用户名: 密码: 验证码:
垃圾渗沥液—烟气脱硫体系气液吸收与解吸过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
寻求廉价且性能可靠的湿法烟气脱硫新工艺、新型高效吸收剂和经济有效、技术先进的城市垃圾填埋场渗滤液中高浓度氨氮预处理方法,一直是环境化学工程领域的两大热点。本研究首次提出并建立了垃圾渗滤液湿法烟气脱硫-微生物硫转化互补体系,利用垃圾渗滤液的高碱度和液相金属离子催化氧化性“以污治污”吸收二氧化硫,同时较高温度的烟气又作为汽提介质“以污治污”吹脱垃圾渗滤液的氨氮。本文系统研究了垃圾渗滤液吸收烟气中SO_2并伴随氨的解吸这一复杂过程的反应机理、宏观动力学控制步骤和工艺特性,并对这一特殊的气液吸收和解吸过程进行了数值模拟。
     针对垃圾渗滤液组成复杂的特性,采用自行设计的双磁力搅拌气液反应器通过实验首次研究了含有NH_4~+-N、过渡金属离子、无机阴离子、复杂有机物的垃圾渗滤液吸收SO_2同时伴随渗滤液氨解吸过程的反应机理,采用L_9(3~4)正交试验研究了垃圾渗滤液的pH值、Fe~(2+)、Mn~(2+)、Cl~-、乙醇以及甲苯等代表性因子的显著性,并证实这些因子对SO_2吸收效率影响的大小依次为pH值、Fe~(2+)和Mn~(2+)的浓度、Cl~-浓度及乙醇和甲苯的浓度。对pH值、Fe~(2+)、Mn~(2+)、Cl~-、乙醇以及甲苯等代表性因子进行了机理分析、定量实验研究和数学模拟。结果表明,(1)垃圾渗滤液pH值是SO_2吸收率和氨氮吹脱去除率的关键因素,高的初始pH值可同时获得较高的氨氮吹脱去除率和脱硫率。(2)垃圾渗滤液的初始pH值为8.5,液气比为3L/m~3并控制吸收终点pH值为6.0,SO_2平均吸收率可达85%,氨氮吹脱累计去除率可达44%。(3)垃圾渗滤液pH值低于7时,渗滤液中较低浓度的Fe~(2+)、Mn~(2+)对液相的S(Ⅳ)氧化仍具有较显著的催化作用,在相同浓度下,Mn~(2+)的催化作用优于Fe~(2+),但二者的催化行为总体上类似,提高Fe~(2+)、Mn~(2+)浓度可有效促进SO_2的吸收率。(4)Cl~-对SO_2吸收的促进作用主要归因于Cl~-对液相的S(Ⅳ)氧化具有较显著的催化作用,而这种催化作用必须在Fe~(2+)、Mn~(2+)的协同下才可能发生。(5)乙醇能通过抑制液相的S(Ⅳ)氧化反应降低SO_2的吸收效率,但
    
    四川大学博士学位论文
    总体上这种抑制作用明显小于Fe2+、M矛十以及cl‘的催化作用。(6)液相发生的
    S(W)氧化反应对于促进苯基类难生物降解物质的破环有促进作用,有利于
    后续的生物硫转化工艺。(7)垃圾渗滤液吸收烟气502的宏观动力学过程较复
    杂,总体上属于传质速度控制过程而非动力学控制过程,由实验结果,可以根
    据溶液pH值的变化划分传质速度控制过程,当体系的pH值较高时(pH值)8.5),
    气相扩散阻力为主导性因素,吸收过程控制步骤可视为气相扩散控制;当4簇pH
    成6.5值时,液相扩散阻力为主导性因素,吸收过程控制步骤可视为液相扩散控
    制;而当6.5    氨的解吸为气相扩散控制过程。
     通过实验详细测定了必loomm常规填料塔内脱硫率和氨氮脱除率随液相
    停留时间、操作温度、喷淋密度、液气比、烟气中502浓度和渗滤液中氨氮浓
    度等的变化情况,分析了这些操作参数对过程的影响,并根据实验数据得出了
    脱硫率、氨氮脱除率和操作参数之间的回归经验方程。在液相停留时间为
    45min,操作温度so.c,喷淋密度3 m3/m2·h,液气t匕3L/m3,烟气502浓度zsoopm
    的较佳工艺组合条件下,S仇平均吸收率可达85%,氨氮总去除率达40%,吸收
    尾液COD/s比为2.1,有利于后序吸收尾液中硫的微生物转化处理。
     基于经典双膜传质理论,建立了填料塔内垃圾渗滤液吸收烟气中502并伴
    随氨的解吸过程的数学模型,根据工艺研究的实验条件对模型赋初值,结合模
    型参数估值确定适宜的边界条件,采用MaPles.0对模型方程进行求解,得到了
    液膜内各组份的浓度分布特性曲线,以及气相分压、pH值、传质阻力、传质速
    率、吸收增强因子等沿塔高的分布特性,结果表明模型预测结果和实验结果吻
    合良好。
     通过本文研究,弄清了垃圾渗滤液吸收烟气中502并伴随氨的解吸过程的
    反应机理和宏观动力学控制步骤,掌握了填料塔内垃圾渗滤液吸收烟气中502
    并伴随氨的解吸过程的工艺操作特性及其规律,基于对实验数据的数学模拟给
    出了较佳的操作参数范围。基于经典双膜传质理论建立了过程模拟计算的模型,
    为本工艺过程和其它湿法烟气脱硫过程的传质一反应现象提供了一个定量的理
    论分析和工程设计基础。
    关键词:烟气脱硫垃圾渗滤液亚硫酸盐硫酸盐液相催化氧化数值模拟
It's a main issue in the field of environmental chemical engineering to find effective and cheap absorption medium for the wet flue gas desulfurization(FGD) process. At the same time, much attention have been paid on finding more effective and economy methods on ammonia stripping as pre-process for landfill leachtae bio-treatment. The study in this paper put forward and developed a system of integrating SO2 absorption into flue gas with landfill leachate coupled with ammonia stripping for the first time, in