用户名: 密码: 验证码:
不同温度型小麦杂交后代的生物学性状之研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验对用选取群体温度、产量、株型、叶形、生理性状等方面都具有代表性的典型品种(系)为种质材料配置的杂交组合的杂交后代F_1、F_2的冠层温度、叶功能期、叶绿素含量、蛋白氮含量、过氧化氢酶、丙二醛含量、净光合速率、进行了观测和分析,结果表明:
     (1) 冷型小麦为亲本和具有不同温度型的种质材料进行杂交后,其后代群体平均温度总的趋势低于暖型小麦为亲本配置的同样的组合。在F_2代中出现低温种质材料的机率比暖型小麦要大,尤其是在灌浆后期,这种差异更加明显。
     (2) 用冷型小麦作亲本,其后代的各叶位叶片的衰老进程和暖型小麦作亲本存在较大差异,以冷型小麦为亲本的后代在籽粒灌浆期间的绿叶数较多,各叶位叶片功能期均长,且随叶位的降低,功能期之缩短要比暖型小麦明显为缓。
     (3) 以冷型小麦为亲本的杂交后代植株的旗叶的叶绿素含量,不管是在F_1代还是在F_2代,叶绿素分解缓慢、叶绿素含量降解率较低,叶绿素稳定时间长;而以暖型小麦为亲本,其杂交后代植株旗叶叶绿素分解较快、叶绿素降解率较高,叶绿素稳定时间短。
     (4) 用冷型小麦作母本还是作父本,其杂交后代F_1和F_2代的蛋白氮含量均表现出相对于以暖型小麦为亲本的相应后代的优势。特别是在灌浆后期更为明显。
     (5) 分别以冷型小麦和暖型小麦为母本时,杂交F_1代的CAT活性虽然在灌浆初期差异不大,但是从灌浆中期一直到灌浆末期,以冷型小麦为母本的杂交F_1代,都表现出较暖型小麦后代为优的趋势,这种趋势在F_2代也有显现。作父本时,不管是F_1代还是F_2代,冷型小麦后代CAT活性都表现出较强。
     (6) 小麦旗叶丙二醛(MDA)含量从灌浆初期开始上升,冷型小麦作亲本时,其F_1代和F_2代的MDA的积累速率和暖型小麦有着明显的差别:冷型小麦后代的MDA含量上升缓慢,而暖型小麦后代上升较快。
     (7) 用冷型小麦作亲本,杂交后代在整个灌浆期间净光合速率都高于用暖型小麦为亲本配置的同样的杂交后代。
This experiment to use to select by examinations community temperature, yield, stub type, leafs type, physiology form etc. have representative typical model species (department) as germplasm install miscellaneous to hand over to combine miscellaneous the canopy temperature, leaf function period, chlorophyll that hand over the posterity F1, F2 contains the deal, protein nitrogen contains the deaK CAT\ MDA, net photosynthesis rate to prognosticate with analyze. The main results as follow:
    (1) After the cold type wheat hybrid with the warm type wheat there is a lower temperature
    than warm type wheat in total trend in mean temperature in community in one after one generation. Appear the probability that low temperature material want to be big in the FI of the cold type wheat, particularly after the filling starches period, this kind of difference is more obvious.
    (2) There is a great different between parents that using the cold type wheat and the warm
    type wheat in progress in decrepitude ,with cold type wheat is close origin in the filling starching period with the cold type wheat more, the function period of each leaf is all long, and lower with leafs, function period horten to be more obvious than worm type wheat for slowing.
    (3) Regard cold type wheat as the close foliar chlorophyll in the flag leaf of miscellaneously hybrid progeny, whether is in FI or in F2, the chlorophyll resolves slow-moving, the chlorophyll contains declines to solve the rate lower, chlorophyll stability time is long, But regard warm type wheat as close origin, its miscellaneous hybrid progeny, flag leafs chlorophyll resolves more quickly, the chlorophyll declines to solve the rate higher, chlorophyll stability time is short.
    (4) The cold type wheat makes the mother or this to make the father, the contains of
    protein nitrogen of FI and Fa all express opposite in with warm type wheat is close origin advantage. Especially after the filling starches the period is more obvious.
