用户名: 密码: 验证码:
3β,5α,6β-三羟胆固醇对小鼠肝线粒体的氧化损伤及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动脉粥样硬化(AS)是严重威胁人类的疾病之一,氧化型胆固醇被认为是AS的主要致病因素。揭示氧化型胆固醇的细胞毒性作用及其机制、研究AS发生和发展的防治,仍然是当前人口与健康研究领域的前沿课题之一。
     本论文以分离的小鼠肝线粒体以及人血影为对象,研究了3β,5α,6β-三羟胆固醇(Triol)对线粒体的氧化损伤作用,及其产生氧化损伤的可能机制。主要研究结果如下:
     1.研究了Triol对分离的小鼠肝线粒体的氧化损伤作用,包括脂质过氧化、膜蛋白氧化、H2O2产生、跨膜电位、细胞色素C释放等。结果表明,Triol能引起肝线粒体脂质过氧化和膜蛋白的氧化程度增强、H2O2水平升高,并引起跨膜电位降低以及细胞色素C的释放增加。
     2.测定了Triol对线粒体内膜上呼吸链部分酶活性的影响。结果显示,Triol作用分离的小鼠肝线粒体能引起线粒体呼吸链上复合物Ⅰ和Ⅱ酶活性升高,对复合物Ⅲ酶活性无显著影响。而Triol作用破碎后的线粒体,引起复合物Ⅰ和复合物Ⅲ酶活性降低以及复合物Ⅱ酶活性升高。
     3.应用衰减全反射-傅立叶红外技术,以人血影为模型,研究了Triol对质膜的作用。结果表明,Triol使血影膜蛋白α-螺旋结构含量升高、β-折叠和β-转角含量降低、无规卷曲含量略有降低;随着作用时间的延长,Triol对α-螺旋结构、无规卷曲以及β-转角含量的影响均更加显著,而β-折叠含量在Triol作用时间延长时反而逐渐升高。
Atherosclerosis (AS) is one of the most serious diseases in human, and the cholesterol oxidation products (Ch-Ox) are currently considered as a key atherogenic factor in its pathogenesis. The researches on the cytotoxicity of Ch-Ox and its mechanism, the prevention and cure of AS are one of the frontier fields in human health.
     In this paper, the effect of Triol on oxidative impairment of isolated mouse liver mitochondria and the probable mechanism were investigated. The main results are as follows:
     1. The effect of Cholestane-3β, 5α, 6β-triol(Triol) on lipid peroxidation, membrane protein oxidation, H2O2 generation, transmembrane potential, release of cytochorme c of isolated mouse liver mitochondria were studied. The results indicated that Triol induced lipid peroxidation and membrane protein oxidation, decrease of transmembrane potential, and increase of H2O2 generation and cytochorme C release.
     2. To further investigate the mechanism, the effects of Triol on the activity of three enzymes in mitochondria respiratory chain were studied. The results suggested that complex I and II enzyme activity increased, while complex III enzyme activity did not change significantly as Triol applied to intact mitochondria. Furthermore, complex I and III enzyme activity decreased, and complex II enzyme activity increased as Triol applied to broken mitochondria.
     3. The effect of Triol on membrane protein secondary structure of human ghost was studied by Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR- FTIR). The results showed thatα-helix increased dose- and time-dependently, andβ-sheet decreased at high concentration of Triol but increased as time prolonged, and random as well as turns reduced dose- and time-dependently.