which SO2 in the flue gas could be absorbed by the alkaline and S(IV) oxidation catalyzed by metal ions in landfill leachate while the heat needed for stripping some ammonia from landfill leachate at high temperature can be provided partially or totally by the higher temperature flue gas. The reaction mechanism, macro kinetic control factors, operating parameters in normal packed column, and rate-based model of the process were systematically investigated in the present paper.Due to the complexity of landfill leachate composition, the reaction mechanism of SO2 absorption into flue gas with landfill leachate coupled with ammonia desorption was studied using a stirring vessel. The orthogonal experimental results indicated that the influence degree sequence of effect on SO2 absorption efficiency with landfill leachate form large to small was pH value, the catalysis of Fe2+ and Mn2+, the catalysis of Cl~ and the concentration of toluene and ethanol. The quantitative experiments showed that the pH value of landfill leachate was the key factor both
    
    for SO2 absorption and ammonia stripping. Under the condition of initial pH vajue being 8.5, terminal pH value being 6.0 and L/G ratio being 3L/m3, experiment results showed that average absorption efficiency of SO2 was 85% and average desorption efficiency of ammonia was 44%. The catalysis of Fe2+ and Mn2+ was important for SO2 absorption when pH value was below 7.0. Catalysis activity of Mn2+ was better than that of Fe2+ although their react steps were very similar. The catalysis of Cl" could only be effective if companied by the catalysis of Fe2+and Mn2+. Ethanol could inhibit S(IV) oxidation. S(IV) oxidation could improve the solubility of organics such as toluene in landfill leachtae, and the products were water-soluble and belonged to biodegradable surfactants which could be used as substrates for microbiology in the post bio-process. However, positive effect of catalysis of Cl", Fe2+ and Mn2+ on S(IV) oxidation has superiority over the negative effect of ethanol inhibition on S(IV) oxidation. Macro kinetic experiment results indicated that gas phase diffusion resistance could be the control step of the process when pH value was above 8.5, and liquid phase diffuse resistance could be the control step of the process when pH value was between 4 to 6.5 due to S(IV) oxidation, and the gas phase and liquid phase diffusion resistance might both have effects on the control step of the process when pH value was between 6.5 to 8.5.Operating parameters, including liquid retention time, temperature, ratio of liquid /gas flow rate, liquid spraying density, SO2 