    (5) The difference regard the warm type wheat and the cold type wheat as the mother this,
    although the activity of CAT of FI in the early filling starch period is not very, there has been an bigger advantage of activity in the cold type wheat from the filling
    
    
    middle period to the filling last period, regarding cold type wheat as the mother its FI all expressed the well than the warm type wheat. This kind of trend too presents in the Fa. While making the father this, whether is the Fj or p2 the activity of CAT of the cold type wheat's posterity is stronger.
    (6) When the contains of MDA of the flag leaf begin to rises from the filling starch early,
    cold type wheat make close origin, its FI and ? have got the obvious difference: The contains of MDA of the cold type wheat posterity slowly ascend, but the warm type wheat posterity runs high more quickly.
    (7) Making with the cold type wheat as parents, the velocity in the net photosynthesis rate
    in whole filling period of crossing descendents all is higher than use warm type wheat as the parent installs equally miscellaneous to hand over the posterity.
引文
[1] 白宝璋等.植物生理学测试技术.中国科学技术出版社,1993年8月第一版
    [2] 蔡焕杰等.用冠层温度-气温差方法诊断作物缺水状况的研究.干旱地区农业研究,1993,11(3):49-53
    [3] 蔡士宾等.小麦灌浆期水渍和高温对植株早衰和籽粒增重的影响.作物学报,1994,20(4):457-464
    [4] 陈少裕.膜脂过氧化对细胞的伤害.植物生理学通讯,1991,27(2):84
    [5] 董振国等.农田作物层环境生态.1994,中国农业科技出版社,第一版
    [6] 董振国.作物冠层温度与土壤水分的关系农田生态系统研究.北京:气象出版社,1989.368-372
    [7] 冯佰利,王长发等.干旱条件下冷型小麦叶片气体交换特性研究.麦类作物学报,2001,21(4):48-51
    [8] 何蓓如.T 型杂种小麦的优势及其亲本选配.西北农业大学学报,1984,1:102-119
    [9] 侯光良等译([日]加藤荣等编):光合作用研究方法.能源出版社,1985:118-120
    [10] 何中虎.麦类作物育种的亲本选配方法.麦类作物-国外农学,1989,4:46-49
    [11] 何中虎,肖世和等.“九五”全国小麦育种研究进展.麦类作物学报,2001,21(3):72-75
    [12] 郭文善,朱新开等.杂种小麦干物质积累特性研究.麦类作物,1997,17(27):27-30
    [13] 基础生物化学指导.西北农业大学主编,陕西科学技术出版社,1986,59-63
    [14] 金善宝主编.中国小麦学.1996,中国农业出版社
    [15] 金先春,徐戚生等.不同小麦品种的灌浆生理特性对后期青枯影响的研究.作物学报,1994,20(1):99
    [16] 黎裕.作物抗旱鉴定方法与指标.干旱地区农业研究,1993,11(1):91-99
    [17] 李志勇.强优势组合选配的初探.杂种小麦研究进展,农业出版社,1993年12月第一版
    [18] 梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究.生态农业研究,2000,8(1):24-26
    [19] 刘道宏.植物叶片的衰老.植物生理学通讯,1983,(2):14-19
    [20] 刘恩民,于强等.水分亏缺对冬小麦冠层温度影响的研究.生态农业研究,2000,8(1):21-23
    
    
    [21] 刘瑞文等.小麦叶温对籽粒的灌浆的影响.中国农业气象,1992,13(3):1-4
    [22] 刘学著等.冬小麦冠气温差及其与叶水势的相关性实验研究.作物学报,1995,21(5):528-532