引文
[1] 姜波,周永列. 氧化修饰低密度脂蛋白与动脉粥样硬化. 国外医学生理、病理科学与临床分册, 1996, 16(3):157-159
    [2] 韩启德, 文允镒. 血管生物学. 北京医科大学、中国协和医科大学联合出版, 1997
    [3] Berliner JA, Heinecke JW. The role of oxidized lipoproteins in atherogenesis. Free Radic Biol Med, 1996, 20:707-727
    [4] Rubbo H, Darley-Usmar V, Freeman BA. Nitric oxide regulation of tissue free radical injury. Chem Res Toxicol, 1996, 9:809-820
    [5] Chisolm GM, Ma G, Irwin KC, et al. 7β-hydroperoxycholest-5-en-3β-ol, a component of human atherosclerotic lesions, is the primary cytotoxin of oxidized human low density lipoprotein. Proc Natl Acad Sci USA, 1994, 91:11452-11456
    [6] Lusis AJ. Atherosiclerosis. Nature, 2000, 407:233–241
    [7] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990. Nature, 1993, 362: 801-809
    [8] Schwarz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerosis lesions. Annu Res Med, 1998, 49:437-460
    [9] Wick G, Romen M, Amberger A, et al. Atherosclerosis, autoimmunity and vascular-associated lymphoid tissue. FASEB J, 1997, 11: 1199-1207
    [10] Ross R. Atherosclerosis - an inflammatory disease. N Engl J Med, 1999, 340: 115-126
    [11] Mattila KJ, Valtonen VV, Nieminen MS, et al. Role of infection as a risk factor for atherosclerosis, myocardial infarction, and stroke. Clin Infect Dis, 1998, 26: 719–734
    [12] Brown MS, Goldstein JL. A receptor-mediated pathway for cholesterol homeostasis. Science, 1986, 232:34-47
    [13] Fogelman AM, Shechter I, Seager J, et al. Malondialdehyde alteration of low density lipoproteinsleads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA, 1980, 77: 2214-2219
    [14] Daugherty A, Zweifel BS, Sobel BE, et al. Isolation of low density lipoprotein from atherosclerotic vascular tissue of Watanabe heritable hyperlipidemic rabbits. Arteriosclerosis, 1988, 8: 768-775
    [15] Yla-Herttuala S, Palinski W, Rosenfeld ME, et al. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest, 1989, 84: 1086-1095
    [16] Jurgens G, Ashy A, Esterbauer H. Detection of new epitopes formed upon oxidation of low-density lipoprotein, lipoprotein (a) and very-low-density lipoprotein. Use of an antiserum against 4-hydroxynonenal- modified low-density lipoprotein. Biochem J, 1990, 265: 605-608
    [17] Salonen JT, Yla-Herttuala S, Yamamoto R, et al. Autoantibody against oxidised LDL and progression of carotid atherosclerosis. Lancet, 1992, 339: 883-887
    [18] Rosenfeld ME, Palinski W, Yla-Herttuala S, et al. Distribution of oxidation specific lipid-protein adducts and apolipoprotein-B in atherosclerotic lesions of varying severity from WHHL rabbits. Arteriosclerosis, 1990, 10: 336-345
    [19] Morel DW, DiCorleto PE, Chisolm GM. Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation. Arteriosclerosis, 1984, 4: 357-366
    [20] Steinbrecher UP, Parthasarathy S, Leake DS, et al. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci USA, 1984, 81: 3883-3889
    [21] Steinberg D. Clinical trials of antioxidants in atherosclerosis: are we doing the right thing? Lancet, 1995, 346: 36-38
    [22] Diaz MN, Frei B, Vita JA, et al. Antioxidants and atherosclerotic heart disease. New Eng J Med, 1997, 337: 408-416
    [23] Watson AD, Leitinger N, Navab M, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that inducemonocyte/endothelial interactions and evidence for their presence in vitro. J Biol Chem, 1997, 272: 13597-13607
    [24] Subbanagpinder G, Watson AD, Berliner JA. Bioactive products of phospholipid oxidation: isolation, identification, measurement and activities. Free Radic Biol Med, 2000, 28: 1751-1761
