0.87)Ba_(0.1)La_(0.02)(Zr_(0.65)Sn_(0.28)Ti_(0.07))+6wt%PbO with1wt%0.5PbO-0.5B_2O_3glass and9h sintering time. The pyroelectric coefficient of9050μC/m~2K and thefigure of merit of20.7×10~(-5)Pa~(-0.5)under a600V/mm dc bias field were obtained inPb_(0.87)Ba_(0.1)La_(0.02)(Zr_(0.7)Sn_(0.24)Ti_(0.06))+6wt%PbO with1wt%0.8PbO-0.2B_2O_3glass and12hsintering time.
引文
[1] Katsuya M, Kazuhiko H, Shinji T, et al. Human Information Sensor. Solid StateSensors and Actuators.1997,2:1287-1290.
    [2] Antoni R, Review Infrared detectors: status and trends. Progress in QuantumElectronics.2003,27:59-210.
    [3] Antoni R. Toward third generation HgCdTe infrared detectors. Journal of Alloys andCompounds.2004,371:53-57.
    [4]吴宗凡,柳美琳,张绍举等.红外与微光技术.北京:国防工业出版社,1998.1-5.
    [5]朱惜辰.红外探测器进展.红外技术,1999,21:12-19.
    [6]孙志君.红外焦平面阵列技术的未来二十年传感器世界.2002,8:1-8.
    [7] Scribner D A, Kruer M R, Killiany J M. Infrared focal plane array technology.Proceedings of IEEE.1991,79:66-85.
    [8]王宏臣,易新建,陈四海等.1×128元非致冷氧化钒红外探测器的制作.红外与毫米波学报,2004,23:99-102.
    [9]刘世建,徐重阳,曾样斌.非致冷红外焦平面阵列用探测材料. Informationrecording materials.2003,4:56-58.
    [10] Zeng Y K, Zhang H B, Jiang S L, et al. Fabrication and characteristics of Pb dopedBST ferroelectric thin films for uncooled infrared focal plane arrays. Integratedferroelectrics.2006,82:91-99.
    [11] Plehnert C, Norkus V, Mohling S, et al. Reactive ion beam etching of LiTO3and itsapplication for pyroelectric infrared detectors. Surface and Coating Technology,1995,932:74-75.
    [12] Norkus V, Pyroelectric infrared detectors based on lithium tantalite: state of the art andprospects, Proceedings of SPIE,2004,5251:121-128.
    [13] Kohler R, Padmini P, Gerlach G, et al. Pyroelectric IR-detector arrays based onsputterd PZT and spin-coated P(VDF/TrFE) thin films. Integrated Ferroelectrics.1998,22:383-392.
    [14] Whatmore R W, Osbond P C, Shorrocks N M. Ferroelectric Materials for Thermal IRDetectors. Ferroelectrics.1987,76:351-367.
    [15] Kang D H, Kim K W, Lee S Y, et al. Influencing factors on the pyroelectric propertiesof Pb(Zr,Ti)O3thin film for uncooled infrared detector. Materials Chemistry and Physics.2005,90:411-416.
    [16] Tang Y X, Luo L H, Jia Y M, et al. Mn-doped0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3pyroelectric crystals for uncooled infrared focal plane arrays applications. Applied.Physics. Letters.2006,89:162906-1-162906-3.
    [17] Fang B J, Li J H, Xu H Q, et al. Growth and pyroelectric properties of [001]-oriented(1-x)Pb(Zn1/3Nb2/3)O3-xPbTiO3single crystals. Applied Physics Letters.2007,91:062902-1-062902-3.
    [18] Yu Z, Ang C, Guo R Y, Bhalla A S. Dielectric properties and high tunability ofBa(Ti0.7Zr0.3)O3ceramics under dc electric field. Applied Physics Letters.2002,81:1285-1287.
    [19] Lu S G, Xu Z. K, Chen H. Tunability and relaxor properties of ferroelectric bariumstannate titanate ceramics. Applied Physics Letters.2004,85:5319-5321.
    [20] Li J H, Yuan N Y, Chan H.L.W. Preparation of PCLT/P(VDF-TrFE) pyroelectricsensor based on plastic film substrate. Sensors and Actustors A.2002,100:231-235.