concentration in flue gas, and NH/-N concentration in landfill leachate, were studied experimentally in a normal packed column. Based on experimental results, numerical simulation equations of SO2 absorption efficiency and ammonia desorption efficiency corresponding to the operating parameters were developed. The experimental results indicated that ammonia desorption efficiency increased when liquid retention time was below 20 min and SO2 absorption efficiency decreased when liquid retention time became long. High temperature was benefit to ammonia stripping and disbenifit to SO2 absorption. SO2 absorption efficiency and ammonia desorption efficiency both improved with increasing the ratio of liquid /gas flow rate and the liquid spraying density. High concentration of SO2 in flue gas had negative effect on SO2 absorption
    
    and ammonia stripping, while high concentration of NH4+-N in landfill leachate had positive effect. Unde
引文
1. 2003中国环境质量状况,国家环保总局发布,北京,2004:5 ~ 15
    2. 燃煤二氧化硫排放污染防治技术政策,国家环保总局,国家经贸委,科技部联合发布,北京,2002:1 ~ 5
    3. 张慧明,祝波.湿法烟气脱硫技术及其进展.全国烟气脱硫技术研讨会论文集,P252 ~ 266,2000.中国 深圳
    4. 赵庆良,李湘中.垃圾渗滤液中NH_3 - N对微生物活性的抑制作用.环境污染与防治,1998,20(6):1 - 4
    5. Buisman C. Biotechnological sulfide removal with oxygen. Ph.D - thesis Agricultural University Wageningen, 1989, The Netherlands
    6. Janssen AJH. Formation and colloidal behaviour of elemental sulphur produced from the biological oxidation of hydrogensulphide. PhD - thesis Agricultural University Wageningen, 1996, The Netherlands.
    7. Visser A.The anaerobic treatment of sulphate containing wastewater. PhD thesis Agricultural University Wageningen, 1995, The Netherlands.
    8. 晏玉清,范安祥等.烟气脱硫技术及方案选择原则(二):石膏法烟气脱硫技术.四川电力技术.2000,23(3):47 - 48
    9. 王方群,原永涛等.脱硫石膏性能及其综合利用.粉煤灰综合利用.2004(1):41 - 44
    10. 陈东,林继发等.湿法烟气脱硫技术简述.陕西环境.2003,10(5):32 - 34
    11. 龚立贤.德国克虏伯伍德公司氨法脱硫、脱氮氧化物技术.热机技术.1998(3):37 - 41
    12. 曹霞,陈秀萍.浅谈氢氧化镁法脱硫技术.有色冶金设计与研究.2000, 21(1):47 - 51
    13. 缪天成.从“七五”排烟脱硫技术研究中得到的认识.硫酸工业.1992(4):40 - 46
    14. 朱晓帆,苏仕军等.软锰矿烟气脱硫研究.四川大学学报(工程版).2000(5)32:
    15. 王玮,屠传经等.微生物烟气脱硫技术的展望.环境污染与防治.1997,19(2).:28 - 30,41
    16. Grootread, H. et al. , Biological flue gas desulfurization. Meded. Fac. Landbowkd Toegepaste BiolWet 1997, 62(4b):1529 ~ 1534
    17. 石慧芳,陈春涛等.微生物烟气脱硫技术及其研究方向.郑州轻工业学院学报:自然科学版.2002,17(2):100 - 103
    
    18. 王小燕,张永奎,梁斌.微生物脱硫工艺条件的研究.环境科学.2003,24(5):44 - 48
    19. 谭钦文,蒋文举等.生物脱硫中细菌的载体培养条件优化与动力学研究.环境污染与防治.2004,26(2):89 - 91,103
    20. Punjai T. Selvaraj et al.Analysis of immobilized cell bioreactors for desulfurization of flue gases and sulfite sulfate laden wastewater. Biodegradation .1997, 8: 227 - 236, .