    [25] Darley-Usmar V M, Hassall DG. The role of macrophages and the modification of LDL in the pathogenesis of atherosclerosis. In: Curtis MJ, ed. Immuno- pharmacology of the heart, London: Academic Press, 1993: 43-51
    [26] Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res, 2000, 87: 840-844
    [27] Lounsbury KM, Hu QH, Ziegelstein RC. Calcium signaling and oxidant stress in the vasculature. Free Radic Biol Med, 2000, 28: 1362-1369
    [28] Bowie AG, Moynagh PN, O’Neill LA. Lipid peroxidation is involved in the activation of NF-kappaB by tumor necrosis factor but not interleukin-1 in the human endothelial cell line ECV304. Lack of involvement of H2O2 in NF-kappaB activation by either cytokine in both primary and transformed endothelial cells. J Biol Chem, 1997, 272: 25941-25950
    [29] Goodwin DC, Landino LM, Marnett LJ. Reactions of prostaglandin endoperoxide synthase with nitric oxide and peroxynitrite. Drug Metab Rev, 1999, 31:73-294
    [30] Zou M, Yesilkaya A, Ullrich V. Peroxynitrite inactivates prostacyclin synthase by heme-thiolate-catalyzed tyrosine nitration. Drug Metab Rev, 1999, 31: 343-349
    [31] Lamb DJ, Mitchinson MJ, Leake DS. Transition-metal ions within atherosclerotic lesions can catalyse the oxidation of low-density lipoprotein by macrophages. FEBS Lett, 1995, 374: 12-16
    [32] Oleary VJ, Darley-Usmar VM, Russell LJ, et al. Prooxidant effects of lipoxygenase-derived peroxides on the copper-initiated oxidation of low-density lipoprotein. Biochem J, 1992, 282:631-634
    [33] Heinecke JW, Rosen H, Chait A. Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture. J Clin Invest, 1984, 74: 1890-1896
    [34] Balla G, Alla G, Jacob HS, et al. Heme-A powerful agonist of low-density lipoprotein (LDL)oxidation and oxidant injury to endothelium. Clin Res, 1990, 38: 841-845
    [35] Ehrenwald E, Fox PL. Role of endogenous ceruloplasmin in low density lipoprotein oxidation by human U937 monocytic cells. J Clin Invest, 1996, 97: 884-890
    [36] Kontush A, Meyer S, Finckh B, et al. a-Tocopherol as a reductant for Cu(II) in human lipoproteinstriggering role in the initiation of lipoprotein oxidation. J Biol Chem, 1996, 271: 11106-11112
    [37] Leuwenburgh C, Rasmussen JE, Hsu FF, et al. Mass spectrometric quantification of markers for protein oxidation by tyrosyl radical, copper, and hydroxyl radical in low density lipoprotein isolated from human atherosclerotic plaques. J Biol Chem, 1997, 272: 3520-3526
    [38] Ascherio A, Willett WC. Are body iron stores related to the risk of coronary heart disease? New Eng J Med, 1994, 330: 1152-1154
    [39] Hiramatsu K, Rosen H, Heinecke JW, et al. Superoxide initiates oxidation of low density lipoprotein by human monocytes. Atherosclerosis, 1987, 7:55-60
    [40] Heinecke JW, Baker L, Rosen H, et al. Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells. J Clin Invest, 1986, 77:757-761
    [41] Steinbrecher UP. Role of superoxide in endothelial cell modification of LDL. Biochim Biophys Acta, 1988, 959:20-25
    [42] Lynch SM, Frei B. Mechanisms of copper- and iron-dependent oxidative modification of human low-density lipoprotein. J Lipid Res, 1993, 34: 1745-1753
    [43] Bedwell S, Dean RT, Jessup W. The action of defined oxygen-centred free radicals on human low-density lipoprotein. Biochem J, 1989, 262: 707-712
    [44] Sparrow CP, Parthasarathy S, Steinberg D. Enzymatic modification of LDL by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification. J Lipid Res, 1988, 29: 745-749
    [45] Benz DJ, Mol M, Ezaki M, et al. Enhanced levels of lipoperoxides in low density lipoprotein incubated with fibroblasts expressing high levels of human 15-lipoxygenase. J Biol Chem, 1995, 270: 5191-5197