    [21] Weller H J, Setiadi D, Binnie T D. Low-noise charge sensitive readout for pyroelectricsensor arrays using PVDF thin film. Sensors and Actuators A.2000,85:267-274.
    [22] Setiadi D, Weller H, Binnie T D. A pyroelectric polymer infrared sensor array with acharge amplifier readout. Sensors and Actuators A.1999,76:145-151.
    [23] Meixner H, Mader G., Kleinschmidt P. Infrared sensors based on the pyroelectricpolymer polyvinylidene fluoride (PVDF). Siemens Forschungs undEntwicklungsberichte.1986,15:105-114.
    [24] Franzan A H, Leite N F, Miranda L C M. Investigation of poling field effects on PVDFpyroelectric detectors: Photoacoustic thermal diffusivity measurements. AppliedPhysics A: Materials Science and Processing.1990,50:431-438.
    [25] Setiadi D, He Z. Hajto J, et al. Application of a conductive polymer to self-absorbingferroelectric polymer pyroelectric sensors. Infrared Physics and Technology.1999,40:267-278.
    [26] Clarke R, Glazer A M, Ainger F W, et al. Phase Transitions in Lead Zirconate Titanateand Their Applications in Thermal Detectors. Ferroelectrics.1976,11:359-364.
    [27] Shaw C P, Gupta S, Stringfellow S B, et al. Pyroelectric properties of Mn-doped leadzirconate-lead titanate-lead magnesium niobate ceramics, Journal of the EuropeanCeramic Society.2002,22:2123-2132.
    [28] Zhang G Z, Jiang S L, Zeng Y K, et al. High Pyroelectric Properties of PorousBa0.67Sr0.33TiO3for Uncooled Infrared Detectors, Journal of the American CeramicSociety.2009,92:3132-3134.
    [29] Kulwicki B M, Amin A, Beratan H R, et al. Pyroelectric imaging. Proceedings of theEighth IEEE International Symposium on Applications of Ferroelectrics,1992,1-10.
    [30] Hanson C M. Uncooled thermal imaging at Texas Instruments. SPIE InfraredTechnology XIX.1993,2020:330-339.
    [31] Noda M, Inoue K, Ogura M, et al. An uncooled infrared sensor of dielectric bolometermode using a new detection technique of operation bias voltage. Sensors andActuators A.2002,97-98:329-336.
    [32] Whatmore R W. Pyroelectric devices and materials. Reports on Progress In Physics.1986,49:1335-1386.
    [33] Wang S J, Miao S, Reaney I M, et al. Enhanced tunable and pyroelectric properties ofBa(Ti0.85Sn0.15)O3thin films with Bi1.5Zn1.0Nb1.5O7buffer layers. Applied. Physics.Letters.2010,96:082901-1-082901-3.
    [34] Ren P R, Fan H Q, Wang X, et al. Effects of magnesium doping on phase transitionsand dielectric figure of merit of barium strontium titanate ceramics. InternationalJournal of Applied Ceramic Technology.2011, DOI:10.1111/j.1744-7402.2011.02628.x.
    [35] Liou J W, Chiou B S. Effect of direct-current biasing on the dielectric properties ofbarium strontium titanate. Journal of the American Ceramic Society.1997,80:3093-3099.
    [36] Zhang G Z, Jiang S L, Zeng Y K, et al. Doping and grain size effects on pyroelectricproperties of Ba0.7Sr0.3TiO3for uncooled infrared bolometer. physica status solidi (a).2011,208:2699-2708.
    [37] Cole M W, Joshi P C, Ervin M H, et al. The influence of Mg doping on the materialsproperties of Ba1-xSrxTiO3thin films for tunable device applications. Thin Solid Films.2000,374:34-41.
    [38] Tkach A, Vilarinho P M, Kholkin A L. Structure-microstructure-dielectric tunabilityrelationship in Mn-doped strontium titanate ceramics. Acta Materialia.2005,53:5061-5069.
    [39] Liang X F, Meng Z Y, Wu W B. Effect of acceptor and donor dopants on the dielectricand tunable properties of barium strontium titanate. Journal of the American CeramicSociety.2004,87:2218-2222.
    [40] Arlt G, Hennings G, de With G. Dielectric properties of fine-grained barium titanateceramics. Journal of Applied Physics.1985,58:1619-1625.