    21. 曹从荣,柯建明等.荷兰的烟气生物脱硫工艺.中国环保产业.2002(5):38 - 39
    22. 苏丹.苏仕军,朱家骅等.垃圾渗滤液烟气脱硫体系的实验研究.环境污染治理技术与设备.2003,4(5):9 ~ 11
    23. 苏仕军,万海清,朱家骅等.垃圾渗滤液烟气脱硫:oH值、Fe~(2+)、Mn~(2+)的影响机理研究.四川大学学报(工程版).2004,36(6):37 ~ 42
    24. 万海清,苏仕军,朱家骅等.硫酸盐还原菌的生长影响因子及脱硫性能的研究.高校化学工程学报.2004,18(2):218 - 223
    25. 万雪松,万海清等.硫酸厂淤泥中SRB的选育及特性研究.重庆环境科学.2003,25(3):26 - 28,31
    26. 张兰英等.垃圾渗沥液中有机污染物的污染及去除.中国环境科学.1999,4:23
    27. 赵莉,陈涛.生活垃圾填埋场渗滤液中氨氮的脱除技术综述.重庆环境科学.2003,25(11):164 ~ 169
    28. K. C. Cheung, L. M. Chu and M. H. Wong, Ammonia Stripping as a pretreatment for landfill leachate. Water, Air, and Soil Pollution. 1997, 94:209 - 221
    29. 王宗平,陶涛,袁居新.垃圾渗滤液预处理—氨吹脱.给水排水,2001,27(6):15 - 19
    30. 王宗平,陶涛,袁居新.中山市垃圾渗滤液处理厂的改造工程.中国给水排水,2001,17(5):57 - 58
    31. 胡勤海,金明亮,方士.吹脱 - SBR - 吸附混凝法处理垃圾填埋场渗滤液.环境污染与防治,2000,22(3):21 ~ 23,29
    32. 沈耀良,张建平,王惠民.苏州七子山垃圾填埋场渗滤液水质变化及处理工艺方案研究.给水排水,2000,26(5):22 ~ 25
    33. P. H. Liao, A.Chen & K .V. Lo, Removal of nitrogen from swine manure wastewater by ammonia stripping. Biosource Technology. 1995, 3(5):17 ~ 20
    34. August Bonmati, Xavier Flotats, Air stripping of ammonia from pig slurry: characterization and feasibility as a pre - or post - treatment to mesophilic anaerobic digestion. Waste management. 2003, 23:261~272
    35
    
    35.陈石,王克虹,孟丁等.垃圾填埋场渗滤液处理中试研究.给水排水,2000,26(10):15-18.
    36.夏塞兰,周勇,曹丽淑等.城市生活垃圾渗滤液氨氨吹脱研究.环境科学与技术,2000,23(3):26~29
    37.吴方同,苏秋霞,孟了等.吹脱法去除城市生活垃圾渗滤液中氨氨.给水排水,2001,27(6):20~24
    38.倪佩兰,郑学娟,徐月思.垃圾填埋场滲滤液氨氨的吹脱处理工艺技术研究.环境卫生工程,2001,9(3):133~135
    39. Barron. C.H. and O'Hern. H.A. Reaction kinetics of the sodium sulfite oxidation by rapid-mixing method. Chem. Eng. Sci. 1966, (21):397~404
    40. Bengtsson, S. and Bierle,I., Catalytic oxidation of sulphite in diluted aqueous solutions. Chem. Eng. Sci. 1966, (30):1429~1435
    41. Chen, T. I. and Barron, C.H. Some aspects of the homogenous kinetics of sulfite oxidation. Ind. Engng. Chem. Fundam. 1972, (11):466~470
    42. Hayon, E., Trenin, A. and Wilf, J., Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite pryosulfite systems. The SO_2~(·-), SO_3~(·-), SO_4~(·-) and SO_5~(·-) radicals. J. Am. Chem. Soc. 1972, (94): 47~57
    43. Mishra, G. C. and Srivastava, R.. D. Kinetics of oxidation of ammonium sulfite by rapid mixing method. Chem. Engng. Sci.1982,(30): 1387~1390
    44. Pasiuk-Bronikowska, W. and Bronikowski, T. The rate equation for SO_2 autoxidation in aqueous MnSO_4 solution containing H_2SO_4. Chem. Engng. Sci. 1981, 6(36): 215~219
    45. Pasiuk-Bronikowska, W. and Bronikowski, T. Kinetic modle for sulphite autoxidation under heterogeneous conditions. Chem. Engng. Sci. 1989, 44 (3): 1361~1368
    46. Pasiuk-Bronikowska, W. and Ziajka, J., Oxygen absorption into aqueous sulphur dioxide solutions. Chem. Engng. Sci. 1985, 40 (1): 1567~1572
    47. Pasiuk-Bronikowska, W. and Ziajka, J., Kinetic of aqueous SO_2 oxidation at different rate controlling steps. Chem. Engng. Sci. 1989, 44 (5): 915~920
