用户名: 密码: 验证码:
输电线路激光除冰的理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆冰威胁着电网的运行安全。输电线路防冰-除冰正在研究应用的技术有30余种,主要包括涂层法、热熔法和机械法等。激光以其高能量、单色性好、远距离传输效率高、非导电等优点,成为新型的具有潜力的除冰方法之一。
     本论文围绕输电线路中的绝缘子、高压导线表面覆冰展开激光除冰研究。根据不同激光波长在冰内穿透深度的不同,论文提出了辐照冰块表面的激光应分为面热源和体热源;在这一思想指导下,建立了面热源和体热源辐照冰的理论模型,进行了面热源和体热源除冰的数值模拟和实验研究;得到了面热源和体热源除冰的速度和效率、辐照后冰的形态。具体的研究结果如下:
     (1)从热传导方程出发,根据冰块厚度与激光在冰块内部穿透深度的比值,得到辐照冰块表面的激光热源类型判断标准:当比值大于6时,认为此时作用的激光是面热源,可采用一维热传导方程求解;当比值小于6时,认为此时作用的激光是体热源,须采用二维热传导方程求解温度分布。
     (2)波长为1.064μm激光辐照冰的厚度小于258mm时,视为体热源,辐照后的冰块热和应力影响区域呈体分布状态,坚硬而透明的冰块在激光作用后变得不透明且非常疏松,沿着应力分布方向施加机械力辅助作用,冰块非常容易被去除,除冰的速度得以大幅提高。实验测得:功率为275W、光斑直径为38mm的Nd:YAG激光器熔冰体速度为236.5mm~3/s,熔冰能耗为1.33J/mm~3;功率为270W、光斑直径为4mm的激光熔冰线速度可以达到2.123mm/s。
     (3)波长为10.6μm的CO_2激光辐照冰的厚度大于38μm时,将其视为面热源,冰块出现逐层熔化的现象,作用后的冰块依旧透明而坚硬,没有出现疏松状态,几乎不存在热应力影响区。实验测得:功率为2000W、光斑面积为693mm2的连续CO_2激光器熔冰,其熔冰体速度为1639mm~3/s,熔冰能耗为1.221J/mm~3,熔冰线速度为1.318mm/s。
     (4)理论与实验研究表明,体热源和面热源激光熔冰速度和熔冰能耗近似相等,体热源激光作用后的冰块出现应力分布和疏松状态。因此,输电线路除冰用激光器的选择遵循以下原则:激光在冰块内部有较大的穿透深度,根据输电线路的覆冰厚度,Nd:YAG激光比CO_2激光更加适用;对于同类激光器,应选择更高功率或者更高能量、同一功率密度条件下更大的光斑,以保证更高除冰的速度和效率。
     (5)论文还对输电线路中绝缘子和高压铝包钢绞线进行了激光损伤的研究。得到:瓷绝缘子表面温度达到250℃时,会出现热损伤;产生断裂损伤主要由拉应力引起,实验测得激光破坏绝缘子的应力阈值为11.1J/mm2。复合绝缘子在激光照射后极易出现燃烧现象。高压导线在高功率激光照射一段时间后,未见损伤现象。
Ice deposited on overhead transmission lines, power network insulators, andhigh-voltage towers threatens the security of power utilities. About30types of de-icing andanti-icing techniques have been developed, but several methods are being used in practice.Laser technology, which has the advantages of high energy, non-contact operation, longdistance and high transmission efficiency, can be one of the novel and potential methods ofde-icing.
     The main research of this thesis was laser deicing for transmission lines. The laserpenetrating length into the ice was decided by laser wavelength. So in this thesis theviewpoint that laser irradiating the ice could be devided into volume thermal source andplane thermal source was presented. According to the thought, the theorical model of planeand volume thermal source irradiating ice was established. The numerical simulation andexperimental research of plane and volume thermal source irradiating the ice were alsoexplored. The melting ice rate and melting ice efficiency were obtained. The researchresults were as following:
     Firstly, basing on thermal conduction equation, according to the ratio of ice depth topenetrating depth, the judaging standard of the laser thermal type irradiating the ice wasobtained: when the ratio is more than6, the laser can be considered as plane thermal sourceand the temperature distribution could be obtained by1-D thermal conduction equation;while when the ratio is less than6, the laser can be considered as volume thermal sourceand the temperature distribution should be obtained by2-D thermal conduction equation.