    [41] Frey M H, Payne D A. Grain-size effect on structure and phase transformations forbarium titanate. Physical Review B.1996,54:3158-3168.
    [42] Liou J W, Chiou B S. DC field dependence of the dielectric characteristics of dopedBa0.65Sr0.35TiO3with various grain sizes in the paraelectric state. Japanese Journal ofApplied Physics.1997,36:4359-4368.
    [43] Zhang G Z, Jiang S L, Zeng Y K. The modified model of the dielectric characteristicsfor porous Ba0.6Sr0.4TiO3ceramics. Journal of Applied Physics.2009,106:034110-1-034110-5.
    [44] Zhang J, Cole M W, Alpay S P. Pyroelectric properties of barium strontium titanatefilms: Effect of thermal stresses. Journal of Applied Physics.2010,108:054103-1-054103-7.
    [45] Akcay G., Misirlioglu I B, Alpay S P. Dielectric and pyroelectric properties of bariumstrontium titanate films on orthorhombic substrates with110//100epitaxy. Journal ofApplied Physics.2007,101:104110-1-104110-7.
    [46] Mohammed M S, Auner G W, Naik R. Temperature dependence of conventional andeffective pyroelectric coefficients for compositionally graded BaxSr1-xTiO3films.Journal of Applied Physics.1998,84:3322-3325.
    [47] Wu C G., Li Y R, Zhu J, et al. Great enhancement of pyroelectric properties forBa0.65Sr0.35TiO3films on Pt-Si substrates by inserting a self-buffered layer. Journal ofApplied Physics.2009,105:044107-1-044107-4.
    [48] Cheng J G, Tang J, Chu J H, et al. Pyroelectric properties in sol-gel derived bariumstrontium titanate thin films using a highly diluted precursor solution. Applied PhysicsLetters.2000,77:1035-1037.
    [49] Kumar M, Roy S C, Bhatnagar M. C, et al. Study of dielectric and pyroelectricproperties of sol-gel derived BST thin films. Ferroelectrics.2005,329:33-37.
    [50] Wu C G, Zhang W L, Li Y R, et al. High pyroelectric Ba0.65Sr0.35TiO3thin films withBa0.65Sr0.35RuO3seeding-layer for monolithic ferroelectric bolometer. Infrared Physicsand Technology.2006,48:187-191.
    [51] Zhang T J, Ni H. Fabrication and electrical properties of Ba0.64Sr0.36TiO3thin films bysol-gel on platinum coated silicon. Journal of Materials Science.2002,37:4155-4158.
    [52] Jin F, Auner G. W, Naik R. Giant effective pyroelectric coefficients from gradedferroelectric devices. Applied Physics Letters.1998,73:2838-2840.
    [53] Mascot M, Fasquelle D, Velu G, et al. Pyro, ferro and dielectric properties ofBa0.8Sr0.2TiO3films deposited by sol-gel on platinized silicon substrates. Ferroelectrics.2008,362:79-86.
    [54][南]R.布林斯著,刘长乐,陈至立译.铁电和反铁电中的软膜.北京:科学出版社.1981,1.
    [55] Yang P, Payne D A. The effect of external field symmetry on theantiferroelectric-ferroelectric phase transformation. Journal of Applied Physics.1996,80:4001-4005.
    [56] Kittel C. Theory of antiferroelectric Crystals. Physics Review.1951,82:729-732.
    [57] Berlincourt D, Jaffe H, Krueger H H A, et al. Release of electric energy in PbNb(Zr,Ti, Sn)O3by temperature and by pressure-enforced phase transitions. Applied PhysicsLetters.1963,3:90-92.
    [58] Berlincourt D, Krueger H H A, Jaffe B. Stability of phases in modified lead zirconatewith variation in pressure, electric field, temperature and composition. Journal ofPhysics and Chemistry of Solids.1964,25:659-674.
    [59]徐廷献等.电子陶瓷材料.天津:天津大学出版社,1993,210
    [60] Shirane G, Suzuki K. Crystal Structure of Pb(Zr, Sn)O3. Journal of the PhysicalSociety of Japan.1952,7:333-338.