    48. Huss, A. Jr., Lim, P. K. and Eckert, C. A., Oxidation of aqueous sulphur dioxide. 1. Homogenous manganese(Ⅱ) and Iron(Ⅱ) catalysis at low pH. J. Phys. Chem. 1982, 86 (3): 4224-4228
    
    49. Kraft, J., van Eldik, R., Kinetics and mechanism of the iron (III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution.2. Decomposition of transient iron(III)-sulfur(IV) complexes. Inorganic Chemistry. 1989b 28:2306-2312.
    50. Barrie, L. A., Georgii, H. W., An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions. Atmospheric Environment 1976,10: 743-749
    51. Beilke, S., Gravenhorst, G., Heterogeneous SO_2-oxidation in the droplet phase. Atmospheric Environment. 1978,12: 231-239.
    52. Brandt, Ch., Fabian, I., van Eldik, R., Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. Evidence for the redox cycling of iron in the presence of oxygen and modeling of the overall reaction mechanism. Inorganic Chemistry. 1994,33:687-701.
    53. Buxton, G.V., Croft, S., McGowan, S., Salmon, G.A., In: Warneck, P. (contract coordinator), Laboratory Studies of the Aqueous Chemistry of Free Radicals, Transition Metals and Formation of Acidity in Clouds. Final Report Contract No.STEP-0005 -C(MB), 1992.3: 61-74.
    54. Buxton, G.V., McGowan, S., Salmon, G.A., Williams, J.E., Wood, N.D., A study of the spectra and reactivity of oxysulfur-radical anions involved in the chain oxidation of S(IV): a pulse and g-radiolysis study. Atmospheric Environment 1996. 30:2483-2493.
    55. Buxton, G.V., Malone, T.N., Salmon, G.A., Reaction of SO_4- with Fe2+, Mn2+ and Cu2+ in aqueous solution. Journal of the Chemical Society, Faraday Transactions, 1997. 93:2893 -2897
    56. Clarke, A. G., and Radojevic, M., Chloride ion on the aqueous oxidation of SO2. J. Atoms. Environ. 1983, 17(3): 617-624
    57. Zhao Yi, Ma Shuang-chen, Wang Xiao-ming, and Zhang Qiong., Experimental and mechanism studies on seawater flue gas desulfurization. Journal of Environmental Sciences. 2003, 15(1): 123-128
    58. Bigelow, S.L., Catalytic effects in the oxidation of sodium sulphite by air oxygen. Zeitschrift fuer Physikalische Chemie. 1898. 26: 493-532
    
    59. Alyea, H.N., B.ackstr.om, H.L.J., The inhibitive action of alcohols on the oxidation of sodium sulfite.Journal of the American Chemical Society. 1929,51:90~107.
    60. Bckstrm, H. L. J., The chain mechanism of the autoxidation of sodium sulphite solutions. Zeits chrift fuer Physikalische Chemic (B) 1934,25:122-138
    61. McElroy, W.J., Waygood, S.J., Kinetics of the reactions of the SO_4~(·-) radical withSO_4~(·-), S_2O_8~(·-) , H_2O and Fe~(2+). Journal of the Chemical Society, Faraday Transactions 1990, 86: 2557~2564.
    62. Wine, P.H., Tang, Y., Thorn, R.P., Wells, J.R., Kinetics of aqueous phase reactions of the SO_4~(·-) radical with potential importance in cloud chemistry. Joumal of Geophysical Research. 1989, 94:1085~1094.