     Secondly, when the laser with wavelength1.064micron irradiated the transparent andhard ice with depth less than258mm, the laser could be considered as volume thermalsource. The melting rate was influenced by laser power density, and most parts were heatedand the remaining ice became opaque and its structure became loose, apparently as a resultof thermal stress. A mechanical force was applied to the ice after laser irradiation in thedirection of the thermal stress and the remaining ice could be easily removed. This wouldspeed up laser deicing. The experiment was performed with a275-W pulsed Nd:YAG laserwith beam diameter38mm. The results were: the melted volume of ice per second was236.5mm~3, and the laser energy consumed for melting1mm~3of ice was1.33J. The maxim melted length of ice per unit time can reach2.123mm with270-W/4mm laser irradiated theice.
     Thirdly, when the laser with wavelength10.6micron irradiated the transparent andhard ice with depth more than38micron, the laser could be considered as plane thermalsource. The melting ice rate and melting ice efficiency are both influenced by laser power.Only the surface of the ice was heated, and the ice was removed layer by layer. Most of theremaining ice was still transparent and hard, as there was hardly any thermal stress. Theexperiment was performed with a CW CO_2laser with output power2000W, beam area693mm2. The results were1639mm~3/s,1.221J/mm~3and1.318mm/s.
     Fourthly, the theorical and experimental results showed that the melting ice rates andefficiencies of volume and plane thermal source were almost equal at the same powerdensity, and the irradiated ice was opaque due to the thermal stress. In principle, lasers withthe following characteristics could be selected for a power-line laser deicing system: thelaser has large penetrating length into the ice, and according to the ice depth whichdeposited to the transmission lines, the Nd:YAG laser is more appropriate for a laserdeicing system than CO_2laser. For the same laser, higher power or energy and larger beamspot under the condition of the same power density should be chosen for obtaining highermelting rate and efficiency.
     Finally, the research of high power laser irradiating insulator and aluminum line wasexplored. When the surface temperature of porcelain insulator reached250℃, the thermaldamage occurred. The thermal stress leaded to the breakdown damage. The experimentaldamage threshold of porcelain insulator was about11.1J/mm2. The compound insulator waseasily buring with laser irradiation. Aluminum lines were not damaged after high powerlaser irradiated for a long time.
引文
[1] Editorial. Anti-icing and deicing techniques. Cold Regions Science and Technology,2011,65(1):1~4
    [2] D. O. Koval, A. A. Chowdhury. An investigation into extreme-weather-causedtransmission line unavailability.2005IEEE Power Engineering Society GeneralMeeting (IEEE Cat. No.05CH37686),2005,3:2425~2428
    [3]苑吉河,蒋兴良,易辉等.输电线路导线覆冰的国内外研究现状.高电压技术,2004,30(1):6~9
    [4]龙立宏,胡毅,李景禄等.输电线路冰害事故统计分析及防治措施研究.电力设备,2006,7(12):26~28
    [5]胡红春.冰害冰闪和舞动的防治措施.电力建设,2005,26(9):31~33,44
    [6] Majid Kermani Koosheh. Ice shedding from cables and conductors—a crackingmodel of atmospheric ice:[Ph.D paper]. Univerdite du Quebec,2007