    [61] Berlincourt D. Transducers using forced transitions between ferroelectric andantiferroelectric states. IEEE Transactions on Sonics and Ultrsonics, su-1966,13:116-125.
    [62] Park S E, Markowski K, Yoshikawa S, et al. Effect on electrical properties of bariumand strontium additions in the lead lanthanum zirconate stannate titanate System.Journal of the American Ceramic Society.1997,80:407–412.
    [63] Markowski K, Park S E, Yoshikawa S, et al. The effect of compositional variations inthe lead lanthanum zirconate stannate titanate system on electrical properties. Journalof the American Ceramic Society.1996,79:3297-3304.
    [64] Wang L, Li Q, Xue L H, et al. Effect of Ti4+:Sn4+ratio on the phase transition andelectric properties of PLZST antiferroelectric ceramics. Journal of Materials Science.2007,42:7397–7401.
    [65] Wang L, Li Q, Xue LH, et al. Effect of Zr:Sn ratio in the lead lanthanum zirconatestannate titanate ceramics on microstructure and electric properties. Journal of Physicsand Chemistry of Solids.2007,68:2008-2013.
    [66] Fritz I J, Keck J D. Pressure-temperature phase diagrams for several modified leadzirconate ceramics. Journal of Physics and Chemistry of Solids.1978,39:1163-1167.
    [67] Ucjino K, Nomura S. Electrostriction in PZT-Family antiferroelectrics. FerroelectricsLetters.1983,50:191-196.
    [68]许煜寰.铁电-反铁电相界附近的PSZT系列陶瓷的电致伸缩效应研究.中山大学学报.1983,1:49-60.
    [69] Pan W Y, Zhang Q M, Bhalla A, et al. Field-forced antiferroelectric–to-ferroelectricswitching in modified lead zirconate titanate stannate ceramics. Journal of theAmerican Ceramic Society.1989,72:571-578.
    [70] Wang Y L, Chen Z M, Sun Y R, et al. Phase Transition Study of PZT95/5Ceramics.Physica B+C.1988,150:168-174.
    [71] Gonnard P, Troccaz M. Evaluation of the Valency of Fe, Cr, Cu, Sb doping ions inPb(Zr0.95Ti0.05)O3Ceramics. Journal of Solid State Chemistry.1983,47:92-97.
    [72] Chang Y J. A TEM study of crystal and domain structures of Nb-Doped95/5PZTceramics. Applied Physics A: Materials Science and Processing.1982,29:237-244.
    [73] Viehland D, Forst D, Xu Z, et al. Incommensurately modulated polar structures inantiferroelectric Sn-modified lead zirconate titanate: the modulated structure and itsinfluence on electrically induced polarizations and strains. Journal of the AmericanCeramic Society.1995,78:2101-2112.
    [74] Xu Z, Viehland D, Yang P, et al. Hot-stage transmission electron microscopy studies ofphase transformations in tin-modified lead zirconate titanate. Journal of AppliedPhysics.1993,74:3406-3413.
    [75] Viehland D, Forst D, Li J F. Compositional heterogeneity and the origins of themulticell cubic state in Sn-doped lead zirconate titanate ceramics. Journal AppliedPhysics.1994,75:4137-4143.
    [76] Harrad I E, Becker P, Nedelec C C, et al. Raman investigation of undoped,niobium-doped, and lanthanum-doped lead zirconate titanate ceramics. Journal ofApplied Physics.1995,78:5581-5591.
    [77] Yang P, David A. P. Thermal Stability of Field-forced and Field-assistedAntiferroelectric-Ferroelectric Phase Transformations in Pb(Zr, Sn,Ti)O3. Journal ofApplied Physics.1992,71:1361-1367.
    [78]杨同青. Pb(Zr,Sn,Ti)O3反铁电陶瓷的场诱相变性能研究.[博士学位论文].西安:西安交通大学,1999.
    [79] Chan W H, Xu Z K, Zhai J W, et al. Uncooled tunable pyroelectric response ofantiferroelectric Pb0.97La0.02Zr0.65Sn0.22Ti0.13O3perovskite. Applied Physics Letters.2005,87:192904-1-192904-3.
    [80] Xu Z k, Zhai J W, Chan W H, et al. Phase transformation and electric field tunablepyroelectric behavior of Pb(Nb,Zr,Sn,Ti)O3and Pb(La,Zr,Sn,Ti)O3antiferroelectricthin films. Applied Physics Letters.2006,88:132908-1-132908-3.