    63. Buxton, G.V., Salmon, G.A., Williams, J.E., The reactivity ofbiogenic monoterpenes towards OH and SO_4~(·-) radicals in de-oxygenated acidic solution.Journal of Atmospheric Chemistry. 2000.36:111-134.
    64. J.Ziajka, W.Pasiuk-Bronikowska., Autoxidation of sulphur dioxide in the presence of alcohols under conditions related to the tropospheric aqueous phase. Atmospheric Environment 2003, 37:3913~3922
    65. Neta P. and Huie R. E. Rate constants for reactions of inorganic radicals in aqueous solution. J. Phys. Ref. Data. 1988, 17:1027~1284
    66. W. Pasiuk-Bronikowska., J.Ziajka, Solubilization of organics in water coupled with sulphite autoxidation. Wat. Res. 1997, 31(7): 1767~1775
    67. E. Y. Kenig, R. Schneider, and A. GoHrak., Reactive absorption: Optimal process design via optimal modeling. Chemical Engineering Science. 2001,56:343~350
    68. Taylor, R., and Krishna, R. Multicomponent mass transfer. New York: Wiley. 1993
    69. Seader, J. D. O. The rate-based approach for modeling staged separations. Chemical Engineering Progress. 1989, 85(10):41~49.
    70. Nernst, W. Zertschrift fur Physikalische Chemic, 1904, 47~52
    71. Higbie, R. Transactions of the American Institute of Chemical Engineers. 1935, 31:365
    72. Dankwerts, P. V. Industrial and Engineering Cheistry. 1951, 43:1460
    73.E.L.柯斯乐著,王宇新.姜忠义译.扩散:流体系统中的传质.化学工业出版社,北京:2002:222~226
    
    74. E. Sada, H. Kumazawa, Y. Sawada, I. Hashizume, Absorption of sulfur dioxide into aqueous slurries of sparingly soluble fine particles, Chem. Eng. Sci. 1980,35 :771.
    75. E. Sada, H. Kumazawa, T. Hoshino, Absorption of lean SO2 in aqueous solutions of Na2CO3 and desorption of CO2, Chem. Eng. J. 1979,18 :125.
    76. E. Sada, H. Kumazawa, M.A. Butt, Absorption of sulfur dioxide in aqueous slurries of sparingly soluble fine particles, Chem. Eng. J. 1977,19:131.
    77. E. Sada, H. Kumazawa, M.A. Butt, Single and simultaneous absorptions of lean SO2 and NO2 into aqueous slurries of Ca(OH)2 or Mg(OH)2 particles, Chem. Eng. Sci. 197912 (2):111.
    78. E. Sada, H. Kumazawa, Y. Sawada, I. Hashizume, Kinetics of absorption of lean sulfur dioxide into aqueous slurries of calcium carbonate and magnesium hydroxide, Chem. Eng. Sci. 1981,36:149.
    79. E. Sada, H. Kumazawa, M.A. Butt, T. Sumi, Removal of dilute SO2 by aqueous slurries of Mg(OH)2 particles, Chem. Eng. Sci. 1977,32:972.
    80. E. Sada, H. Kumazawa, C.H. Lee, Chemical absorption into cone, slurry: absorption of CO2 and SO2 into aq. cone, slurries of Ca(OH)2, Chem. Eng. Sci. 1984,39 : 117.
    81. E. Sada, H. Kumazawa, H. Nishimu, Absorption of SO2 into aqueous double slurries containing limestone and Mg(OH)2, Chem. Eng. Sci. 1983,29:60.