    [46] Cyrus T, Witztum JL, Rader DJ, et al. Disruption of the 12/15-lipoxygenase gene diminishes atherosclerosis in apo E-deficient mice. J Clin Invest, 1999, 103: 1597-1604
    [47] Shen J, Herderick E, Cornhill JF, et al. Macrophage-mediated 15-lipoxygenase expression protects against atherosclerosis development. J Clin Invest, 1996, 98:2201-2208
    [48] Daugherty A, Rateri DL, Dunn JL, et al. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest, 1994, 94: 437-444
    [49] Hazell LJ, Arnold L, Flowers D, et al. Presence of hypochlorite-modified proteins in human atherosclerotic lesions. J Clin Invest, 1996, 97: 1535-1544
    [50] Heinecke JW, Li W, Daehnke HL, et al. Dityrosine, a specific marker of oxidation, is synthesized by the myeloperoxidase-hydrogen peroxide system of human neutrophils and macrophages. J Biol Chem, 1993, 268: 4069-4077
    [51] Savenkova MI, Mueller DM, Heinecke JW. Tyrosyl radical generated by myeloperoxidase is a physiological catalyst for initiation of lipid peroxidation in low density lipoprotein. J Biol Chem, 1994, 269:20394-20400
    [52] Heinecke JW, Li W, Mueller DM, et al. Cholesterol chlorohydrin synthesis by the myeloperoxidase-hydrogen peroxide-chloride system: potential markers for lipoproteins oxidatively damaged by phagocytes. Biochemistry, 1994, 33:10127-10136
    [53] Hazen SL, Hsu FF, Duffin K, et al. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols. J Biol Chem, 1996, 271: 23080-23088
    [54] Hazen SL, Heinecke JW. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest, 1997, 99: 2075-2081
    [55] Brennan ML, Anderson MM, Shih DM, et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J Clin Invest, 2001, 107: 419-430
    [56] Jessup W, Mohr D, Gieseg SP, et al. The participation of nitric oxide in cell free- and its restriction of macrophage-mediated oxidation of low-density lipoprotein. Biochim Biophys Acta,1992, 1180:73-82
    [57] Chang GJ, Woo P, Honda HM, et al. Oxidation of LDL to a biologically active form by derivatives of nitric oxide and nitrite in the absence of superoxide. Dependence on pH and oxygen. Arterioscler Thromb, 1994, 14:1808-1814
    [58] Darley-Usmar V M, Hogg N, O’Leary V J, et al. The simultaneous generation of superoxide and nitric oxide can initiate lipid peroxidation in human low density lipoprotein. Free Radic Res Commun, 1992, 17:9-20
    [59] Patel RP, Diczfalusy U, Dzeletovic S, et al. Formation of oxysterols during oxidation f low density lipoprotein by peroxynitrite, myoglobin, and copper. J Lipid Res, 1996, 37:2361-2371
    [60] Pannala AS, Rice-Evans C, Sampson J, et al. Interaction of peroxynitrite with carotenoids and tocopherols within low density lipoprotein. FEBS Lett, 1998, 423: 297-301
    [61] Ischiropoulos H, Zhu L, Chen J, et al. Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys, 1992, 298:431-437
    [62] Beckmann JS, Ye YZ, Anderson PG, et al. Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol Chem Hoppe Seyler, 1994, 375:81-88
    [63] Leeuwenburgh C, Hardy MM, Hazen SL, et al. Reactive nitrogen intermediates promote low density lipoprotein oxidation in human atherosclerotic intima. J Biol Chem, 1997, 272:1433-1436
    [64] Hogg N, Kalyanaraman B, Joseph J et al. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett, 1993, 334:170-174
    [65] Noguchi N. Novel insights into the molecular mechanisms of the antiatherosclerotic properties of antioxidants: the alternatives to radical scavenging. Free Radic Biol Med, 2002, 33: 1480-1489
    [66] Meli S, Hultgardh-Nilsson A, Regnstrom J. Effect of immunization with homologous LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler Thromb Vasc Biol, 1996, 16:1074-1079