    [7]陈斌,郑德库.架空送电线路导线覆冰破坏问题分析.吉林电力,2005,(6):25~27
    [8]黄强,王家红,欧名勇.2005年湖南电网冰灾事故分析及其应对措施.电网技术,2005,29(24):16~19
    [9]黄子平,王春明,韩刚.华中电网冰闪事故对调度工作的启示.华中电力,2005,(4):25~27
    [10]韩军科,杨靖波,杨风利等.电网冰灾典型线路段覆冰倒塔分析.电网与清洁能源,2010,26(3):31~35
    [11] Ping-yuan Liu, Hong-ming He, Chun-ping Pan. Investigation of2008' FrozenDisaster and research on De-icing in Guangdong Power Grid.2008ChinaInternational Conference on Electricity Distribution, CICED2008, S1-34,2008,CP1639:1~5
    [12]汪秀丽.2008年南方雪灾反思-电力系统.水利电力科技,2008,(6):27~35
    [13]王慧彦,李志伟.2008年雪灾的原因及日本应急制度给我国的启发.防灾科技学院学报,2008,10(2):47~50
    [14] Liu shunxin, Guo guangsong, Yan lichao, et al. Research on Conductor Icing ofOverhead Transmission Lines.2011International Conference on Consumer Electronics,Communications and Networks, CECNet, IEEE,2011.606~609
    [15]蒋兴良,易辉.输电线路覆冰及防护.北京:中国电力出版社,2002.1~29
    [16] M. Farzaneh(ed.) Atmospheric Icing of Power Networks, Chapter6Anti-icing andDe-icing Techniques of Overhead Lines. Springer,2008.229~268
    [17] Laforte. State-of-the-art on power line de-icing Atmospheric Research,1998,46:143~158
    [18]蒋兴良,张丽华.输电线路除冰防冰技术综述.高电压技术,1997,23(1):73~76
    [19]许树楷,赵杰.电网冰灾案例及抗冰融冰技术综述.南方电网技术,2008,2(2):1~6
    [20]张昕,韩占忠.输电线路除冰技术现状及发展.电气开关,2009,(1):4~7
    [21]杨晴,王骏.国内外抗冰融冰技术研究综述.云南电力技术,2008,36(4):35~38
    [22]蒋兴良,万启发,吴盛麟等.输电线路除冰新技术—低居里(LC)磁热线在线路除冰中的应用.高电压技术,1992,(3):55~58
    [23]蒋兴良,范松海,孙才新等.低居里点铁磁材料在输电线路防冰中应用前景分析.南方电网技术,2008,2(2):19~22
    [24] C. Antonini, M. Innocenti, T. Horn, et al. Understanding the effect of superhydrophobiccoatings on energy reduction in anti-icing systems. Cold Regions Science andTechnology,2011,67:58~67
    [25] M.G. Ferrick, N.D.Mulherin, R.B.Haehnel, et al. Evaluation of ice release coatings atcryogenic temperature for the space shuttle. Cold Regions Science and Technology,2008,52(2):224~243
    [26] L. Cao, A. K. Jones, V. K. Sikka, et al. Anti-icing superhydrophobic coatings.Langmuir.2009,25(21):12444~12448
    [27]胡小华,魏锡文,陈蓓.输电线路防覆冰涂料的研究进展.材料保护,2006,39(3):36~38
    [28] S.A. Kulinich, M. Farzaneh. On wetting behavior of fluorocarbon coatings withvarious chemical androughness characteristics. Vacuum,2005,79:255~264
    [29] Richard Menini, Masoud Farzaneh. Elaboration of Al2O3/PTFE icephobic coatingsfor protecting aluminum surfaces. Surface&Coatings Technology,2009,203:1941~1946
    [30] Hao Wang, Liming Tang, Xiaomin Wu, et al. Fabrication and anti-frostingperformance of super hydrophobic coating based on modified nano-sized calciumcarbonate and ordinary polyacrylate. Applied Surface Science,2007,253:8818~8824
    [31] S. Farhadi, M. Farzaneh, S. A. Kulinich. Anti-icing performance of superhydrophobicsurfaces. Applied Surface Science,2011,257:6264~6269
    [32] Zhe Cui, Long Yin, Qingjun Wang, et al. A facile dip-coating process for preparinghighly durable superhydrophobic surface with multi-scale structures on paint films.Journal of Colloid and Interface Science,2009,337:531~537
    [33] A. Safaee, D. K. Sarkar, M. Farzaneh. Superhydrophobic properties of silver-coatedfilms on copper surface by galvanic exchange reaction. Applied Surface Science,2008,254:2493~2498
    [34] S. A. Kulinich, M. Farzaneh. On ice-releasing properties of rough hydrophobiccoatings. Cold Regions Science and Technology,2011,65(1):60~64