    [81] Zhang H L, Chen X F, Cao F, et al. Reversible pyroelectric response inPb0.955La0.03Zr0.42Sn0.40Ti0.18O3ceramics near its phase transition. Applied PhysicsLetters.2009,94:252902-1-252902-3.
    [82] Zhang HL. Chen XF, Cao F, et al. Low thermal hysteresis pyroelectric response nearthe ferroelectric/antiferroelectric phase transition in Pb0.97La0.02Zr0.42Sn0.40Ti0.18O3ceramics. Journal of Applied Physics.2010,108:086105-1-086105-3.
    [83] Hao XH, Zhou J, An S L. Effects of PbO Content on the Dielectric properties andenergy storage performance of (Pb0.97La0.02)(Zr0.97Ti0.03)O3antiferroelectric thin films.Journal of the American Ceramic Society.2011,94:1647-1650.
    [84] Furuta A, Oh K Y, Uchino K. Shape memory ceramics and their application to latchingrelays. Sensors and Materials.1992,3:205-215.
    [85] Li G, Furman E, Haertling G H. Fabrication and properties of PSZT antiferroelectricrainbow actuators. Ferroelectrics.1996,188:223-236.
    [86] Haertling G.H. Rainbow ceramics: A new type of ultra-high-displacement actuator.American Ceramic Society Bulletin.1994,73:93-96.
    [87] Furuta A., Oh K.Y, Uchino K. Mechanical clamper using shape memory ceramics.Proc.7th ISAF, IEEE.1990,528-529.
    [88] Oh K.Y, Furuta A, Uchino, K. Development and application of shape memoryceramics actuatros. Proc.7th ISAF, IEEE.1990,525-527.
    [89] Cheng Z M, Lian JY, Wang YL. Phase transition studies of PZST ceramics withvertical ferro-antiferroelectric phase boudary. Ferroelectrics.1990,101:225-234.
    [90] Jaffe B. Antiferroelectric ceramics with field-enforced transitions: A new nonlinearcircuit element. proceedings of the institute of radio engineers.1961,49:1264-1267.
    [91] Brooks K G, Chen J, Udayakumar K R, et al. Electric field forced phase switch inLa-modified lead zirconate titanate stannate thin films. Journal of Applied Physics.1994,75:1699-1704.
    [92] T Choi, J Lee. Structural and dielectric properties of artificial PbZrO3/PbTiO3superlattices grown by pulsed laser deposition. Thin Solid Films.2005,475:283-286.
    [93] Li X, Zhai J W, Haydn C.(Pb, La)(Zr, Sn, Ti)O3antiferroelectric thin films grown onLaNiO3-buffered and Pt-buffered silicon substrates by sol-gel processing. Journal ofApplied Physics.2005,97:4102-4108.
    [94]王永龄,孙大志,陈惠婷.铁电相变陶瓷的相变研究与应用:国家自然科学基金重大项目验收报告.上海:中国科学院上海硅酸盐研究所.1992.
    [95]董显林. PZT基陶瓷铁电-反铁电相界处机电耦合性能研究.[博士学位论文].上海:上海硅酸盐研究所.1992.
    [96]徐卓.铁电/反铁电陶瓷等静压相变与介电性能研究.[博士学位论文].西安:西安交通大学,2004.
    [97]陈铭. Pb(Zr,Sn,Ti)O3反铁电陶瓷的制备及其电致应变性能应用研究.[博士学位论文].西安:西安交通大学,2002.
    [98]冯玉军. Pb(Zr,Sn,Ti)O3反铁电材料的性能和制备.[博士学位论文].西安:西安交通大学,2002.
    [99]刘鹏. Pb(Zr,Sn,Ti)O3基反铁电陶瓷的场诱相变与改性研究.[博士学位论文].西安:西安交通大学,1999.
    [100] Cross L E, Ferroelectric Materials for Electricmechnical Transducer Applocations.1994年11月到西安交通大学作的学术报告
    [101]徐卓,冯玉军,郑曙光等.温度对等静压诱导的PbLa(Zr, Sn, Ti)陶瓷铁电-反铁电相变性能的影响.科学通报.2001,46:781-785.