    [23] 刘学著等.不同水分胁迫条件下冬小麦冠层温度日变化差异性研究.北京农业大学学报,1994,20(2):229-232
    [24] 莫惠栋.小麦育种理论与实践的进展.北京,科学普及出版社,1987,243-268
    [25] 慕小倩等.冷型小麦旗叶的形态解剖学研究.西北植物学报,1998,18(2):267-269
    [26] 彭文博,王向阳等.小麦灌浆期高温伤害与膜脂过氧化关系及调控,河南农业大学学报,1995,29(3):242
    [27] 任正隆,李尧权.小麦开花后的物质积累,籽粒相对生长率和灌浆速度在品种间的变异.中国农业科学,1981,(6):12-19
    [28] 申国安.小麦冠层温度的遗传及其与产量杂种优势关系的研究.西北农业大学1999界攻读硕士学位研究尘学位论文
    [29] 沈巩樊,沈允钢等.成熟期小麦中光合作用产物的积累与分布.科学记录,新辑,1959,3(9):355
    [30] 盛承师.小麦冠层形态结构与籽粒产量的关系.国外农学-麦类作物,1986,4:20-24
    [31] 史定珊等编著.冬小麦生产气象保障概论.气象出版社,1994年3月第一版
    [32] 苏德荫.高温对小麦的生理障碍及其伤害机理.植物抗性生理研究,济南,山东科学技术出版社,1992
    [33] 孙兰珍等.冬小麦产量性状杂种优势分析.北京农业大学学报,1985,11(4):85-88
    [34] 孙其信等.T 型杂种小麦优势表现的形态及遗传基础,北京农业大学学报,1985,11(4):56-64
    [35] 孙群,徐洪编.植物生理学研究技术.西北农业大学研究生试用教材,1998
    [36] 田良才等.高温胁迫-小麦超高产的主要障碍.山西农业科学,1995,23(2):4-18
    [37] 王葆军.T 型杂种小麦优势的研究.北京农业大学学报,1985,11(4):23-33
    [38] 王长发,张嵩午.冷型小麦表观形状研究.西北农业学报,2001,10(1):79-83
    [39] 王长发。冷型小麦的冷温特征研究.博士论文.西北农业大学
    [40] 王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究.西北植物学报,2000,20(5):727-732
    [41] 王宏.作物水分亏缺诊断的研究综述.北京,中国科学技术出版社
    
    
    [42] 王树安.杂种小麦源库基本特性研究,作物学报,1994,20(4):426-461
    [43] 王明理等.T 型杂种小麦品质及农艺性状的研究.Ⅱ.北京农业大学学报,1985,11(4):15-22
    [44] 王永锐.水稻生理育种[M].北京:科学技术文献出版社,1995
    [45] 王振镒.植物生理大实验.西北农林科技大学校内使用教材,1991,39-40
    [46] 文树基.基础生物化学指导.陕西科学技术出版社,1994,39-44
    [47] 吴兆苏.小麦育种学.北京农业出版社,1990
    [48] 行翠平,张哲夫.冬小麦品种丰产稳产性分析及其育种目标探讨,山西农业科学,1999,27(4):11-14
    [49] 许为钢等.小麦抗热性育种.干旱地区农业研究,1996,14(3):77-82
    [50] 严威凯.小麦杂优育种中的亲本选配问题.种子,1994,1:33-34
    [51] 杨春华,王淑荣等.小麦杂种 F2 代群体研究初报.麦类作物,1998,18(2):1-3
    [52] 殷宏章,沈允钢等.水稻开花后干物质的积累和转运.植物学报,1956,5(2):177
    [53] 岳寿松,元新华等.冬小麦生育后期的群体光合作用与物质生产能力.山东农业大学学报,1992,23(1):9
    [54] 岳寿松,余松烈等.冬小麦生育后期的群体光合作用与物质生产能力.山东农业大学学报,1992,23(1):9
    [55] 张爱民.植物育种亲本选配的理论和方法,农业出版社,1994年2月第一版
    [56] 张爱民等.小麦育种中杂交亲本选配理论与方法的研究.北京农业大学学报,
    [57] 章建新,赵明.短高温对小麦器官及其旗叶的超微结构变化的直接影响.中国农业大学学报,1997,2(1):7-12
    [58] 张明义,孙其信.冬小麦杂种 F2 优势研究.山西农业科学,1999,27(4):3-6
    [59] 张荣萍.不同温度型小麦的源、库特征及其关系之研究.西北农林科技大学 2003 界攻读硕士学位研究生学位论文
    [60] 张荣铣等.不同夜间温度对小麦旗叶光合作用和株产量的影响.作物学报,1994,20(6):710-715
    [61] 张嵩午,王长发.冷型小麦及其生物学特征.作物学报,1999,25(5):608-615
    [62] 张嵩午.小麦冷域问题.中国农业气象,1991,12(2):1-6
    [63] 张嵩午,王长发等.灾害性天气下小麦低温种质的性状表现.自然科学进展,2001
    [64] 张嵩午.K 型杂交小麦901的冷温特征.中国农业科学,1999,32(2):47-52 1990,16(1):19-25
    [65] 张嵩午,王长发等.冷型小麦及其育种意义.西北农业大学学报,1996,42(1):14-17
    
    