    [67] Ohisson BG, Englund MCO, Karisson Anne-LiK. Oxidized low density lipoprotein inhibits lipopolysaccharide-induced binding of nuclear factor-kB to DAN and the subsequent expression of rumor necrosis factor-α and interleukin-1β in macrophages. J Clin Invest, 1996, 98:78-79
    [68] Hardwick SJ, Hegyi L, Clare K. Apoptosis in human monocyte-macrophages exposed to oxidized low density lipoprotein. J Pathol, 1996, 179:294-302
    [69] Palinski W, Yla-Herttuala S, Rosenfeld ME. Antisera and monoclonal antibodies specific for epitopes generated during oxidative modification of low density lipoprotein. Atherosclerosis, 1990, 10:325-335
    [70] Glass CK, Witztum JL. Atherosclerosis: the road ahead. Cell, 2001, 104:503-516
    [71] Liao L, Starzyk RM, Granger DN. Molecular determinants of oxidized low-density lipoprotein-induced leukocyte adhesion and microvascular dysfunction. Arterioscler Thromb Vasc Biol, 1997, 17:437-444
    [72] Chatterjee S. Role of oxidized human plasma low density lipoproteins in atherosclerosis: effects on smooth muscle cell proliferation. Mol Cell Biochem, 1992, 111: 143-147
    [73] Clowes AW, Reidy MA, Clowes MM. Kinetics of cellular proliferation after arterial injury I: smooth muscle growth in the absence of endothelium. Lab Invest, 1983, 49: 327-333
    [74] Falk E. Why do plaques rupture? Circulation, 1992, 86(Suppl. III):30-43
    [75] Harada-Shiba M, Kinoshita M, Kamido H, et al. Oxidized low density lipoprotein induces apoptosis in cultured human umbilical vein endothelial cells by common and unique mechanisms. J Biol Chem, 1998, 273:9681-9687
    [76] Panini SR, Sinensky MS. Mechanisms of oxysterol-induced apoptosis. Curr Opin Lipidol, 2001, 12(5):529-533
    [77] Rusinol AE, Yang L, Thewke D, et al. Isolation of a somatic cell mutant resistant to the induction of apoptosis by oxidized low density lipoprotein. J Biol Chem, 2000, 275:7296-7303
    [78] 张明霞, 周建科, 梁俊红. 胆固醇氧化产物毒害性作用的研究进展. 中国动脉粥样硬化杂志, 2002, 10(5):451-454
    [79] Dzeletovic S, Breuer O, Lund E. Determination of cholesterol oxidation products in human plasma by isotope dilution-mass spectrometry. Anal Biochem, 1995, 225:73-80
    [80] Sevanian A, Hodis HN, Hwang J. Characterization of endothelial cell injury by cholesterol oxidation products found in oxidized LDL. J Lipid Res, 1995, 36: 1971-1986
    [81] Morel DW, Lin CY. Cellular biochemistry of oxysterols derived from the diet or oxidation in vivo. J Nutr Biochem, 1996, 7: 495-506
    [82] Peng SK, Morin RJ. Biological effects of cholesterol oxides, 1992, CRC Press
    [83] Guardiola F, Codony R, Addis PB, et al. Biological effects of oxysterols: Current status. Food Chem Toxicol, 1996, 34: 193-211
    [84] Brown AJ, Dean RT, Jessup W. Free and esterified oxysterol: formation during copper-oxidation of low density lipoprotein and uptake by macrophages. J Lipid Res, 1996, 37: 320-325
    [85] Hughes H, Mathews B, Lenz ML, et al. Cytotoxicity of oxidized LDL to porcine aortic smooth muscle cells is associated with the oxysterols 7-ketocholesterol and 7-hydroxycholesterol. Arterioscl Thromb, 1994, 14: 1177-1185
    [86] Salonen JT, Nyyssonen K, Salonen R, et al. Lipoprotein oxidation and progression of carotid antherosclerosis. Circulation, 1997, 95: 840-845
    [87] Carpenter KL, Torylor SE, Van der Veen C, et al. lipids and oxidized lipids in human atherosclerotic lesions at different stages of development. Biochem Biophys Acta, 1995, 1256: 141-156
    [88] Yasunobu Y, Hayashi K, Shingu T, et al. Coronary atherosclerosis and oxidative stress as reflected by autoantibodies against oxidized low density lipoprotein and oxysterols. Atherosclerosis, 2001, 155: 445-453
