用户名: 密码: 验证码:
山西省高速公路大雾数值预报研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现山西省高速公路大雾的数值预报,本文利用MM5中尺度数值预报模式,研究辐射和边界层参数化方案、模式分辨率、资料同化等对大雾中尺度数值预报的影响,确定基于模式预报结果的山西省大雾判别指标,构建山西省高速公路大雾数值预报系统。模拟的结果表明:
     (1)模式分辨率的高低对模式模拟结果有一定的影响,其中在水平分辨率设计的方案(45km×15km、27km×9km、15km×5km)中以27km×9km为最佳方案,垂直分辨率设计的方案(23层、30层、43层)中以43层为最佳方案。综合考虑不同方案模拟的结果、模式运行效率及预报的时效性,山西省雾数值预报系统采用的分辨率为30层、27km×9km的方案。
     (2)根据相似预报法(结构相似、指标相似、相关相似等)的原理,综合考虑模式模拟的气象要素值与观测值之间的误差、偏离程度、相关性,雾落区预报的准确性及雾的生消、发展高度等,确定山西省大雾数值预报系统采用的参数化方案为:辐射方案选用云方案,边界层参数化方案选用高分辨率的Blackadar方案,积云对流参数化方案选用Grell方案,下垫面采用多层土壤温度模式,水汽方案为graupel(reisner2)方案。
     (3)在以NCEP的FNL再分析资料为初始场和边界文件的个例模拟中,加入观测资料可以改进模式初始场和模式模拟的精度,特别是同化探空资料对模式模拟精度有较高的提高,而地面资料的加入对模式模拟的结果的影响不是很明显,因此,在山西省雾数值预报系统中同化探空资料以提高系统预报的准确性。
     (4)基于MM5模式预报结果,统计大雾天气相关预报因子特征,确定山西省大雾预报指标为:20m高度的液态水含量(LWC)大于等于0.13g/kg而小于0.6g/kg,10m风速小于4m/s,在20到1500m高度大气层存在逆温层。
     (5)利用粒子数浓度的观测资料拟合空气质量模式CAPSS的预报信息,建立空气粒子数浓度(质量)的订正模型:SO2:N=0.8265*NCAPPS+0.0043,NO2:N=0.8265*NCAPPs+0.0057,PM10:N=0.8265.NCAPPs+0.0015;利用地面观测的相对湿度拟合MM5模式中个例模拟的相对湿度,建立相对湿度的订正模型:RH=(RHmodel—28.773)/0.7853;根据指数模型及观测资料(RH相对湿度、N为根据不同粒子质量数浓度获得的空气污染指数)构建山西省太原能见度预测模型:Vis=13.297*exp(-0.0002*RH*N).
     依据上述的结论,构建了以MM5中尺度预报模式为基础的山西省高速公路大雾数值预报系统,系统可以自动从NCEP网站上获取全球的区域预报形势,同化地面和高空资料,实现山西省高速公路大雾滚动预报。系统可以提供每小时高速公路雾数值预报图片产品。
The study uses all kinds of information to establish the numerical prediction system of the fog about a highway in Shanxi Province, such as the data in2009-2011about the FNL NCEP data during the typical fog examples happened in Shanxi Province, data about the109stood observations, the information from MICAPS about the simulation area, humidity and visibility from January1st to September26th in2009at TaiYuan, the monitoring of air pollution index (API) from Shanxi Environmental Protection Net, the number of particles concentration from January in2008to November in2010at TaiYuan. Through comprehensive processing and analyzing, we can follow the conclusion:
     (1) The high or the low resolution of the mode has certain effect to the simulation results, the27km×9km scheme is the best one in a horizontal resolution design scheme (45km×15km,27km×9km,15km×5km), the43th layer is the best one in the vertical resolution design scheme (23th layer,30th layer,43th layer). Considering the result between the simulation result of the model operation efficiency and the efficiency of the forecast, the resolution in the numerical prediction system of the fog in Shanxi Province uses the30th layer of27km×9km scheme.
     (2) According to use the similar forecast method (structure similar, index similar, relevant similar, etc), considerated some reasons such as the error, deviation and the correlation between the model simulation result and the elements of observation, the accuracy in the distribution of fog simulated, procedure of fog and the height of fog top,etc, The numerical prediction system of the fog in Shanxi Province dopts the parameterization scheme for:radiation schemes choosing cloud solutions, boundary layer parameterization scheme selecting the high resolution Blackadar scheme, the parameterization scheme of cumulus clouds billow convection selectiing Grell scheme, the underlying surface soil temperature using multi-level pattern, graupel (reisner2) scheme for the vapor scheme.
     (3)Data assimilation can improve the simulation of the initial field and the precision of the model simulations, especially adding sounding material, but the results of the simulation of model after adding the ground material is not very obvious. therefore, in order to improve the accuracy of the prediction of the system we should assimilate sounding and observation data in the numerical prediction system of the fog in Shanxi Province.