    82. Manoj V. Dagaonkar, Antonie A.C.M.Beenackers, Vishwas G. Pangarkar, Enhancement of gas-liquid mass transfer by small reactive particles at realistically high mass transfer coefficients: absorption of sulfur dioxide into aqueous slurries of Ca(OH)2 and Mg(OH)2 particles. Chemical Engineering Journal.2001, 81:203-212
    83. Rochelle, G. T. and King, C. J. The effect of additives on mass transfer in CaCO3 or CaO slurry scrubbing of SO2 from waste gases. Ind. Engng Sci.Fundum. 1977, 16:67~75
    84. Hikita, H. Asia, S. and Tsuji, T. Absorption of sulfur dioxide into aqueous sodium hydroxide and sodium sulfite solutions. A. I. Ch. E. J. 1977, 23: 535-544
    84. Ulchida, S., Moriguchi, H., Maejima, H., Koide, K. and Kageyma, S. Absorption of sulfur dioxide into limestone slurry in a stirred tank reactor.Can.J.Chem.Engng. 1978, 56:690-697
    85. Hikita, H. Asia, S. and Tsuji, T. The Absorption of lean SO2 in aqueous solutions of Na2CO3 accompanied by the desorption of CO2, Chem. Eng. J. 1983,27: 167-176.
    
    86. Chang. C. S. Dempsey, J. H., Borgwardt, R. H. Toprac, A. C. and Rochelle, G. T. Effect of limestone type and grid on SO2 scrubber performance. Environ. Progr. 1982, 1 : 59~64
    87. Charlotte Brogren and Hans T.Karlsson. Modeling the absorption of SO2 in a spray scrubber using the penetration theory. 1997, 3085~3097
    88.朱晓帆,蒋文举,苏仕军等.喷射鼓泡反应器在软锰矿烟气脱硫中的应用.环境工程:2003, 21(1):42~50
    89.张心亚,吴元欣,李定或.填充床中SO_2与O_2同时吸收的扩散.反应模型.化工学报.2001,52(11):1021~1024
    90. Lancia, A., Musmarra, D., Pepe, F. and Volpicelli, G. SO_2 absorption in a bubbling reactor using limestone suspensions. Chem. Engng Sci. 1994, 49:4523~4532
    91. S. Ebrahimia., C. Picioreanua, R. Kleerebezema, J. J. Heijnena, M. C. M. van Loosdrechta Rate-based modelling of SO_2 absorption into aqueous NaHCO_3/Na_2CO_3 solutions accompanied by the desorption of CO_2. Chemical Engineering Science. 2003,58:3589~3600
    92. E.Y. Kenig, E Butzmann!, L. Kucka!, A. GoH rak.Comparison of numerical and analytical solutions of a multicomponent reaction-mass-transfer problem in terms of the film model. Chemical Engineering Science. 2000,55:1483~1496
    92. E.Y. Kenig .Mass transfer-reaction coupling in two-phase multicomponent fluid systems. Chemical Engineering Science. 1995,57:189~204
    93. E.Y. Kenig, R. Schneider, A. Górak. Multicomponent unsteady-state film model a general analytical solution to the linearized diffusion-reaction problem. Chemical Engineering Science. 2001,83:85~94
    94. E.Y. Kenig, R. Schneider, A. Górak. Rigorous dynamic modelling of complex reactive absorption processes. Chemical Engineering Science. 1999,54:5195~5203
    95. E.Y. Kenig, A. Górak. A film model based approach for simulation ofmulticomponent reactive separation. Chemical Engineering Science. 1995,34:97~103
    96. Lars Kuckaa, Ivo M-ullerb, Eugeny Y. Kenigb, Andrzej Gorakb.On the modelling and simulation of sour gas absorption by aqueous amine solutions. Chemical Engineering Science. 2003,58:3571~3578
    97. Edwards, T. J., Newman, J. and Pransnitz, J. M. AIChEJ. 1975,21:248
    
    98. Beutier, D. Renon, H. Ind. Eng. Chem. Process Des. & Dev. 1978, 17:72
    99. Chen Chau-chyun, Britt, H. I., Boston, J.F., and Evans, L. B. AIChEJ. 1979,25:820
    100.周家驹,许志宏.挥发性弱电解质水溶液三元系的气液平衡—NH_3-CO_2-H_2O,NH_3-H_2S-H_2O,NH_3-SO_2-H_2O体系.化工学报.1983,3:234~238