    [89] Imai H, Werthessen NT, Taylor CB, et al. Angiotoxicity and arteriosclerosis due to contaminants of USP-grade cholesterol. Arch Path Lab Med, 1976, 100: 565–572
    [90] Wojcicki J, Rozewicka L, Barcew-Wiszniewska B, et al. Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits. Atherosclerosis, 1991, 87: 9-16
    [91] Martz J, Andersson TLG, Ferns GAA, et al. Dietary vitamin E increases the resistance to lipoprotein oxidation and attenuates endothelial dysfunction in the cholesterol fed rabbits. Atherosclerosis, 1994, 110: 241-249
    [92] 凤志慧, 葛淑君, 仲崇霞, 等. 氧化型胆固醇引起的血管平滑肌细胞氧化应激损伤研究. 生物物理学报, 1999, 15(1): 200-207
    [93] Ramasamy S, Boissonneault GA, Hennig B. Oxysterol-induced endothelial cell dysfunction in culture. J Am Coll Nutr, 1992, 11: 532-538
    [94] 崔鸣,陈风荣,朱应葆. 氧化型胆固醇诱导兔血管平滑肌细胞凋亡. 北京大学学报, 2001, 33(2):173-177
    [95] Selley ML, McGuines JA, Ardlie NG. The effect of cholesterol oxidation products on human platelet aggregation. Thromb Res, 1996, 83(6): 449-461
    [96] Lee T, Chau L. Fas/Fas ligand-mediated death pathway is involved in oxLDL-induced apoptosis in vascular smooth muscle cells. Am J Physiol Cell Physiol 2001;280:C709-C718
    [97] Lizard G, Gueldry S, Sordet O, et al. Glutathione is implied in the control of 7-ketocholesterol-induced apoptosis which is associated with radical oxygen species production. FASEB J, 1998, 12:1651-1663
    [98] Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis, 1999, 142:1-28
    [99] Guadiola F, Codony R, Addis PB, et al. Biological effects of oxysterols: current status. FD Chem Toxic, 1996, 34(2):193-211
    [100] Yang L, Sinensky MS. 25-Hydroxycholesterol activates a cytochrome c release-mediated caspase cascade. Biochem Biophys Res Commun, 2000, 278:557-563
    [101] Biasi F, Leonarduzzi G, Vizio B, et al. Oxysterol mixtures prevent proapoptotic effects of 7-ketocholesterol in macrophages: implications for proatherogenic gene modulation. FASEB J, 2004, 18(6):693-695
    [102] Ryan L, O'Callaghan YC, O'Brien NM. Generation of an oxidative stress precedes caspase activation during 7beta-hydroxycholesterol-induced apoptosis in U937 cells. J Biochem Mol Toxicol, 2004, 18(1):50-59
    [103] Harada K, Ishibashi S, Miyashita T, et al. Bcl-2 protein inhibits oxysterol-induced apoptosis through suppressing CPP32-mediated pathway. FEBS Lett, 1997; 411:63-66
    [104] Nishio E, Watanabe Y. Oxysterols induced apoptosis in smooth muscle cells through CPP32 protease activation and bcl-2 protein downregulation. Biochem Biophys Res Commun, 1996; 262:928-934
    [105] Gregorio-King CC, Gough T, Van Der Meer GJ., et al. Mechanisms of resistance to the cytotoxic effects of oxysterols in human leukemic cells. J Steroid Biochem & Mol Biol, 2004, 88:311-320
    [106] Tang R, Liu HM, Huang KX, et al. Mechanisms of selenium inhibition of cell apoptosis induced by oxysterols in rat vascular smooth muscle cells. Arch Biochem Biophys, 2005, 441:16-24
    [107] Lima HK, Kangb HK, Yoob ES, et al. Oxysterols induce apoptosis and accumulation of cell cycle at G2/M phase in the human monocytic THP-1 cell line. Life Sci, 2003, 72:1389-1399
    [108] Seye CI, Knaapen MW, Daret D, et al. 7-Ketocholesterol induces reversible cytochrome c release in smooth muscle cells in absence of mitochondrial swelling. Cardiovascular Res, 2004, 64:144-153
    [109] Rusinol AE, Thewke D, Liu J, et al. AKT/protein kinase B regulation of BCL family members during oxysterol-induced apoptosis. J Biol Chem, 2004, 279(2):1392-1399