    [35] R. Menini, Z. Ghalmi, M. Farzaneh. Highly resistant icephobic coatings onaluminum alloys. Cold Regions Science and Technology,2011,65(1):65~69
    [36] Fochi Wang, Chengrong Li, Yuzhen Lv, et al. Ice accretion on superhydrophobicaluminum surfaces under low-temperature conditions. Cold Regions Science andTechnology,2010,62:29~33
    [37]张青,吕玉珍,汪佛池等.采用超憎水性涂层缓解导线表面覆冰的实验研究.现代电力,2010,27(6):31~34
    [38]汪佛池,李成榕,吕玉珍.憎水涂层对铝单丝表面覆冰性能的影响.中国电机工程学报,2011,31(10):123~128
    [39] S. A. Kulinich, M. Farzaneh. Ice adhesion on super-hydrophobic surfaces. AppliedSurface Science,2009,255:8153~8157
    [40]赵玉顺.绝缘子超疏水涂层制备方法与防冰性能研究:[博士学位论文].重庆:重庆大学,2010
    [41]蒋兴良,肖代波,孙才新.憎水性涂料在输电线路防冰中的应用前景.南方电网技术,2008,2(2):14~18
    [42] Robert I Egbert, Robert L Schrag, Walter D Bernhart, et al. An investigation ofpower linede-icing by electro-impulse methods. IEEE Transactions on PowerDelivery,1989,4(3):1855~1861
    [43] Robert I Egbert, Robert L Schrag, Walter D Bernhart, et al. Investigation of powerline de-icing by electro-impulse methods. IEEE Power Engineering Review,1989.71~72
    [44]李广超,何江,林贵平.电脉冲除冰(EIDI)系统电动力学模型分析.航空动力学报,2011,26(1):54~58
    [45]李清英,白天,朱春玲.电脉冲除冰系统的电磁场分析.南京航空航天大学学报,2011,43(1):95~100
    [46] S. Montambault, J. Cote, M. St-Lauis. Preliminary Results on the Development of aTeleoperated Compact Trolley for Live-Line Working. Proc.2000IEEE9thInternational Conference on Transmission and Distribution Construction, Operationand Live-Line Maintenance, ESMO,2000.21~27
    [47] S. Montnmbault. HQ LineROVer: A Remotely Operated Vehicle for Live-Line Workon Overhead Transmission Lines. Proc.2002IEEE6th International Conference onLive Maintenance, ICOLIM,2002.77~81
    [48] Serge Montambault, Nicolas Pouliot. The HQ LineROVer: Contributing toInnovation in Transmission Line Maintenance. Proceedings of the IEEE InternationalConference on Transmission and Distribution Construction and Live Line Maintenance,ESMO,03ESM00070,2003.33~40
    [49]郑灿东.输电线路除冰机器人控制系统的研究:[硕士学位论文].济南:山东科技大学,2010
    [50]刘晓鹏.输电线路除冰机器人越障控制策略研究:[硕士学位论文].兰州:兰州理工大学,2010
    [51]耿亮.输电线路除冰机器人越障机械臂控制研究:[硕士学位论文].兰州:兰州理工大学,2010
    [52]王聪.基于视觉的电力线除冰机器人抓线控制方法研究:[硕士学位论文].长沙:湖南大学,2010
    [53]缪思怡.基于视觉的输电线路除冰机器人障碍识别方法:[硕士学位论文].长沙:湖南大学,2010
    [54]向阳琴.输电线除冰机器人多传感器信息融合障碍物信息检测方法:[硕士学位论文].长沙:湖南大学,2010
    [55]张海霞.输电线除冰机器人的轨迹跟踪控制方法研究:[硕士学位论文].长沙:湖南大学,2010
    [56]王超,魏世民,廖启征.高压输电线上除冰机器人的系统设计.机械工程与自动化,2010,1:148~149
    [57]王耀南,周原力,谭磊等.输电线路除冰机器人行为控制研究.控制工程,2011,18(3):434~438
    [58] Jinlong Zhao, Rui Guo, Lei Cao, et al. Improvement of LineROVer: A mobile Robotfor De-icing of Transmission Lines.20101st International Conference on AppliedRobotics for the Power Industry, IEEE,2010.1~4
    [59] Bai Yucheng, Wu Gongping, Xiao hua, et al. Overhead High-Voltage TransmissionLine Deicing Robot System and Experiment Study. ICIRA2010, Part II, LNAI6425,2010.227~239
    [60] Sisi Li, Yuhong Wang, Xingyuan Li, et al. Review of De-icing Methods forTransmission Lines.2010International Conference on Intelligent System Design andEngineering Application, IEEE,2010.310~313
    [61] Chao Wang, Jun Wen, Shuqi Li, et al. Design on DC De-icing Schemes for HighVoltage Transmission Line.20105th International Conference on Critical Infrastructure,CRIS2010-Proceedings, IEEE,2010.5617565