    [66] 张嵩午,王长发等.冷型小麦的表观特征机器和代谢功能的关联.华北农学报,1999,14(3):42-48
    [67] 张嵩午,王长发.小麦潜在库容研究.西北农业学报,1999,8(2):16-19
    [68] 张嵩午,宋哲民等.小麦冷温群体研究.中国农业气象,1995,16(4):1-6
    [69] 张嵩午.小麦温型现象研究.应用生态学报,1997,8(4):471-474
    [70] 植物生理学实验指导.西北农业大学主编.陕西科学技术出版社,1987,99-102
    [71] 中国农业百科全书农业气象卷,农业出版社.1986,10,98
    [72] 邹琦等.小麦高温与高温适应.植物学报,1998,30(4):388-395
    [73] 邹琦.植物生理生化实验指导.中国农业出版社,1995:36-39
    [74] 庄巧生等,冬小麦亲本选配的研究 Ⅰ.作物学报,1998,2(2):117-130
    [75] Smith, R. C. G., etal. 王言学译,小麦产量与叶温的关系,Agriculture and Forest Meteorology,1985,36(2):129-143
    [76] X.H.波钦诺克,荆家海等译.植物生物化学分析方法.科学出版社,1981:203-207
    [77] Blum,A,张转放等.干旱胁迫条件下不同基因型小麦品种的冠层温度.国外农学-麦类作物,1991,(2):35-37
    [78] Amani-I; Fischer-RA; Reynolds-MP. Canopy temperature depression associated with yield of irrigated spring wheat cultivars in a hot climate. Journal-of-Agronomy-and Crop-Science. 1996, 176: 2, 119-129; 22 ref.
    [79] Alderfasi-AA. Evaluation of certain traits associated with drought resistance in wheat under field conditions. Evaluation of certain traits associated with drought resistance in wheat under field conditions. Annals-of-Agricultural-Science-Cairo. 2001, 46: 1, 71-83;
    [80] Balota, -M.; Amani, -I. Evaluation of membrane thermostability and canopy temperature depression as screening traits for heat tolerance in wheat. Mexico, DF (Mexico). CIMMYT. 1993.26 p.
    [81] Blum, -A.; Shpiler, -L. Yield stability and canopy temperature of wheat genotypes under drought-stress. Field-Crops-Research (Netherlands). (1989). v. 22(4) p. 289-296.
    [82] Bhosale-AM; Jadhav-AS; Bote-NL; Varshneya-MC. Canopy temperature as an indicator for scheduling irrigation for wheat. Journal of-Maharashtra Agricultural Universities. 1996, 21: 1, 106-109; 7 ref.
    [83] Choudhary-OP; Bajwa-MS; Josan-AS. Tolerance of wheat and tfiticale to sodicity. Crop-Improvement. 1996, 23: 2, 238-246; 14 ref.
    [84] Dawson, I. A etal. Canpoy temperature as a crop water stress indicator. Water Resourse .1981,17:1133-1138
    
    
    [85] Fischer. Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies. Crop-science (USA). (Nov-Dec 1998) . v. 38(6) p. 1467-1475. )
    [86] Golestani-Araghi-S; Assad-MT. Evaluation of four screening techniques for drought resistance and their relationship to yield reduction ratio in wheat. Euphytica. 1998, 103: 3, 293-299; 18 ref.