     (4) As the results of analyzing the tree simulation experiments, the indices for retrieving fog area from the simulation data were that the liquid water content was more than0.13g/kg and less than0.6g/kg, there were temperature inversion layers during20-1500m, and wind speed near earth surface was less than4m/s. Using of air pollution, relative humidity, we could conclude the visibility model of fog:Vis=13.297*exp (0.0002*RH*N).
     (5) Use the number of particles of the concentration of the observation data fitting air quality model CAPSS forecast information, establish the number of particles air concentration (quality) correction model:SO2:N=0.8265*NCApps+0.0043, NO2:N=0.8265*NCApps+0.0057, PM10:N=0.8265*NCApps+0.0015; Make use of the ground of the observation of relative humidity fitting MM5model simulation examples of relative humidity, establish the relative humidity correction model:RH=(RHmodel-28.773)/0.7853; According to the index model and observation data (RH is relative humidity, N according to different particles for such a concentration of air pollution index for build) taiyuan Shanxi Province visibility prediction model:Vis=13.297*exp (0.0002*RH*N).
     Based on the above conclusions, to construct the mesoscale prediction model MM5with the basis of Shanxi Province highway fog numerical prediction system, the system can automatically from NCEP sites global area forecast situation, assimilation ground and high material, realize the Shanxi Province highway fog rolling forecast. The system can provide each hour highway fog numerical prediction product pictures.
引文
[1]中国气象局.地面气象观测规范[M].北京:气象出版社,2007:6-7.
    [2]刘小宁,张洪政,李庆祥,等.我国雾的气候特征及变化初步解释[J].应用气象学报,2005,16(2):220-230.
    [3]王丽萍,陈少勇,董安祥.中国雾区的分布及其季节变化[J].地理学报,2005,60(4):689-697.
    [4]李子华.中国近40年来雾的研究[J].气象学报,2001,59(5):616-624.
    [5]曹治强,吴兑,吴晓京.1961-2005年中国雾天气气候特征[J].气象科技,2008,36(5):556-560.
    [6]林建,杨贵名,毛冬艳.我国雾的时空分布特征及其发生的环流形势[J].气候与环境研究,2008,13(2):171-181.
    [7]李崇银,黄荣辉,丑纪范,等.我国重大高影响天气气候灾害及对策研究[M].北京:气象出版社,2009.
    [8]袁成松,卞光辉,冯民学,等.高速公路上低能见度的监测与预报[J].气象,2003,29(11):36-40.
    [9]李子华,黄建平,孙博阳,等.辐射雾发展的爆发性特征[J].大气科学,1999,23(5):623-631.
    [10]田小毅,吴建军,严明良,等.高速公路低能见度浓雾监测预报中的几点新进展[J].气象科学,2009,29(3):414-420.
    [11]杨小萍,骆丽楠,张宏雨,等。山西省雾的分析和预报[J]。山西气象,2001(3):7-9.
    [12]李清华,何瀚原,朱金花。山西高速公路沿线雾天气特征及预报服务[J]。应用技术,2007(3):50-52.
    [13]Gultepe, I.,and Coauthors,2007a: Fog research: A review of past achievements and future perspectives. J. Pure Appl. Geophys.,164,1121-1159.
    [14]Gultepe, I., M. D. Miiller, and Z. Boybeyi,2006a:A new visibility parameterization for warm fog applications in numerical weather prediction models. J. Appl. Meteor.,45, 1469-1480.
    [15]Gultepe, I., and J. A. Milbrandt,2007:Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. J. Pure Appl. Geophys.,164,1161-1178.
    [16]吴兑,赵博,邓雪娇,等.南岭山地高速公路雾区恶劣能见度研究[J].高原气象,2007, 26(3):649-654.
    [17]郭刚,罗春田,郭玲.辽西地区区域性雾气候统计特征及预报[J].气象与环境学报,2006,22(3):7-10.
    [18]李岚,李洋,邢江月,等.沈大高速公路雾气候特征与气象要素分析[J].气象与环境学报,2009,25(1):149-53.
    [19]董剑希.雾的数值模拟研究及其综合观测[L].南京:南京信息工程大学,2005.
    [20]Fisher E L, P. Caplan. An experiment in numerical prediction of fog and atratus[J]. J. Atmos. Sci.,1963,20(5):425-437.
    [21]Brown R, W T Roach. The physical radiation fog:Ⅱ——A numerical study [J].Quart J Roy Meteor Sci,1976,102:335-354.
    [22]Clark P A, W P Hopwood. One-dimensional site-specific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies[J]. Meteor. Applications,2001,8,279—286.
    [23]彭虎,李子华.包含详细微物理过程的一维辐射雾模式[J].重庆环境科学,1992,14(3):49-54.