    [102]刘鹏,姚熹. La调节Pb(Zr, Sn, Ti)O3反铁电陶瓷的相变与电学性质.物理学报.2002,51:1621-1627.
    [103] Forst D and Viehland D. Incommensuration and the distorted oxygenoctahedron of antiferroelectric tin-modified lead zirconate titanate. Journal ofApplied Physics.1994,76:5891-5895.
    [104] Hu Y Y, Feng Y J, Xia S, et al. Electric fatigue behavior of La-doped Pb(Zr, Sn, Ti)O3antiferroelectric ceramics under square electric pulse power. Ferroelectrics.2007,355:125-129.
    [105] Thoms N.W, A new framework for understanding relaxor ferroelectrics. Journal ofPhysics and Chemistry of Solids.1990,51:1419-1431.
    [106] Lyddane R H, Sachs R G, Tellers E. On the polar vibrations of alkali halides. PhysicalReview.1941,59:673-676.
    [107] Johnson K M. Variation of permittivity with electric field in perovskite-likeferroelectric. Journal of Applied Physics.1961,32:909-915.
    [108] Liu W, Wang G S, Cao S, et al. The effect of excess PbO on dielectric andpyroelectric properties of lead scandium tantalate ceramics. Journal of the AmericanCeramic Society.2010,93:2735-2742.
    [109] Pokharel B P, Pandey D. Dielectric studies of phase transitions in Pb1-xBaxZrO3.Journal of Applied Physics.2000,88:5364-5373.
    [110] Dariskii B M, Sidorkin A S, Milovidova S D. Appearance of internal bias field inferroelectric growth process. Ferroelectrics.1993,142:45-50.
    [111] Lohkamper R. Neumann H, Arlt. G. Internal bias in acceptor-doped BaTiO3ceramics:numerical evaluation of increase and decrease. Journal of Applied Physics.1990,68:4220-4222.
    [112] Eichel R A. Defect structure of oxide ferroelectrics-valence state, site of incorporation,mechanisms of charge compensation and internal bias fields. Journal ofElectroceramics.2007,19:9-21.
    [113]吕文中等.电子材料物理.北京:电子工业出版社,2002,110-127.
    [114] Wang H C, Schulze W A. The role of excess magnesium oxide or lead oxide indetermining the microstructure and properties of lead magnesium niobate. Journal ofthe American Ceramic Society.1990,73:825-832.
    [115] Mitoseriu L, Marre D, Siri A.S, et al. Magneto electronic coupling in the multiferroicPbFe2/3W1/3-PbTiO3system. Journal of Optoelectronics and Advanced Materials,2004,6:723-728.
    [116]沃丁柱.复合材料大全.北京:化学工业出版社.2000,12.
    [117] Zheng H. Multiferroic BaTiO3-CoFe2O4nanostructures science. Science.1987,303:661-663.
    [118]孔令兵张良莹姚熹.导体/绝缘体复合材料的电学性质.1997,8:33-35.
    [119] Carlos G P, José Serafín C M.2004, ES2181540A1:1-6.
    [120] Dai X H, Digiiovanni A, Viehland D. Dielectric properties of tetragonallanthanummodified lead zirconate titanate ceramics. Journal of Applied Physics.1993,74:3399-3405.
    [121]刘梅冬,许毓春.压电铁电材料与器件.武汉:华中理工大学出版社.1990,75-78.
    [122]柴京鹤,李龙土,张孝文.低温烧结PZT压电陶瓷的研究.清华大学学报(自然科学版),1988,28:1-8.
    [123] Kenji M,Daisuke M,Takahiro K, et al. Effects of adding various metal oxides on lowtemeprature sintering Pb(Zr,Ti)O3Ceramics. Japanese Journal of Applied Physics.1996,35:5188-5191
    [124] Zhang S J, Xia R, Shrout T R. Low temperature sintering and properties ofpiezoelectric ceramics PSNT-Mn with LiBiO2addition. Materials Science andEngineering B.2006,129:131-134.
    [125] Sadayuki T. Sintering Pb(Zr,Ti)O3Ceramics at low temperature. Japanese Journal ofApplied Physics.1980,19:771-772.