    [87] Halliwel B,Chloroplast metabolism, the structure and function of chloroplasts in green leaf cells,Charendon Press, Oxford,P186. [90] Hede-AR; Skovmand-B. Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genetic-Resources and-Crop-Evolution. 1999,46: 1, 37-45;
    [88] Kumar,-A; Tripathi,-RP. Relationships between leaf water potential, canopy temperature and transpiration in irrigated and nonirrigated wheat.Journal of Agronomy and Crop-Science. 1991, 166: 1, 19-23; 12 ref.
    [89] Liu-XueZhu; Liu-XZ . Air temperature difference in winter wheat canopies and its relation to leaf water potential. Acta-Agronomica-Sinica. 1995, 21: 5, 528-532; 5 ref.
    [90] Liu-XZ; Zhang-LG . Differences in diurnal changes in canopy temperature of winter wheat under water stress conditions. Acta-Agriculturae-Universitatis-Pekinensis. 1994, 20:2, 229-232; 3 ref.
    [91] Pandey,-R.K.; Morris,-R.A.; Whisler,-F.D. Water extraction patterns, water use and yield of ten upland crops following rainfed lowland rice in the tropics . Philippine-Joumal-of-Crop-Science (Philippines). (Dec 1987) . v. 12(3) p. 163-168. Issued Sep 1988.
    [92] Petterson T G,Moss D V,Brum W A,Enzymatic changes during the senscene of filed-grown wheat ,Crop Sci ,1980,20:15.
    [93] Rao-TV; Brahma-BC; Singh-RK. Spectral response and canopy temperature of rainfed wheat in relation to pre-sown mulches and nitrogen levels. Annals-of Agricultural Research. 1997, 18: 2, 127-134; 9 ref.
    [94] Rashid,-A.; Stark,-J.C. Use of canopy temperature measurements as a screening tool for drought tolerance in spring wheat. J-agron-crop-sci. Berlin, Germany : Blackwell Wissenschafts-Verlag GmbH. June 1999. v. 182 (4) p. 231-237.
    [95] Reynolds. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. Australian-Joumal-of-Plant-Physiology (Australia). (1994) . v. 21(6) p. 717-730.
    [96] Reynolds-MP; Pfeiffer-WH. Applying physiological strategies to improve yield potential. Durum wheat improvement in the Mediterranean region: new challenges.
    
    Proceedings of a seminar, Zaragoza, Spain, 12-14 April, 2000.
    [97] Reynolds. Using canopy temperature depression to select for yield potential of wheat in heat stressed environments. CIMMYT Wheat Special Report (WPSR) (CIMMYT). no. 42. 3.
    [98] Reynolds. M.P.etal. Response of Plants to Environmental stress,New York:academic press
    [99] Reynolds. Summary of data from the 1st and 2nd international heat stress genotype experiments. Wheat in heat stressed environments: Irrigated, dry areas and rice-wheat farming systems. Mexico, DF (Mexico). CIMMYT. 1994. p. 184-192.
    [100] Rees,-D.; Sayre,-K.D. Canopy temperatures of wheat: Relationship with yield and potential as a technique for early generation selection. Mexico, DF (Mexico). CIMMYT. 1993. 32 p.
    [101] Reynolds. Problems of wheat cultivation at high temperature: A research perspective. Seventh Regional Wheat Workshop: For Eastern, Central and Southern Africa. Mexico, DF (Mexico). CIMMYT. 1991. p. 345-352.
    [102] Saadalla-MM. Infrared-thermal sensing as a screening criterion for drought tolerance in wheat Annals-of-Agricultural-Science-Cairo. 2000, 45: 2, 421-437; 23 ref.
    [103] Singh-RP; Ibrahim-A. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Wheat: prospects for global improvement. Proceedings of the 5th International Wheat Conference, Ankara, Turkey, 10-14 June 1996. 1997, 143-152; Developments in Plant Breeding Volume 6; 8 ref.
    [104] Smillie,R.M.,Cloured components of Chlorooplast membrances as intrinsic membrance probes for monitoring the development of heat injury in intact tissues ,Aust .J.Plant Physicol .1980,31:121-123
    [105] Tanner, C.B.plant temperature. Agron J., 1965,55:210-211
    [106] Wardlaw,I.F.etal. The tolerance of wheat to high temperature during reproductive growth.I.survey producers and general response patterns Aust. J. Agr.Res. 1989,40: 1-3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700