    [110] Lizard G, Lemaire S, Monier S, et al. Induction of apoptosis and of interleukin-1beta secretion by 7beta-hydroxycholesterol and 7-ketocholesterol: partial inhibition by Bcl-2 overexpression. FEBS Lett, 1997, 419:276-280
    [111] Spyridopoulos I, Wischhusen J, Rabenstein B, et al. Alcohol enhances oxysterol-induced apoptosis in human endothelial cells by a calcium-dependent mechanism. Arterioscler Thromb Vasc Biol, 2001, 21(3):439-444
    [112] Ares MP, Porn-Ares MI, Moses S, et al. 7beta-hydroxycholesterol induces Ca(2+) oscillations, MAP kinase activation and apoptosis in human aortic smooth muscle cells. Atherosclerosis, 2000, 153(1):23-35
    [113] Wang HG, Pathan N, Ethell IM, et al. Ca2+-induced apoptosis through calcineurin dephosphorylation of BAD. Science, 1999, 284:339-343
    [114] Berthier A, Lemaire-Ewing S, Prunet C, et al. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ, 2004, 11(8):897-905
    [115] Gijon MA, Leslie CC. Regulation of arachidonic acid release and cytosolic phospholipase A2 activation. J Leukoc Biol, 1999, 65:330-336
    [116] Panini SR, Yang L, Rusinol AE, et al. Arachidonate metabolism and the signaling pathway of induction of apoptosis by oxidized LDL/oxysterol. J Lipid Res, 2001, 42(10):1678-1686
    [117] Freeman NE, Rusinol AE, Linton M, et al. Acyl-CoA:Cholesterol acyltransferase promotes oxidized LDL/oxysterol-induced apoptosis in macrophages. J Lipid Res, 2005, 46:1933-1943
    [118] Nakazawa T, Xui N, Hesong Z, et al. Danshen inhibits oxysterol-induced endothelial cell apoptosis in vivo. J Atheroscler Thromb, 2005, 12(3):132-137
    [119] Liu HM, Yuan L, Xu S, et al. Cholestane-3beta, 5alpha, 6beta-triol promotes vascular smooth muscle cells calcification. Life Sci, 2004, 76(5):533-543
    [120] Dora E, Zeuthen T, Silver IA, et al. Effect of arterial hypoxia on the cerebrocortical redox state, vascular volume, oxygen tension, electrical activity and potassium ion concentration. Acta Physiol Acad Sci Hung, 1979, 54(4):319-331
    [121] Livingston FR, Lui EM, Loeb GA, Forman HJ.Sublethal oxidant stress induces a reversible increase in intracellular calcium dependent on NAD(P)H oxidation in rat alveolar macrophages. Arch Biochem Biophys, 1992, 15;299(1): 83-91
    [122] Poole RK, Lloyd D, Chance B. The reaction of cytochrome oxidase with oxygen in the fission yeast Schizosaccharomyces pombe 972h- Studies at subzero temperatures and measurement of apparent oxygen affinity. Biochem J, 1979, 15, 184(3):555-563
    [123] Liu SS. Generating, partitioning, targeting and functioning of superoxide in mitochondria. Biosci Rep, 1997, 17(3):259-272
    [124] Bailey SM, Pietsch EC, Cunningham CC. Ethanol stimulates the production of reactive oxygen species at mitochondrial complexes I and III. Free Radic Biol Med, 1999, 27(7-8):891-900
    [125] Liu Y, Fiskum G, Schubert D. Generation of reactive oxygen species by the mitochondrial electron transport chain. J Neurochem, 2002, 80(5):780-787
    [126] Autor AP. Biosynthesis of mitochondrial manganese superoxide dismutase in saccharomyces cerevisiae. Precursor form of mitochondrial superoxide dismutase made in the cytoplasm. J Biol Chem, 1982, 10, 257(5):2713-2718
    [127] Oshino N, Chance B. Properties of glutathione release observed during reduction of organichydroperoxide, demethylation of aminopyrine and oxidation of some substances in perfused rat liver, and their implications for the physiological function of catalase. Biochem J, 1977, 15, 162(3):509-525
    [128] 周智波, 钟丽君, 程时. 线粒体电子传递链电子漏的化学发光测定. 动物学报, 2004, 50 (1):120-125
    [129] Li Y, Zhu H, Trush MA. Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminal. Biochim Biophys Acta, 1999, 28, 1428(1):1-12