    101.时钧等编著.化学工程手册.第二版,上卷.北京:化学工业出版社,1996
    102. DeLancey, G. B. Chemical Engineering Science, 1974,29:2315~2323.
    103. Ung, S., & Doherty, M. F. Industrial and Engineering Chemistry Research, 1995, 34:2555~2565.
    104. Doherty, M. F., & Buzad, G. Transactions of the Institution of Chemical Engineers, 1992,70:448~458.
    105. Toor, H.L.A.I.Ch.E. Journal, 1964a,10: 448~455,460~465.
    106. Toor, H. L. A.I.Ch.E. Journal, 1994b, 10:545~547.
    107. Toor, H. L. Chemical Engineering Science, 1965,20:941~951.
    108. Samarskij, A. A. Theorie der Diwerenzenverfahren. Leipzig: Akademische Verlagsgesellschaft, 1984.
    109. Patankar, S. V. Numerical heat transfer and yuid yow. New York: Hemisphere publ. corp., McGraw-Hill. 1980
    110. Parra, D., Tejero, J., Cunill, F., Iborra, M., & Izquierdo, J. F. Chemical Engineering Science, 1994,49:4563~4578.
    111. Danckwerts, P. V. Gas-liquid reactions. New York: McGraw-Hill. 1970
    112. Korn, G. A., & Korn, T. M. Mathematical handbook for scientists and engineers. New York: McGraw-Hill. 1968
    113. DeLancey, G. B. Chemical Engineering Science, 1974,29: 2315~2323.
    114. Stefener, M. Simulation des stationa( ren und dynamischen Verhaltens einer Kolonne zur reaktiven Rektixkation. Dissertation, Dortmund University, Dortmund. 1996
    115.肖文德,吴志泉编著.二氧化硫脱除与回收.第一版,北京:化学工业出版社,2001
    116. L.Kucka, J. Richter, E.Y. Kenig, A. Gorak Determination of gas-liquid reaction kinetics with a stirred cell reactor. Separation and Purification Technology .2003,31:163~175
    117.王建华编著.化学反应工程基本原理(上册).成都科技大学出版社.成都,1988
    118.崔萍,刘期崇.用双磁力驱动搅拌反应器研究磷酸氨化的宏观动力学.化学反应工 程与工艺.1994,10(3):316~322
    11
    
    119. Octave Levenspiel, J.H. Goclery, Chem. Eng. Sci. 1973, 129:1723
    120.汤桂华等编著.硫酸.第一版,北京:化学工业出版社,1999
    121. Emerson, K., R.C.Russo, R.E.Lund and R.V.Thurston., Aqueous ammonia equilibrium calculations effect ofpH and temperature. J.Fish.Res.Board Can., 1975,32:2379~2383
    122. Mccarthy, J.E. Flue gas desulfurization: Scrubber types and selection criteria. Chemical Engineering Progress, 1980, 76(5), 58~62
    123.李述文,范如甘.实用有机化学手册.上海科技出版社.上海,1981:147~150
    124.朱家骅,夏素兰:叶世超:化工原理:科学出版社,北京,2002
    125.马鲁铭,刘燕.黄志通.污水生化处理出水吸收二氧化硫,中国环境科学,1998.18(1):64~67
    126.沈耀良,王宝贞.吹脱法去除渗滤液中氨的动力学及机理污染防治技术,1999,12(2):67~71
    127. Beilke, S. and Gravenhorst, G., Heterogeneous SO_2-Oxidation in the Droplet Phase, Atmos.Environm. 1978,12:231-239.
    128. Gerard, P., Segantini, G., & Vanderschuren, J. Modeling of dilute sulfur dioxide absorption into calcium sulfite slurries. Chemical Engineering Science, 1996,51 (12):349-3358.
    129. Kiil, S., Nygaard, H., & Johnsson, J. E. Simulation studies of the infuence of HCl absorption on the performance of a wet flue gas desulphurisation pilot plant. Chemical Engineering Science, 2002,57:347-354.
    130. Onda, K., Sada, E., & Okumoto, Y. Mass transfer coeNcients between gas and liquid phases in packed columns. Journal of Chemical Engineering of Japan, 1968a, 1(1):62~66.
    131. Onda, K., Takahashi, M., & Okumoto, Y. Mass transfer coeNcients between gas and liquid phases in packed columns. Joumal of Chemical Engineering of Japan, 1968b, 1(1): 56-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700