    [62] Gang Liu, Xuezeng Zhao, Yonghui Chen, et al. A De-icing Method of ElectricTransmission Line by Adjusting Load Based on Controllable Inductor and CapacitorCompensation.2009IEEE Bucharest Power Tech Conference, June28th-July2nd,Bucharest, Romania,2009.21~23
    [63] Gang LIU, Hui PENG, M. LEHTONEN, et al. De-icing Schemes and Operations forOverhead Power Line Based on Shunt Capacitor Over-compensation Method.2010International Conference on Electrical and Control Engineering. IEEE,2010.3525~3528
    [64] C. Horwill, C. C. Davidson, M. Granger, et al. An Application of HVDC to thede-icing of Transmission Lines. Proceedings of the IEEE Power Engineering SocietyTransmission and Distribution Conference,2006.529~534
    [65] C. C. Davidson, C. Horwill, M. Granger, et al. A Power-Electronics-BasedTransmission Line De-icing System. The8th IEE International Conference on ACand DC Power Transmission (ACDC2006),2006.135~139
    [66] René Cloutier, André Bergeron, Jacques Brochu. On-Load Network De-IcerSpecification for a Large Transmission Network. IEEE TRANSACTIONS ONPOWER DELIVERY,2007,22(3):1947~1955
    [67] Zs Peter, C. Volat, M. Farzaneh, et al. Numerical investigations of a new thermalde-icing method for overhead conductors based on high current impulses. IETGeneration Transmission&Distribution,2008,2(5):666~675
    [68] Joshua D McCurdy, Charles R Sullivan, Victor F Petrenko. Using Dielectric Lossesto De-Ice Power Transmission Lines with100kHz High-Voltage Excitation.Conference Record of the2001IEEE Industry Applications Conference,36th IASAnnual Meeting,2001.2515~2519
    [69] Qi Huang, Yong Chen, Changhua Zhang. Design of an Adaptive On-load De-icingScheme for Overhead Power Transmission Line.2009IEEE Power&EnergySociety General Meeting (PES),2009.25~28
    [70]李宁,周羽生.基于有限元方法的覆冰输电线路高频高压除冰法分析.电网与清洁能源,2011,27(2):28~31
    [71]李宁.覆冰输电线路高频高压除冰技术研究:[硕士学位论文].长沙:长沙理工大学,2010
    [72]饶宏,李立浧,黎小林等.南方电网直流融冰技术研究.南方电网技术,2008,2(2):7~13
    [73]常浩,石岩,殷威扬等.交直流线路融冰技术研究.电网技术,2008,32(5):1~6
    [74] V. F. Petrenko, C. R. Sullivan, V. Kozlyuk, Variable-resistance conductors (VRC)for power-line de-icing. Cold Regions Science and Technology,2011,65(1):23~28
    [75] S. Fan, X. Jiang, C. Sun, et al. Temperature characteristic of DC ice-meltingconductor. Cold Regions Science and Technology,2011,65(1):29~38
    [76] Pierre Couture. Smart Power Line and photonic de-icer concepts for transmission-line capacity and reliability improvement. Cold Regions Science and Technology,2011,65:13~22
    [77] HUANG Xinbo, SUN Qindong, DING Jianguo. An On-line Monitoring System ofTransmission Line Conductor De-icing.20083rd IEEE Conference on IndustrialElectronics and Applications, ICIEA,2008.891~896
    [78] W. B. Berry, J. L. Sachs, R. L. Kleinman. Radio Frequency (Rf) Third Rail Deicing-A Comparison With Heated Rail. Technical Papers-IEEE/ASME Joint RailroadConference,1993.41~45
    [79] C. A. Waller, W. B. Berry, R. L. Kleinman. Transit system third rail de-icing byradio frequency induction. Technical Papers-IEEE/ASME Joint Railroad Conference,1991.97~101
    [80] Lambert E Feher, M Thumm. High Frequency Microwave Anti-/De-Icing System forCarbon Reinforced Airfoil Structures. SPIE,2001,4371:99~110