    [130] Guo Q, Christakos S, Robinsen N. Calbindin D28k blocks the proapoptotic actions of mutant presenilin 1: reduced oxidative stress and preserved mitochondria function. Proc Natl Acad Sci USA, 1998, 95: 3227-3232
    [131] Heinz Schneider, John J, Lemasters, et al. Liposome-Mitochondrial Inner Membrane Fusion lateral diffusion of integral electron transfer components. J Biol Chem, 1980, 255 (8), 3748-3756
    [132] Fang J, Wang Y, Beattie DS. Isolation and characterization of complex I, rotenone-sensitive NADH: ubiquinone oxidoreductase, from the procyclic forms of Trypanosoma brucei. Eur J Biochem, 2001, 268(10):3075-3082
    [133] Lemasters JJ, Nieminen AL, Qian T, et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta, 1998, 1366:177-1963
    [134] Simpson PB, Russell JT. Role of mitochondrial Ca2+ regulation in neuronal and glial cell signaling. Brain Res Rev, 1998, 26: 72-81
    [135] Franklin JC, Cafiso DS. Internal electrostatic potentials in bilayers: measuring and controlling dipole potentials in lipid vesicles. Biophys J, 1993, 65(1):289-299
    [136] Simon SA, McIntosh TJ, Magid AD, et al. Modulation of the interbilayer hydration pressure by the addition of dipoles at the hydrocarbon/water interface. Biophys J, 1992, 61(3):786-799
    [137] Chavez E, Moreno-Sanchez R, Zazueta C, et al. On the mechanism by which 6-ketocholestanol protects mitochondria against uncoupling-induced Ca2+ efflux. FEBS Lett, 1996, 379: 305-308
    [138] Kandutsch AA, Chen HW, Shown EP. Binding of 25-hydroxycholesterol and cholesterol different cytoplasmic proteins. Proc Natl Acad Sci USA, 1977, 74: 2500-2503
    [139] Kandutsch AA, Shown EP. Assay of oxysterol-binding protein in a mouse fibroblast, cell-free system. Dissociation constant and other properties of the system. J Biol Chem, 1981, 256:13068-13073
    [140] Kandutsch AA, Thompson EB. Cytosolic proteins that bind oxygenated sterols.Cellular distribution, specificity, and some properties. J Biol Chem, 1980, 255: 10813-10826
    [141] Steck TL, Kant JA. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes. Methods Enzymol, 1974, 31(Pt A):172-180
    [142] 谢孟峡, 刘媛. 红外光谱酰胺III带用于蛋白质二级结构的测定研究. 高等学校化学学报, 2003, 24(2):226-231
    [143] Surewicz WK, Moscarello MA, Mantsch HH. Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry. J Biochem, 1987, 262(18): 8598-8602.
    [144] Braiman MS, Rothschild KJ. Fourier transform infrared techniques for probing membrane protein structure. Ann Rev Biophys Biophys Chem, 1988, 17:541-570
    [145] Rooney MW, Yachnin S, Kucuk O, et al. Oxygenated cholesterols synergistically immobilize acyl chains and enhance protein helical structure in human erythrocyte membranes. Biochim Biophys Acta, 1985, 24, 820(1):33-39
    [146] Zhou Q, Band MR, Kummerow FA, et al. 27-Hydroxycholesterol inhibits neutral sphingomyelinase incultured human endothelial cells. Life Sci, 2004, 75:1567-1577
    [147] Kummerow FA, Mahfouz MM, Zhou Q, et al. 27-Hydroxycholesterol causes remodeling in endothelial cell membrane lipid composition comparable to remodeling in the failed vein grafts of CABG patients. Life Sci, 2006, 25, 78(9):958-963
    [148] Girao H, Catarino S, Pereira P. 7-Ketocholesterol modulates intercellular communication through gap-junction in bovine lens epithelial cells. Cell Commun Signal, 2004, 1; 2(1):2
    [149] Kotani N, Takahashi S, Sessler DI, et al. Volatile anesthetics augment expression ofproinflammatory cytokines in rat alveolar macrophages during mechanical ventilation. Anesthesiology, 1999, 91(1):187-97

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700