    [126] Yamamoto T. Optimum preparation methods for piezoelectric ceramics and theirevaluation. Ceramic Bulletin.1992,71:978-985.
    [127] Villegas M, Moure C, Jurado J, et al. Influence of the calcining temperature on thesintering and properties of PZT ceramics. Journal of Materials Science.1993,28:3482-3488.
    [128] Yang X M, Chaki T K. Preparation and properties of Pb0.99Nb0.02(Zr0.52Ti0.48)0.98O3by anew sol-gel technique. Journal of Materials Science.1997,32:4661-4671.
    [129]董敦灼,陈旭明,熊茂仁.低温烧结PZT压电陶瓷材料.电子元件与材料.1989,8:58-60.
    [130] Wang M C, Huang M S, Wu N C. Low-temperature sintering of12Pb(Ni1/3Sb2/3)O3-40PbZrO3-48PbTiO3with V2O5and excess PbO additives. Journal of the EuropeanCeramic Society.2002,22:697-705.
    [131] Corker D.L, Whatmore R.W, Ringgaard E, et al. Liquid-phase sintering of PZTceramics. Journal of the European Ceramic Society.2000,20:2039-2045.
    [132] Wang C H, Wu L. Effect of Sintering and Poling Conditions on theProperties of0.125Pb(Mg1/3Nb2/3)O3-0.875Pb (Zr0.5Ti0.5)O3Ceramics Doped with4PbO·B203. Ceramics International.1993,19:391-398.
    [133] Wang C H, Wu L.4PbO·B2O3-A new sintering agent for Pb(Zr,Ti)O3ceramics.Japanese Journal of Applied Physics.1993,32:3209-3212.
    [134] Wang M C, Huang M S, Wu N C. Effects of30B2O3-25Bi2O3-45CdO glass additionon the sintering of12Pb(Ni1/3Sb2/3)O3-40PbZrO3-48PbTiO3piezoelectric ceramics.Journal of the European Ceramic Society.2001,21:695-701.
    [135] Wang X X, Murakami K, Kaneko S. High performancePbZn1/3Sb2/3O3-PbNi1/2Te1/2O3-PbZrO3-PbTiO3ceramics sintered at a low temperaturewith the Aid of complex additives Li2CO3-Bi2O3-CdCO3. Japanese Journal of AppliedPhysics.2000:39,5556-5559.
    [136] Li H, Yang Z P, Wei LL, et al. Effect of ZnO addition on the sintering and electricalproperties of (Mn,W)-doped PZT-PMS-PZN ceramics. Materials Research Bulletin.2009,44:638-643.
    [137] Levin E M, McMurdie H F. Phase diagrams for ceramists. The American CeramicSociety.1964,122.
    [138] Bray P J, Leventhal M, Hooper HO. NMR investigations of the structure of lead borateglass. Physics and Chemistry of Glasses.1963,4:47-66.
    [139] Takaishi T, Jin J, Uchino T, et al. Structural study of PbO-B2O3glasses by X-raydiffraction and11B MAS NMR techniques. Journal of the American Ceramic Society.2000,83:2543-2548.
    [140]吴荣.介电相玻璃相共烧结多相复合厚膜的制备及介电、热释电性能研究.[博士学位论文].浙江:浙江大学,2006.
    [141] Valin D, Freire P T C, Filho JM, et al. Evaluating the residual sress in PbTiO3thinfilms prepared by a polymericchemical method. Journal of Physics D: Applied Physics.2004,37:744-747.
    [142] Takahashi S H, Uchino S, Young K K. Electro-mechanical characteristics oflead-zirconate-titanate ceramics under vibration-level change. Proceedings of1994IEEE International Symposium on Applications of Ferroelectrics.1994,377-382.
    [143] Ohno T, Fu DS, Suzuki H, et al. Residual stress in lead titanate thin film on differentsubstrates. Journal of the European Ceramic Society.2004,24:1669-1672.
    [144] Metwalli E E. Copper redox behavior, Structure and properties of copper lead borateglasses. Journal of Non-Crystalline Solids.2003,317:221-230.
    [145] Bongkarn T, Rujijanagul G. Effect of excess lead oxide on phase transitions andphysical properties of provskite lead barium zirconate ceramics. Ferroelectrics.2007,358:67-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700