    [81]田斌,黄晓鹏,万芳新.高速公路除雪机高压热气流除冰装置的设计.机械研究与应用,2010,(2):67~69
    [82]陈光.扫雪除冰车红外线加热系统设计及加热过程的数值模拟:[硕士学位论文].大连:大连理工大学,2003
    [83]汪仁波.微波路面除冰设备加热均匀性的研究:[硕士学位论文].成都:电子科技大学,2010
    [84]徐效亮.基于电磁热耦合理论的5.8GHz微波道路除冰温度场仿真研究:[硕士学位论文].西安:长安大学,2009
    [85]唐相伟.道路微波除冰效率研究:[博士学位论文].西安:长安大学,2009
    [86]涂磊.变电设备热力除冰技术研究:[硕士学位论文].武汉:华中科技大学,2009
    [87] R. Lanoie, Restoration of the insulation of ice-covered post insulators. Cold RegionsScience and Technology,2011,65(1):39~42
    [88] V. F. Petrenko, C. R. Sullivan, V. Kozlyuk, et al. Pulse electro-thermal de-icer(PETD). Cold Regions Science and Technology,2011,65(1):70~78
    [89] G. G. Koenig, C. C. Ryerson. An investigation of infrared deicing through experimentation.Cold Regions Science and Technology,2011,65(1):79~87
    [90] J. W. Lane, S. J. Marshall, De-icing using lasers. CRREL Report76-10. U.S. ArmyCold Regions Research and Engineering Lab,1976.31~34
    [91] L. H. N. Lee. On penny-shaped crack at an ice-substrate interface in Application ofFracture Mechanics to Materials and Structures. Proc. Int. Conf., Martinus Nijhoff,1984.1085~1094
    [92] W. C. Nunnally. Onboard aircraft de-icing using lasers. US Patent, No6206325,2001.1~3
    [93] R. M. Vega, R. Vega. Laser ice removal system. US Patent, No4900891,1990.1~3
    [94]万敏,杨锐,路大举等.利用激光为架空高压输电线除冰的方法.专利公开号:CN101325321,2008.1~5
    [95]朱卫华.输电线路上CO2激光除冰的研究:[硕士学位论文].武汉:华中科技大学,2007
    [96]朱卫华,朱晓,朱长虹,朱广志. CO2激光热熔法除冰的研究.光学与光电技术,2007,5(3):41~42
    [97]刘磊.脉冲激光与冰相互作用研究:[硕士学位论文].武汉:华中科技大学,2007
    [98]刘磊,朱晓.激光除冰研究.光散射学报,2006,18(4):379~382
    [99] Gui-xin Zhang, Sheng Chen, Shu-guang Xu, et al. Application And Research OfLaser De-Icing In Power System. Proceedings of the2010IEEE International PowerModulator and High Voltage Conference,2010.470~473
    [100]陈胜,张贵新,徐曙光等.电网中激光除冰技术分析.清华大学学报(自然科学版),2011,51(1):47~52.
    [101]赵宇明,张贵新,罗兵等.大功率半导体激光除冰技术.南方电网技术,2011,5(5):60~64
    [102] Laylas S Mayboudi. Heat Transfer Modelling and Thermal Imaging Experiments inLaser Transmission Welding of Thermoplastics:[Ph.D paper]. Queen’s University,Canada,2008
    [103] Erland M Schulson. The structure and mechanical behavior of ice. JOM, Feb,1999.21~27
    [104] Stephen G Warren. Optical constants of ice from the ultraviolet to the microwave.APPLIED OPTICS,1984,23(8):1206~1225
    [105] M N奥齐西克.热传导.俞昌铭译.北京:高等教育出版社,1983.561~563
    [106]王富耻,张朝晖. ANSYS10.0有限元分析理论与工程应用北京:电子工业出版社,2006.1~3
    [107]许国良,王晓墨,邬田华等.工程传热学.北京:中国电力出版社,2005.235~238
    [108] J. J. Petrovic. Mechanical properties of ice and snow. Journal of Materials Science,2003,38:1~6
    [109]黄焱,史庆增,宋安.冰温度膨胀力的有限元分析.水利学报,2005,36(3):314~320
    [110]江正荣,朱国梁.简明施工计算手册.北京:中国建筑工业出版社,1999.29~30
    [111]乔军,吴政国,林文兵.常用绝缘子的性能分析与应用.江西电力,2009,33(4):21~23
    [112]龚国洪,刘世荣,邓华兴等.三类高强度悬式瓷绝缘子的成分特征和产品性能的关系.矿物学报,2004,24(3):315~319
    [113]靳宝丰译.绝缘子.日本电气学会通信敎育会编,北京:机械工业出版社,1990.27~35
    [114] QI LiJun, ZHU Xiao, ZHU Changhong, et al. Deicing with Nd:YAG and CO2lasers.Optical Engineering,2010,49(11):114301-1~114301-6
    [115] L. Tunna, W.O. Neill, A Khan, et al. Analysis of laser micro drilled holes throughaluminium for micro-manufacturing applications. Optics and Lasers in Engineering,2005,43:937~950

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700