    [24]Shi C E, X J Sun, J Yang, et al.3D model study on fog over complex terrain-part I: numerical study[J]. Acta Meteorological Sinaca,1996,10(4):493-506.
    [25]黄培强,郭岚.辐射雾形成的数值模拟[J].气象学报,1986,44(2):68-74.
    [26]Brown R, Roach W T. The physical radiation fog; Ⅱ-A numerical study.Quart.J Roy Meteor Sci,1976,102:335-354
    [27]周斌斌.辐射雾的数值模拟[J].气象学报,1987,45(1):21-29.
    [28]张福深,周明煌,吕乃平.地面辐射雾和低层云对夜间边界层影响的数值研究[J].大气科学,1987,11(2):128-137.
    [29]彭虎,李子华.包含详细微物理过程的一维辐射雾模式[J].重庆环境科学,1992,14(3):49-54.
    [30]尹球,许绍祖辐射雾生消的数值研究(Ⅰ)—数值模式[J].气象学报,1993,51(3):315-359.
    [31]钱敏伟,雷孝恩.长江上空辐射雾的数值模拟[J].大气科学,1990,14(4):483-489.
    [32]张利民,李子华.重庆雾的二维非定常数值模拟[J].大气科学,1993,17(6):750-755.
    [33]石春娥等3D model study on fog over complex terrain-part I:numerical study[J]. AMS, 1996,10(4):493-506.
    [34]石春娥,李子华等.复杂地形上三维局地环流的数值研究[J].南京气象学院学报,1996,19(3):54-63.
    [35]Ballard S P, B W Golding, R N B Smith. Mesoscale model experiment forecasts of the Haar of northeast scotland[J]. Mon. Wea. Rev.,1991,119:2107-2123.
    [36]林杨,沈桐立,胡琳,等.陕西冬季一次大雾天气生消机制的数值模拟研究[J].高原气象,2010,29(2):437-446
    [37]严明良,缪启龙,袁成松,等.沪宁高速公路一次大雾过程的数值模拟及诊断分析[J].高原气象,2011,30(2):428-436.
    [38]石红艳,王洪芳,齐琳琳,等.长江中下游地区一次辐射雾的数值模拟[J].解放军理工大学学报(自然科学版).2005,6(4):404-408.
    [39]董剑希,雷恒池,胡朝霞,等.北京及其周边地区一次雾的数值模拟及诊断分析[J].气候与环境研究,2006,11(2):175-184.
    [40]傅刚,张涛,周发绣.一次黄海海雾的三维数值模拟研究[J].青岛海洋大学学报,2002,32(6):859-867.
    [41]傅刚,王着茜,张美根,等.一次黄海海雾事件的观测与数值模拟研究[J].中国海洋大学学报.2004,34(5):720-726.
    [42]樊琦,吴兑,范绍佳,等.广州地区冬季一次雾的三维数值模拟研究[J].中山大学学报:自然科学版,2003,42(1):84-86.
    [43]樊琦,王安宇,范绍佳,等.珠江三角洲地区一次辐射雾的数值模拟研究[J].气象科学,2004,24(1):1-8.
    [44]李元平,梁爱民,张中锋,等.北京地区一次冬季平流雾过程数值模拟分析[J].云南大学学报:自然科学版,2007,29(2):167-172.
    [45]史月琴,邓雪娇,胡志晋,等.一次山地浓雾的三维数值研究[J].热带气象学报,2006,22(4):351-359.
    [46]何晖,郭学良,刘建忠,等.北京一次雾天气边界层结构特征及生消机理观测与数值模拟研究[J].大气科学,2009,33(6):1174-1186.
    [47]樊琦,王东海,黄聪敏,等.一次广东省大雾过程的数值模拟分析[J].热带气象学报,2009,25(5):589-595.
    [48]袁成松,卞光辉,冯民学,等.高速公路上低能见度的监测与预报[J].气象,2003,29(11):36-40.
    [49]MM5在线手册[EB/OL], http://www.mmm.ucar.edu/mm5。
    [50]李莉,程水源,陈东升等。气象模式MM5的不同参数化方案评估[J]。北京工业大学学报,2010年,36(1):71-76。
    [51]中国气象局.关于下发中短期天气预报质量检验办法(试行)的通知[S].中国气象局,气发(2005)109号,2005年6月.
    [52]林艳,杨军,鲍艳松,等.山西省冬季雾中能见度的数值模拟研究[J].南京信息工程大学学报,2010,2(5):436-444.
    [53]杨小萍,骆丽楠,张宏雨等。山西省雾的分析与预报[J]。山西气象,2001年,56(3):7-9.
    [54]高永辉,王洪芳,刘健。雾的解释预报技术研究[C].中国气象学会,2006年年会“航空气象探测、预报、预警技术进展”分会场论文集,2006:508-511.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700